Publication Cover
Mycology
An International Journal on Fungal Biology
Volume 14, 2023 - Issue 2
1,717
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Screening for cellulases and preliminary optimisation of glucose tolerant β-glucosidase production and characterisation

, &
Pages 91-107 | Received 08 Aug 2022, Accepted 30 Nov 2022, Published online: 17 Dec 2022

References

  • Adesina F, Onilude A. 2013. Isolation, identification, and screening of xylanase and glucanase-producing microfungi from degrading wood in Nigeria. Afr J of Agric Res. 8(34):4414–4421. doi:10.5897/AJAR2013.6993.
  • Agarwal T, Saxena MK, Chandrawat MK 2014. Production and optimization of cellulase enzyme by Pseudomonas aeruginosa MTCC 4643 using sawdust as a substrate. IJSRP. 4(1):1–3.
  • Ahmed A, Nasim FH, Batool K, Bibi A. 2017. Microbial β-glucosidase: sources, production, and applications. Appl & Environ Microbiol. 5(1):31–46.
  • Ariaeenejad S, Noshi-Nedamani S, Rahban M, Kavousi K, Pirbalooti AG, Mirghaderi SS, Mahammadi M, Mirzael M, Salekdeh GH. 2020. A novel high glucose-tolerant β-glucosidase: a targeted computational approach for metagenomic screening. Front Bioeng and Biotechnol. 8(2296–4185):1–14. doi:10.3389/fbioe.2020.00813.
  • Bonciani T, Vero D, Giannuzzi E, Verspohl A, Giudici P. 2018. Qualitative and quantitative screening of the β-glucosidase activity in Saccharomyces cerevisiae and Saccharomyces uvarum strains isolated from refrigerated must. Lett Appl Microbiol. 67(1):72–78. doi:10.1111/lam.12891.
  • Cao L, Wang Z, Ren G, Kong W, Li L, Xie W, Liu Y. 2015. Engineering a novel glucose-tolerant β-glucosidase as supplementation to enhance the hydrolysis of sugarcane bagasse at high glucose concentration. Biotechnol Biofuels. 8(202):1–12. doi:10.1186/s13068-015-0383-z.
  • Chan DJ, Yang D, Ye Y, Zhang ZB, Pan LF, Zhang F, Gang F. 2021. First report of Neofusicoccum parvum causing leaf spot on Geodorum eulophioides in China. Plant Dis. 5(2):486.
  • Chen K, Zhuang WY. 2017. Discovery from a large-scaled survey of Trichoderma in soil of China. Sci. 7:9090.
  • Cherubini F. 2010. The biorefinery concept : using biomass instead of oil for producing energy and chemicals. Energy Convers. 51(7):1412–1421. doi:10.1016/j.enconman.2010.01.015.
  • Darwesh OM, El-Maraghy SH, Abdel-Rahman HM, Zaghloul RA. 2020. Improvement of paper wastes conversion to bioethanol using novel cellulose degrading fungal isolate. J Fuel. 262(16–2361):116518. doi:10.1016/j.fuel.2019.116518.
  • Decker CH, Visser J, Schreier P. 2000. β-Glucosidases from five black Aspergillus species: a study of their physicochemical and biocatalytic properties. J Agric Food Chem. 48(10):4929–4936. doi:10.1021/jf000434d.
  • de Souza MF, da Silva BEP, da Silva AS. 2021. Production of cellulases and β-glucosidases by Trichoderma reesei Rut C30 using steam-pretreated sugarcane bagasse: an integrated approach for onsite enzyme production. Braz J Chem Eng. 38(2021):435–442. doi:10.1007/s43153-021-00114-5.
  • Du H, Parit M, Xinpeng MW, Wang CY, Zhang M, Wang R, Zhang X, Jiang Z, Li B 2020. Sustainable valorization of paper mill sludge into cellulose nanofibrils and cellulose nanopaper. J Hazard. 400:1–5.
  • Gao Z, Hop DV, Yen LTH, Ando K, Hiyamuta S, Kondo R. 2012. The production of β-glucosidases by Fusarium proliferatum NBRC109045 isolated from Vietnamese forest. AMB Express. 2(1):49–62.
  • Haufe C. 2012. Darwin’s laws. Stud Hist Philos Biol Biomed Sci. 43(1):269–280.
  • Kanakaraju Y, Uma A, Palety K. 2020. Aspergillus Niger based production of cellulase-A study on submerged and solid state fermentation. Int J Sci Res. 64(3):60–65.
  • Kao M, Kuo H, Lee C, Huang K, Huang T, Li C, Chen W, Andrew H, Wang J, Yu S, et al. 2019. Chaetomella raphigera β-glucosidase D2-BGL has intriguing structural features and a high substrate affinity that renders it an efficient cellulase supplement for lignocellulosic biomass hydrolysis. Biotechnol for Biofuels. 12(1):258–276. doi:10.1186/s13068-019-1599-0.
  • Karami F, Ghorbani M, Mahoonak AS, Khodarahmi R 2020. Fast, inexpensive purification of β-glucosidase from Aspergillus niger and improved catalytic/physicochemical properties upon the enzyme immobilization: Possible broad prospects for industrial applications. Food Sci Technol. 118:1–9.
  • Karnchanatat A, Petsom A, Sangvanich P, Piaphukiew J, Whalley AJS, Reynolds CD, Sihanonth P 2007. Purification and biochemical characterization of an extracellular β-glucosidase from the wood-decaying fungus Daldinia eschscholzii. FEMS Microbiol Lett. 270:162–170.
  • Kuhad RC, Gupta R, Singh A. 2011. Microbial cellulases and their industrial applications. Enzyme Res. 2011(1):1–10. doi:10.4061/2011/280696.
  • Kumar R, Wyman CE. 2009. Effects of cellulase and xylanase enzymes on the deconstruction of solids from pretreatment of poplar by leading technologies. Biotechnol Prog. 25(2):302–314. doi:10.1002/btpr.102.
  • Kwon K, Lee J, Kang HG, Hah YC. 1994. Detection of β-Glucosidase activity in polyacrylamide gels with esculin as substrate. Appl Environ Microbiol. 60(12):4584–4586. doi:10.1128/aem.60.12.4584-4586.1994.
  • Laemmli UK. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophages T4. Nature. 270(1970):680–685. doi:10.1038/227680a0.
  • Mahapatra S, Vickram AS, Sridharan TB, Parameswari M, Pathy R. 2016. Screening, production, optimisation, and characterisation of β-glucosidase using microbes from shellfish waste. Biotechnology. 6(2):213–223.
  • Makraki E, Darby JF, Carneiro MG, Firth JD, Heyam A, E AB, O’Brien P, Siegal G, Hubbard RE. 2020. Fragment derived modulators of an industrial β-glucosidase. Biochem J. 477(22):4383–4395. doi:10.1042/BCJ20200507.
  • Monteiro LMO, Vici AC, Pinheiro PM, Heinin PR, de Oliveira AHC, Ward RJ, Prade RA, Buckeridge MS, de Moraes Polizeli MDT 2020. A highly glucose tolerant ß-glucosidase from Malbranchea pulchella (MpBg3) enables cellulose saccharification. Sci Rep. 10(6998):1–12.
  • More SS, Renuka PS, Sweta M, Malini S, Veena SM. 2011. Isolation, purification, and characterisation of fungal laccase from Pleurotus species. Enzyme Res. 10(2011):248735.
  • Naicker JE, Govinden R, Lekha P, Sithole B. 2020. Transformation of pulp and paper mill sludge (PPMS) into a glucose-rich hydrolysate using green chemistry: assessing pretreatment methods for enhanced hydrolysis. J Environ Manage. 270(301–4797):110914. doi:10.1016/j.jenvman.2020.110914.
  • Naranjo-Ortiz MA, Gabaldón T. 2019. Fungal evolution: diversity, taxonomy, and phylogeny of the fungi. Biol Rev. 94(6):2101–2137. doi:10.1111/brv.12550.
  • Pérez G, Fariña L, Barquet M, Boido E, Gaggero C, Dellazassa E, Carrau F. 2011. A quick screening method to identify β-glucosidase activity in native wine yeast strains: application of Esculin Glycerol Agar (EGA) medium. World J Microbiol Biotechnol. 27(1):47–55. doi:10.1007/s11274-010-0425-4.
  • Ramnath L, Bush T, Roshini, Govinden G. 2014. Method optimization for denaturing gradient gel electrophoresis (DGGE) analysis of microflora from Eucalyptus sp. wood chips intended for pulping. Afr J Biotechnol. 13(3):356–365. doi:10.5897/AJB2013.12899.
  • Rani V, Mohanram S, Tiwari R, Nain L, Arora A. 2014. β-Glucosidase: key enzyme in determining efficiency of cellulases and biomass hydrolysis. J Bioproces Biotechnol. 5(1):1–8.
  • Saini A, Aggarwal NK, Yadav A. 2017. Isolation and screening of cellulose hydrolysing bacteria from different ecological niches. Bioeng and Biosci. 5(1):7–13.
  • Sari SLA, Setyaningsih R, Wibowo NFA. 2017. Isolation and screening of cellulolytic fungi from Salacca edulis leaf litter. Biodiversity. 18(3):1282–1288. doi:10.13057/biodiv/d180355.
  • Schmoll MC, Dattenböck N, Mendoza-Mendoza C, Tisch MI, Aleman SE, Baker C, Brown MG, Cervantes-Badillo J, Cetz-Chel GR, Cristobal-Mondragon L 2016. The genomes of three uneven siblings: footprints of the lifestyles of three Trichoderma species. Microbiol Mol Biol Rev. 80(1):205–327.
  • Singh G, Verma AK, Kumar V. 2016. Catalytic properties, functional attributes and industrial applications of β-glucosidases. Biotechnology. 6(1):57–73.
  • Sørensen A, Andersen JJ, Ahring BK, Phillip JT, Lübeck M. 2014. Screening of carbon sources for β-glucosidase production by Aspergillus saccharolyticus. Int Biodeterior Biodegrad. 93(2014):78–83. doi:10.1016/j.ibiod.2014.05.011.
  • Sørensen A, Lübeck M, Lübeck PS, Birgitte KA. 2013. Fungal β-glucosidases: a bottleneck in industrial use of lignocellulosic materials. Biomolecules. 3(3):612–631. doi:10.3390/biom3030612.
  • Srivastava N, Rathour R, Jha S, Pandey K, Srivastava M, Thakur VK, Sengar RS, Gupta VK, Mazumder PB, Khan AF, et al. 2019. Microbial β-glucosidase enzymes: recent advances in biomass conversation for biofuels application. Biomolecules. 9(6):220–243. doi:10.3390/biom9060220
  • Steffen F, Janzon R, Wenig R, Saake B. 2017. Valorisation of waste streams from deinked pulp mills through anaerobic digestion of deinking sludge. Bioresearch. 12(3):4547–4566. doi:10.15376/biores.12.3.4547-4566.
  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Mol Biol Evol. 28(10):9–2731. doi:10.1093/molbev/msr121.
  • Taylor NT, Krings M, Taylor EL. 2015. Ascomycota. Fossil Fuels Chapter. 8:171.
  • Valappil PK, Rajasree KP, Abraham A, Christopher M, Sukumaran RK. 2019. Characterisation of a glucose tolerant β-glucosidase from Aspergillus unguis with high potential as a blend in for biomass hydrolysing enzyme cocktails. Biotechnology. 41(10):1201–1211.
  • White TJ, Bruns T, Lee SB, Taylor J 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and application. 315–322.
  • Yao G, Wu R, Kan Q, Gao L, Liu M, Yang P, Du J, Li Z, Qu Y. 2016. Production of a high-efficiency cellulase complex via β-glucosidase engineering in Penicillium oxalicum. Biotechnol Biofuels. 9(2016):78. doi:10.1186/s13068-016-0491-4.
  • Zang X, Liu M, Fan Y, Xu J, Xu X, Li H 2018. The structural and functional contributions of β-glucosidase producing-microbial communities to cellulose degradation in composting. Biotechnol Biofuels. 11(51):1–13.
  • Zhang L, Fu Q, Li W, Wang B, Yin X, Liu S, Xu Z, Niu Q, Nagini S. 2017. Identification and characterisation of a novel β-glucosidase via metagenomic analysis of Bursaphelenchus xylophilus and its microbial flora. Sci Rep. 7(1):2045–2322. doi:10.1038/s41598-017-01960-5.
  • Zhang P, Li Q, Chen Y, Peng N, Liu W, Wang X, Li Y. 2022. Induction of cellulase production in Trichoderma reesei by a glucose-sophorose mixture as an inducer prepared using stevioside. RSC Adv. 12(2022):17392. doi:10.1039/D2RA01192A.
  • Zhang P, Zhang R, Sirisena S, Gan R, Fang Z. 2021. The β-glucosidase activity of wine yeasts and its impacts on wine volatiles and phenolics: a mini-review. Food Microbiol. 100(740–0020):103859. doi:10.1016/j.fm.2021.103859.