Publication Cover
Mycology
An International Journal on Fungal Biology
Volume 14, 2023 - Issue 2
2,505
Views
6
CrossRef citations to date
0
Altmetric
Review

Tools and basic procedures of gene manipulation in nematode-trapping fungi

&
Pages 75-90 | Received 13 Oct 2022, Accepted 30 Dec 2022, Published online: 10 Jan 2023

References

  • Abawi GS, Widmer TL. 2000. Impact of soil health management practices on soilborne pathogens, nematodes and root diseases of vegetable crops. Appl Soil Ecol. 15(1):37–47. doi:10.1016/S0929-1393(00)00070-6.
  • Adnan M, Ma X, Olsson S, Wang J, Liu G. 2022. Promoter regulation and genetic engineering strategies for enhanced cellulase expression in Trichoderma reesei. Microbiol Res. 259:127011. doi:10.1016/j.micres.2022.127011.
  • Andersson KM, Kumar D, Bentzer J, Friman E, Ahrén D, Tunlid A. 2014. Interspecific and host-related gene expression patterns in nematode-trapping fungi. BMC Genomics. 15(1):968. doi:10.1186/1471-2164-15-968.
  • Andersson KM, Meerupati T, Levander F, Friman E, Ahren D, Tunlid A. 2013. Proteome of the nematode-trapping cells of the fungus Monacrosporium haptotylum. Appl Environ Microbiol. 79(16):4993–5004. doi:10.1128/AEM.01390-13.
  • Bai N, Zhang GS, Wang WJ, Feng HH, Yang XW, Zheng YQ, Yang L, Xie MH, Zhang KQ, Yang JK. 2021. Ric8 acts as a regulator of G-protein signalling required for nematode-trapping lifecycle of Arthrobotrys oligospor. Environ Microbiol. 24(4):1714–1730. doi:10.1111/1462-2920.15735.
  • Balogh J, Tunlid A, Rosén S. 2003. Deletion of a lectin gene does not affect the phenotype of the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol. 39(2):135. doi:10.1016/s1087-1845(03)00023-9.
  • Borovinskaya MA, Shoji S, Fredrick K, Cate JH. 2008. Structural basis for hygromycin B inhibition of protein biosynthesis. RNA. 14(8):1590–1599. doi:10.1261/rna.1076908.
  • Bundock P, den Dulk-Ras A, Beijersbergen A, Hooykaas PJ. 1995. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. EMBO J. 14(13):3206–3214. doi:10.1002/j.1460-2075.1995.tb07323.x.
  • Campoy S, Pérez F, Martín JF, Gutiérrez S, Liras P. 2003. Stable transformants of the azaphilone pigment-producing Monascus purpureus obtained by protoplast transformation and Agrobacterium-mediated DNA transfer. Curr Genet. 43(6):447–452. doi:10.1007/s00294-003-0417-0.
  • Case ME, Schweizer M, Kushner SR, Giles NH. 1979. Efficient transformation of Neurospora crassa by utilizing hybrid plasmid DNA. Proc Natl Acad Sci U S A. 76(10):5259–5263. doi:10.1073/pnas.76.10.5259.
  • Chen YL, Gao Y, Zhang KQ, Zou GG. 2013. Autophagy is required for trap formation in the nematode-trapping fungus Arthrobotrys oligospora. Env Microbiol Rep. 5(4):511–517. doi:10.1111/1758-2229.12054.
  • Chen SA, Lin HC, Schroeder FC, Hsueh YP. 2021. Prey sensing and response in a nematode-trapping fungus is governed by the MAPK pheromone response pathway. Genetics. 217(2):iyaa008. doi:10.1093/genetics/iyaa008.
  • Chen YH, Liu X, Dai R, Ou X, Xu ZF, Zhang KQ, Niu XM. 2020. Novel polyketide-terpenoid hybrid metabolites and increased fungal nematocidal ability by disruption of genes 277 and 279 in nematode-trapping fungus Arthrobotrys oligospora. J Agric Food Chem. 68(30):7870–7879. doi:10.1021/acs.jafc.0c01720.
  • De Filippis LF, Hampp R, Ziegler H. 2000. Membrane permeability changes and ultrastructural abnormalities observed during protoplast fusion. J Plant Physiol. 156(5–6):628–634. doi:10.1016/s0176-1617(00)80223-0.
  • de Groot MJ, Bundock P, Hooykaas PJ, Beijersbergen AG. 1998. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Biotechnol. 16(9):839–842. doi:10.1038/nbt0998-839.
  • Dijksterhuis J, Veenhuis M, Harder W, Nordbring-Hertz B. 1994. Nematophagous fungi: physiological aspects and structure-function relationships. Adv Microb Physiol. 36: 111–143. Record ID: 865208.
  • Dong LQ, Zhang KQ. 2006. Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil. 288(1–2):31–45. doi:10.1007/s11104-006-9009-3.
  • Fan YN, Zhang WW, Chen Y, Xiang MC, Liu XZ. 2021. DdaSTE12 is involved in trap formation, ring inflation, conidiation, and vegetative growth in the nematode-trapping fungus Drechslerella dactyloides. Appl Microbiol Biotechnol. 105(19):7379–7393. doi:10.1007/s00253-021-11455-z.
  • Fekete C, Tholander M, Rajashekar B, Ahrén D, Friman E, Johansson T, Tunlid A. 2008. Paralysis of nematodes: shifts in the transcriptome of the nematode-trapping fungus Monacrosporium haptotylum during infection of Caenorhabditis elegans. Environ Microbiol. 10(2):364–375. doi:10.1111/j.1462-2920.2007.01457.x.
  • Gordon JE, Christie PJ. 2014. The Agrobacterium Ti Plasmids. Microbiol Spectr. 2(6):6. doi:10.1128/microbiolspec.
  • Gouka RJ, Gerk C, Hooykaas PJ, Bundock P, Musters W, Verrips CT, de Groot MJ. 1999. Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nat Biotechnol. 17(6):598–601. doi:10.1038/9915.
  • Haapaniemi E, Botla S, Persson J, Schmierer B, Taipale J. 2018. CRISPR-Cas9 genome editing induces a p53-mediated DNA damage response. Nat Med. 24(7):927–930. doi:10.1038/s41591-018-0049-z.
  • Huang TY, Lee YY, Vidal-Diez de Ulzurrun G, Hsueh YP. 2021. Forward genetic screens identified mutants with defects in trap morphogenesis in the nematode-trapping fungus Arthrobotrys oligospora. G3-Genes Genom Genet. 11(2):jkaa022. doi:10.1093/g3journal/jkaa022.
  • Hutchison HT, Hartwell LH. 1967. Macromolecule synthesis in yeast spheroplasts. J Bacteriol. 94(5):1697–1705. doi:10.1128/jb.94.5.1697-1705.1967.
  • Ihry RJ, Worringer KA, Salick MR, Frias E, Ho D, Theriault K, Kommineni S, Chen J, Sondey M, Ye C, et al. 2018. p53 inhibits CRISPR-Cas9 engineering in human pluripotent stem cells. Nat Med. 24(7):939–946. doi:10.1038/s41591-018-0050-6.
  • Janus D, Hoff B, Hofmann E, Kück U. 2007. An efficient fungal RNA-silencing system using the DsRed reporter gene. Appl Environ Microbiol. 73(3):962–970. doi:10.1128/AEM.02127-06.
  • Jasin M, Haber JE. 2016. The democratization of gene editing: insights from site-specific cleavage and double-strand break repair. DNA Repair (Amst). 44:6–16. doi:10.1016/j.dnarep.2016.05.001
  • Jiang KX, Liu QQ, Bai N, Zhu MC, Zhang KQ, Yang JK. 2022. Aossk1, a response regulator required for mycelial growth and development, stress responses, trap formation, and the secondary metabolism in Arthrobotrys oligospora. J Fungi. 8(3):260. doi:10.3390/jof8030260.
  • Jiang DW, Zhou J, Bai GZ, Xing XJ, Tang LY, Yang XW, Li J, Zhang KQ, Yang JK. 2017. Random mutagenesis analysis and identification of a novel C2H2-type transcription factor from the nematode-trapping fungus Arthrobotrys oligospora. Sci Rep. 7(1):5640. doi:10.1038/s41598-017-06075-5.
  • Ji XL, Li H, Zhang WH, Wang JA, Liang LM, Zou CG, Yu ZF, Liu SQ, Zhang KQ. 2020. The lifestyle transition of Arthrobotrys oligospora is mediated by microRNA-like RNAs. Sci China-Life Sci. 63(4):543–551. doi:10.1007/s11427-018-9437-7.
  • Jin X, Mo MH, Wei Z, Huang XW, Zhang KQ. 2005. Transformation and mutagenesis of the nematode-trapping fungus Monacrosporium sphaeroides by restriction enzyme-mediated integration (REMI). J Microbiol. 43(5):417–423. PMID: 16273033.
  • Kadotani N, Nakayashiki H, Tosa Y, Mayama S. 2003. RNA silencing in the phytopathogenic fungus Magnaporthe oryzae. Mol Plant Microbe Interact. 16(9):769–776. doi:10.1094/MPMI.2003.16.9.769.
  • Khan A, Williams KL, Nevalainen HKM. 2006. Control of plant-parasitic nematodes by Paecilomyces lilacinus and Monacrosporium lysipagum in pot trials. Biocontrol. 51(5):643–658. doi:10.1007/s10526-005-4241-y.
  • Kuo CY, Chen SA, Hsueh YP. 2020. The high osmolarity glycerol (HOG) pathway functions in osmosensing, trap morphogenesis and conidiation of the nematode-trapping fungus Arthrobotrys oligospora. J Fungi. 6(4):191. doi:10.3390/jof6040191.
  • Kuo TH, Yang CT, Chang HY, Hsueh YP, Hsu CC. 2020. Nematode-trapping fungi produce diverse metabolites during predator-prey interaction. Metabolites. 10(3):117. doi:10.3390/metabo10030117.
  • Lanigan TM, Kopera HC, Saunders TL. 2020. Principles of genetic engineering. Genes (Basel). 11(3):291. doi:10.3390/genes11030291.
  • Liang M, Du S, Dong WI, Fu JT, Li ZH, Qiao YD, Yin XJ, Nie FG, Yang XY, Wang R. 2019. iTRAQ-based quantitative proteomic analysis of mycelium in different predation periods in nematode trapping fungus Duddingtonia flagrans. Biol Control. 134:63–71. doi:10.1016/j.biocontrol.2019.04.005
  • Liang LM, Gao H, Li JZ, Liu L, Liu ZH, Zhang KQ. 2017. The woronin body in the nematophagous fungus Arthrobotrys oligospora is essential for trap formation and efficient pathogenesis. Fungal Biol. 121(1):11–20. doi:10.1016/j.funbio.2016.08.010.
  • Liang LM, Liu ZH, Liu L, Li JZ, Gao H, Yang JK, Zhang KQ. 2016. The nitrate assimilation pathway is involved in the trap formation of Arthrobotrys oligospora, a nematode-trapping fungus. Fungal Genet Biol. 92:33–39. doi:10.1016/j.fgb.2016.05.003
  • Liang LM, Shen RF, Mo YY, Yang JK, Ji XL, Zhang KQ. 2015. A proposed adhesin AoMad1 helps nematode-trapping fungus Arthrobotrys oligospora recognizing host signals for life-style switching. Fungal Genet Biol. 81:172–181. doi:10.1016/j.fgb.2015.02.012
  • Li X, Kang YQ, Luo YL, Zhang KQ, Zou CG, Liang LM. 2017b. The NADPH oxidase AoNoxA in Arthrobotrys oligospora functions as an initial factor in the infection of Caenorhabditis elegans. J Microbiol. 55(11):885–891. doi:10.1007/s12275-017-7169-x.
  • Li DD, Tang Y, Lin J, Cai WW. 2017. Methods for genetic transformation of filamentous fungi. Microb Cell Fact. 16(1):168. doi:10.1186/s12934-017-0785-7.
  • Liu R, Chen L, Jiang YP, Zhou ZH, Zou G. 2015. Efficient genome editing in filamentous fungus Trichoderma reesei using the CRISPR/Cas9 system. Cell Discov. 1(1):15007. doi:10.1038/celldisc.2015.7.
  • Liu QQ, Li DN, Jiang KX, Zhang KQ, Yang JK. 2022. Aopex1 and Aopex6 are required for mycelial growth, conidiation, stress response, fatty acid utilization, and trap formation in Arthrobotrys oligospora. Microbiol Spectr. 10(2):e0027522. doi:10.1128/spectrum.00275-22.
  • Liu KK, Zhang WW, Lai YL, Xiang MC, Wang XN, Zhang XY, Liu XZ. 2014. Drechslerella stenobrocha genome illustrates the mechanism of constricting rings and the origin of nematode predation in fungi. BMC Genom. 15(1):114. doi:10.1186/1471-2164-15-114.
  • Li J, Wu RN, Wang M, Borneman J, Yang JK, Zhang KQ. 2019. The pH sensing receptor AopalH plays important roles in the nematophagous fungus Arthrobotrys oligospora. Fungal Biol. 123(7):547–554. doi:10.1016/j.funbio.2019.05.008.
  • Li J, Zou CG, Xu JP, Ji XL, Niu XM, Yang JK, Huang XW, Zhang KQ. 2015. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes. Annu Rev Phytopathol. 53(1):67–95. doi:10.1146/annurev-phyto-080614-120336.
  • Ma N, Jiang KX, Bai N, Li DN, Zhang KQ, Yang JK. 2022. Functional analysis of two affinity camp phosphodiesterase in the nematode trapping fungus Arthrobotrys oligospora. Pathogens. 11(4):405. doi:10.3390/pathogens11040405.
  • Manghwar H, Li B, Ding X, Hussain A, Lindsey K, Zhang XL, Jin SX. 2020. CRISPR/Cas systems in genome editing: methodologies and tools for sgRNA design, off-target evaluation, and strategies to mitigate off-target effects. Adv Sci (Weinh). 7(6):1902312. doi:10.1002/advs.201902312.
  • Ma YX, Yang XW, Xie MH, Zhang GS, Yang L, Bai N, Zhao YN, Li DN, Zhang KQ, Yang JK. 2020. The Arf-GAP AoGlo3 regulates conidiation, endocytosis, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Fungal Genet Biol. 138:103352. doi:10.1016/j.fgb.2020.103352
  • Ma N, Zhao YN, Wang YC, Yang L, Li DN, Yang JK, Jiang KX, Zhang KQ, Yang JK. 2021. Functional analysis of seven regulators of G protein signaling (RGSs) in the nematode-trapping fungus Arthrobotrys oligospora. Virulence. 12(1):1825–1840. doi:10.1080/21505594.2021.1948667.
  • Meerupati T, Andersson KM, Friman E, Kumar D, Tunlid A, Ahrén D. 2013. Genomic mechanisms accounting for the adaptation to parasitism in nematode-trapping fungi. PLoS Genet. 9(11):e1003909. doi:10.1371/journal.pgen.1003909.
  • Ngiam C, Jeenes DJ, Punt PJ, Van Den Hondel CA, Archer DB. 2000. Characterization of a foldase, protein disulfide isomerase A, in the protein secretory pathway of Aspergillus Niger. Appl Environ Microbiol. 66(2):775–782. doi:10.1128/AEM.66.2.775-782.2000.
  • Nødvig CS, Nielsen JB, Kogle ME, Mortensen UH. 2015. A CRISPR-Cas9 System for genetic engineering of filamentous fungi. PLoS One. 10(7):e0133085. doi:10.1371/journal.pone.0133085.
  • Nourani SL, Goltapeh EM, Safaie N, Javaran MJ, Pourjam E. 2018. Enhancing the pathogenicity of Arthrobotrys conoides and A. oligospora against Meloidogyne javanica J(2) by transferring of protease (Ac1) gene and evaluation of antagonistic capability of transgenic isolates. Biol Control. 122:127–135. doi:10.1016/j.biocontrol.2018.03.017
  • Pandit R, Patel R, Patel N, Bhatt V, Joshi C, Singh PK, Kunjadia A. 2017. RNA-Seq reveals the molecular mechanism of trapping and killing of root-knot nematodes by nematode-trapping fungi. World J Microbiol Biotechnol. 33(4):65. doi:10.1007/s11274-017-2232-7.
  • Peng H, Dong XY, Lu HQ, Kong XW, Zha XD, Wang YZ. 2022. A putative F-box-domain-encoding gene AOL_s00076g207 regulates the development and pathogenicity of Arthrobotrys oligospora. J Basic Microbiol. 62(1):74–81. doi:10.1002/jobm.202100388.
  • Prokhorova I, Altman RB, Djumagulov M, Shrestha JP, Urzhumtsev A, Ferguson A, Chang CT, Yusupov M, Blanchard SC, Yusupova G. 2017. Aminoglycoside interactions and impacts on the eukaryotic ribosome. Proc Natl Acad Sci U S A. 114(51):E10899–E10908. doi:10.1073/pnas.1715501114.
  • Ramesh P, Reena P, Amitbikram M, Chaitanya J, Anju K. 2015. Insight into the transcriptome of Arthrobotrys conoides using high throughput sequencing. J Basic Microb. 55(12):1394–1405. doi:10.1002/jobm.201500237.
  • Schiestl RH, Petes TD. 1991. Integration of DNA fragments by illegitimate recombination in Saccharomyces cerevisiae. Proc Natl Acad Sci U S A. 88(17):7585–7589. doi:10.1073/pnas.88.17.7585.
  • Si JL, Dong XY, Zhang GH, Lu HQ, Tang KJ, Zhang L, Kong XW, Sheng KL, Wang JM, Zha XD, et al. 2022. The fucose-specific lectin gene AOL_s00054g276 affects trap formation and nematocidal activity of the nematophagous fungus Arthrobotrys oligospora. FEMS Microbiol Lett. 369(1):fnac013. doi:10.1093/femsle/fnac013.
  • Singh UB, SahuSingh RK A, Singh DP, Meena KK, Srivastava JS, RenuManna MC. 2012. Evaluation of biocontrol potential of Arthrobotrys oligospora against Meloidogyne graminicola and Rhizoctonia solani in Rice (Oryza sativa L.). Biol Control. 60(3):262–270. doi:10.1016/j.biocontrol.2011.10.006.
  • Song TY, Xu ZF, Chen YH, Ding QY, Sun YR, Miao Y, Zhang KQ, Niu XM. 2017. Potent nematicidal activity and new hybrid metabolite production by disruption of a cytochrome p450 gene involved in the biosynthesis of morphological regulatory arthrosporols in nematode-trapping fungus Arthrobotrys oligospora. J Agr Food Chem. 65(20):4111–4120. doi:10.1021/acs.jafc.7b01290.
  • Teng LL, Song TY, Chen YH, Chen YG, Zhang KQ, Li SH, Niu XM. 2020. Novel polyketide-terpenoid hybrid metabolites from a potent nematicidal Arthrobotrys oligospora mutant delta AOL_s00215g278. J Agr Food Chem. 68(41):11449–11458. doi:10.1021/acs.jafc.0c04713.
  • Tilburn J, Scazzocchio C, Taylor GG, Zabicky-Zissman JH, Lockington RA, Davies RW. 1983. Transformation by integration in Aspergillus nidulans. Gene. 26(2–3):205–221. doi:10.1016/0378-1119(83)90191-9.
  • Tunlid A, Ahman J, Oliver RP. 1999. Transformation of the nematode-trapping fungus Arthrobotrys oligospora. FEMS Microbiol Lett. 173(1):111–116. doi:10.1111/j.1574-6968.1999.tb13491.x.
  • Van Larebeke N, Engler G, Holsters M, Van den Elsacker S, Zaenen I, Schilperoort RA, Schell J. 1974. Large plasmid in Agrobacterium tumefaciens essential for crown gall-inducing ability. Nature. 252(5479):169–170. doi:10.1038/252169a0.
  • Wang BL, Chen YH, He JN, Xue HX, Yan N, Zeng ZJ, Bennett JW, Zhang KQ, Niu XM. 2018. Integrated metabolomics and morphogenesis reveal volatile signaling of the nematode-trapping fungus Arthrobotrys oligospora. Appl Environ Microbiol. 84(9):e02749–1. doi:10.1128/AEM.02749-17.
  • Wang SX, Chen HQ, Tang X, Zhang H, Chen W, Chen YQ. 2017. Molecular tools for gene manipulation in filamentous fungi. Appl Microbiol Biotechnol. 101(22):8063–8075. doi:10.1007/s00253-017-8486-z.
  • Wang X, Li GH, Zou CG, Ji XL, Liu T, Zhao PJ, Liang LM, Xu JP, An ZQ, Zheng X. 2014. Bacteria can mobilize nematode-trapping fungi to kill nematodes. Nat Commun. 5(1):5776. doi:10.1038/ncomms6776.
  • Wernet V, Wäckerle J, Fischer R. 2022. The STRIPAK component SipC is involved in morphology and cell-fate determination in the nematode-trapping fungus Duddingtonia flagrans. Genet. 220(1):iyab153. doi:10.1093/genetics/iyab153.
  • Wu QY, Zhu YY, Zou CG, Kang YQ, Liang LM. 2016. GPH1 is involved in glycerol accumulation in the three-dimensional networks of the nematode-trapping fungus Arthrobotrys oligospora. J Microbiol. 54(11):768–773. doi:10.1007/s12275-016-6272-8.
  • Xie MH, Bai N, Yang JKL, Jiang KX, Zhou DX, Zhao YN, Li DN, Niu XM, Zhang KQ, Yang JK. 2020. Protein kinase ime2 is required for mycelial growth, conidiation, osmoregulation, and pathogenicity in nematode-trapping fungus Arthrobotrys oligospora. Front Microbiol. 10. doi:10.3389/fmicb.2019.03065.
  • Xie MH, Ma N, Bai N, Zhu MC, Zhang KQ, Yang JK. 2022. Phospholipase C (AoPLC2) regulates mycelial development, trap morphogenesis, and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. J Appl Microbiol. 132(3):2144–2156. doi:10.1111/jam.15370.
  • Xie MH, Wang YC, Tang YL, Yang L, Zhou DX, Li Q, Niu XM, Zhang KQ, Yang JK. 2019. AoStuA, an APSES transcription factor, regulates the conidiation, trap formation, stress resistance and pathogenicity of the nematode-trapping fungus Arthrobotrys oligospora. Environ Microbiol. 21(12):4648–4661. doi:10.1111/1462-2920.14785.
  • Xie MH, Yang JKL, Jiang KX, Bai N, Zhu MC, Zhu YM, Zhang KQ, Yang JK. 2021. Aobck1 and Aomkk1 are necessary to maintain cell wall integrity, vegetative growth, conidiation, stress resistance, and pathogenicity in the nematode-trapping fungus Arthrobotrys Oligospora. Front Microbiol. 12:649582. doi:10.3389/fmicb.2021.649582
  • Xu ZF, Chen YH, Song TY, Zeng ZJ, Yan N, Zhang KQ, Niu XM. 2016. Nematicidal key precursors for the biosynthesis of morphological regulatory arthrosporols in the nematode-trapping fungus Arthrobotrys oligospora. J Agric Food Chem. 64(42):7949–7956. doi:10.1021/acs.jafc.6b03241.
  • Xu J, Mo MH, Huang XW, Zhang KQ. 2005. Improvement on genetic transformation in the nematode-trapping fungus Arthrobotrys oligospora and its quantification on dung samples. Mycopathol. 159(4):533–538. doi:10.1007/s11046-005-4334-2.
  • Xu ZF, Wang BL, Sun HK, Yan N, Zeng ZJ, Zhang KQ, Niu XM. 2015. High trap formation and low metabolite production by disruption of the polyketide synthase gene involved in the biosynthesis of arthrosporols from nematode-trapping fungus Arthrobotrys oligospora. J Agric Food Chem. 63(41):9076–9082. doi:10.1021/acs.jafc.5b04244.
  • Yang L, Li XM, Bai N, Yang XW, Zhang KQ, Yang JK. 2022a. Transcriptomic analysis reveals that rho gtpases regulate trap development and lifestyle transition of the nematode-trapping fungus Arthrobotrys oligospora. Microbiol Spectr. 10(1). doi:10.1128/spectrum.01759-21.
  • Yang L, Li XM, Ma YX, Zhang KQ, Yang JK. 2022b. The Arf-GAP proteins aogcs1 and aogts1 regulate mycelial development, endocytosis, and pathogenicity in Arthrobotrys oligospora. J Fungi. 8(5):463. doi:10.3390/jof8050463.
  • Yang L, Li XM, Xie MH, Bai N, Yang JK, Jiang KX, Zhang KQ, Yang JK. 2021. Pleiotropic roles of Ras GTPases in the nematode-trapping fungus Arthrobotrys oligospora identified through multi-omics analyses. iScience. 24(8):102820. doi:10.1016/j.isci.2021.102820.
  • Yang XW, Ma N, Yang L, Zheng YQ, Zhen ZY, Li Q, Xie MH, Li J, Zhang KQ, Yang JK. 2018. Two Rab GTPases play different roles in conidiation, trap formation, stress resistance, and virulence in the nematode-trapping fungus Arthrobotrys oligospora. Appl Microbiol Biotechnol. 102(10):4601–4613. doi:10.1007/s00253-018-8929-1.
  • Yang CT, Vidal-Diez de Ulzurrun G, Gonçalves AP, Lin HC, Chang CW, Huang TY, Chen SA, Lai CK, Tsai IJ, Schroeder FC. 2020. Natural diversity in the predatory behavior facilitates the establishment of a robust model strain for nematode-trapping fungi. Proc Natl Acad Sci U S A. 117(12):6762–6770. doi:10.1073/pnas.1919726117.
  • Yang JK, Wang L, Ji XL, Feng Y, Li XM, Zou CG, Xu JP, Ren Y, Mi QL, Wu JL, et al. 2011. Genomic and proteomic analyses of the fungus Arthrobotrys oligospora provide insights into nematode-trap formation. Plos Pathog. 7(9):e1002179. doi:10.1371/journal.ppat.1002179.
  • Yang EC, Xu LL, Yang Y, Zhang XY, Xiang MC, Wang CS, An ZQ, Liu XZ. 2012. Origin and evolution of carnivorism in the Ascomycota (fungi). Proc Natl Acad Sci U S A. 109(27):10960–10965. doi:10.1073/pnas.1120915109.
  • Yang Y, Yang EC, An ZQ, Liu XZ. 2007. Evolution of nematode-trapping cells of predatory fungi of the Orbiliaceae based on. Proc Natl Acad Sci U S A. 104(20):8379–8384. doi:10.1073/pnas.0702770104.
  • Youssar L, Wernet V, Hensel N, Yu X, Hildebrand HG, Schreckenberger B, Kriegler M, Hetzer B, Frankino P, Dillin A, et al. 2019. Intercellular communication is required for trap formation in the nematode-trapping fungus Duddingtonia flagrans. PLoS Genet. 15(3):31. doi:10.1371/journal.pgen.1008029.
  • Yu X, Hu X, Pop M, Wernet N, Kirschhöfer F, Brenner-Weiß G, Keller J, Bunzel M, Fischer R. 2021. Fatal attraction of Caenorhabditis elegans to predatory fungi through 6-methyl-salicylic acid. Nat Commun. 12(1):5462. doi:10.1038/s41467-021-25535-1.
  • Zhang WW, Chen JZ, Fan YN, Hussain M, Liu XZ, Xiang MC. 2021. The E3-ligase AoUBR1 in N-end rule pathway is involved in the vegetative growth, secretome, and trap formation in Arthrobotrys oligospora. Fungal Biol. 125(7):532–540. doi:10.1016/j.funbio.2021.02.003.
  • Zhang WW, Hu CC, Hussain M, Chen JZ, Xiang MC, Liu XZ. 2019b. Role of low-affinity calcium system member fig1 homologous proteins in conidiation and trap-formation of nematode-trapping fungus Arthrobotrys oligospora. Sci Rep. 9(1):4440. doi:10.1038/s41598-019-40493-x.
  • Zhang W, Liu DD, Yu ZC, Hou B, Fan Y, Li ZH, Shang SJ, Qiao YD, Fu JT, Niu JK. 2020. Comparative genome and transcriptome analysis of the nematode-trapping fungus Duddingtonia flagrans reveals high pathogenicity during nematode infection. Biol Control. 143:104159. doi:10.1016/j.biocontrol.2019.104159
  • Zhang GS, Zheng YQ, Ma YX, Yang L, Xie MH, Zhou DX, Niu XM, Zhang KQ, Yang JK. 2019a. The velvet proteins vosa and velb play different roles in conidiation, trap formation, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Front Microbiol. 10:1917. doi:10.3389/fmicb.2019.01917
  • Zhang DH, Zhu X, Sun F, Zhang KQ, Niu SM, Huang X. 2017. The roles of actin cytoskeleton and actin-associated protein Crn1p in trap formation of Arthrobotrys oligospora. Res Microbiol. 168(7):655–663. doi:10.1016/j.resmic.2017.05.001.
  • Zhao XZ, Fan YN, Zhang WW, Xiang MC, Kang SC, Wang SX, Liu XZ. 2023. DhFIG_2, a gene of nematode-trapping fungus Dactylellina haptotyla that encodes a component of the low-affinity calcium uptake system, is required for conidiation and knob-trap formation. Fungal Genet Biol.
  • Zhao XY, Wang YC, Zhao Y, Huang Y, Zhang KQ, Yang JK. 2014. Malate synthase gene AoMls in the nematode-trapping fungus Arthrobotrys oligospora contributes to conidiation, trap formation, and pathogenicity. Appl Microbiol Biotechnol. 98(6):555–563. doi:10.1007/s00253-013-5432-6.
  • Zheng XF, Kobayashi Y, Takeuchi M. 1998. Construction of a low-serine-type-carboxypeptidase-producing mutant of Aspergillus oryzae by the expression of antisense RNA and its use as a host for heterologous protein secretion. Appl Microbiol Biotechnol. 49(1):39–44. doi:10.1007/s002530051134.
  • Zhen ZY, Xing XJ, Xie MH, Yang L, Yang XW, Zheng YQ, Chen YL, Ma N, Li Q, Zhang KQ, et al. 2018. MAP kinase Slt2 orthologs play similar roles in conidiation, trap formation, and pathogenicity in two nematode-trapping fungi. Fungal Genet Biol. 116:42–50. doi:10.1016/j.fgb.2018.04.011
  • Zhen ZY, Zhang GS, Yang L, Ma N, Li Q, Ma YX, Niu XM, Zhang KQ, Yang JK. 2019. Characterization and functional analysis of calcium/calmodulin-dependent protein kinases (CaMKs) in the nematode-trapping fungus Arthrobotrys oligospora. Appl Microbiol Biotechnol. 103(2):819–832. doi:10.1007/s00253-018-9504-5.
  • Zhou DX, Xie MH, Bai N, Yang L, Zhang KQ, Yang JK. 2020. The autophagy-related gene Aolatg4 regulates hyphal growth, sporulation, autophagosome formation, and pathogenicity in Arthrobotrys oligospora. Front Microbiol. 11:592524. doi:10.3389/fmicb.2020.592524
  • Zhou DX, Zhu YM, Bai N, Xie MH, Zhang KQ, Yang JK. 2021a. Aolatg1 and Aolatg13 regulate autophagy and play different roles in conidiation, trap formation, and pathogenicity in the nematode-trapping fungus Arthrobotrys oligospora. Front Cell Infect Microbiol. 11:824407. doi:10.3389/fcimb.2021.824407
  • Zhou DX, Zhu YM, Bai N, Yang L, Xie MH, Yang JK, Zhu MC, Zhang KQ, Yang JK. 2021b. AoATG5 plays pleiotropic roles in vegetative growth, cell nucleus development, conidiation, and virulence in the nematode-trapping fungus Arthrobotrys oligospora. Sci China Life Sci. 65(2):412–425. doi:10.1007/s11427-020-1913-9.