3,246
Views
28
CrossRef citations to date
0
Altmetric
Point-of-View

YEATS domain: Linking histone crotonylation to gene regulation

, , &
Pages 9-14 | Received 31 Aug 2016, Accepted 19 Sep 2016, Published online: 01 Nov 2016

References

  • Allfrey VG, Faulkner R, Mirsky AE. Acetylation and methylation of histones and their possible role in the regulation of Rna synthesis. Proc Natl Acad Sci U S A 1964; 51:786-794; PMID:14172992; http://dx.doi.org/10.1073/pnas.51.5.786
  • Dhalluin C, Carlson JE, Zeng L, He C, Aggarwal AK, Zhou MM. Structure and ligand of a histone acetyltransferase bromodomain. Nature 1999; 399:491-496; PMID:10365964; http://dx.doi.org/10.1038/20974
  • Tan M, Luo H, Lee S, Jin F, Yang JS, Montellier E, Buchou T, Cheng Z, Rousseaux S, Rajagopal N et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 2011; 146:1016-1028; PMID:21925322; http://dx.doi.org/10.1016/j.cell.2011.08.008
  • Dai L, Peng C, Montellier E, Lu Z, Chen Y, Ishii H, Debernardi A, Buchou T, Rousseaux S, Jin F, et al. Lysine 2-hydroxyisobutyrylation is a widely distributed active histone mark. Nat Chem Biol 2014; 10:365-370; PMID:24681537; http://dx.doi.org/10.1038/nchembio.1497
  • Xie Z, Zhang D, Chung D, Tang Z, Huang H, Dai L, Qi S, Li J, Colak G, Chen Y, et al. Metabolic Regulation of Gene Expression by Histone Lysine β-Hydroxybutyrylation. Mol Cell 2016; 62:194-206; PMID:27105115; http://dx.doi.org/10.1016/j.molcel.2016.03.036
  • Baumann K. Post-translational modifications: Crotonylation versus acetylation. Nat Rev Mol Cell Biol 2015; 16:265; PMID:25907603; http://dx.doi.org/10.1038/nrm3992
  • Sabari BR, Tang Z, Huang H, Yong-Gonzalez V, Molina H, Kong HE, Dai L, Shimada M, Cross JR, Zhao Y, et al. Intracellular crotonyl-CoA stimulates transcription through p300-catalyzed histone crotonylation. Mol Cell 2015; 58:203-215; PMID:25818647; http://dx.doi.org/10.1016/j.molcel.2015.02.029
  • Dutta A, Abmayr SM, Workman JL. Diverse activities of histone acylations connect metabolism to chromatin function. Mol Cell 2016; 63:547-552; PMID:27540855; http://dx.doi.org/10.1016/j.molcel.2016.06.038
  • Bao X, Wang Y, Li X, Li XM, Liu Z, Yang T, Wong CF, Zhang J, Hao Q, Li XD. Identification of ‘erasers’ for lysine crotonylated histone marks using a chemical proteomics approach. Elife 2014; 3; PMID:25369635; http://dx.doi.org/10.7554/eLife.02999
  • Li Y, Sabari BR, Panchenko T, Wen H, Zhao D, Guan H, Wan L, Huang H, Tang Z, Zhao Y, et al. Molecular coupling of histone crotonylation and active transcription by AF9 YEATS Domain. Mol Cell 2016; 62:181-193; PMID:27105114; http://dx.doi.org/10.1016/j.molcel.2016.03.028
  • Zhao D, Guan H, Zhao S, Mi W, Wen H, Li Y, Zhao Y, Allis CD, Shi X, Li H. YEATS2 is a selective histone crotonylation reader. Cell Res 2016; 26:629-632; PMID:27103431; http://dx.doi.org/10.1038/cr.2016.49
  • Andrews FH, Shinsky SA, Shanle EK, Bridgers JB, Gest A, Tsun IK, Krajewski K, Shi X, Strahl BD, Kutateladze TG. The Taf14 YEATS domain is a reader of histone crotonylation. Nat Chem Biol 2016; 12:396-398; PMID:27089029; http://dx.doi.org/10.1038/nchembio.2065
  • Zhang Q, Zeng L, Zhao C, Ju Y, Konuma T, Zhou MM. Structural insights into Histone Crotonyl-Lysine recognition by the AF9 YEATS Domain. Structure 2016; 24(9):1606-1612; PMID:27545619; http://dx.doi.org/10.1016/j.str.2016.05.023
  • Schulze JM, Wang AY, Kobor MS. YEATS domain proteins: a diverse family with many links to chromatin modification and transcription. Biochem Cell Biol 2009; 87:65-75; PMID:19234524; http://dx.doi.org/10.1139/O08-111
  • Schulze JM, Wang AY, Kobor MS. Reading chromatin: insights from yeast into YEATS domain structure and function. Epigenetics 2010; 5:573-577; PMID:20657183; http://dx.doi.org/10.4161/epi.5.7.12856
  • Xu YM, Du JY, Lau AT. Posttranslational modifications of human histone H3: an update. Proteomics 2014; 14:2047-2060; PMID:25044606; http://dx.doi.org/10.1002/pmic.201300435
  • Rousseaux S, Khochbin S. Histone acylation beyond acetylation: Terra incognita in chromatin biology. Cell J 2015; 17:1-6; PMID:25870829
  • Goudarzi A, Zhang D, Huang H, Barral S, Kwon OK, Qi S, Tang Z, Buchou T, Vitte AL, He T, et al. Dynamic competing histone H4 K5K8 acetylation and butyrylation are hallmarks of highly active gene promoters. Mol Cell 2016; 62:169-180; PMID:27105113; http://dx.doi.org/10.1016/j.molcel.2016.03.014
  • Suzuki Y, Horikoshi N, Kato D, Kurumizaka H. Crystal structure of the nucleosome containing histone H3 with crotonylated lysine 122. Biochem Biophys Res Commun 2016; 469:483-489; PMID:26694698; http://dx.doi.org/10.1016/j.bbrc.2015.12.041
  • Montellier E, Rousseaux S, Zhao Y, Khochbin S. Histone crotonylation specifically marks the haploid male germ cell gene expression program: post-meiotic male-specific gene expression. Bioessays 2012; 34:187-193; PMID:22170506; http://dx.doi.org/10.1002/bies.201100141
  • Ruiz-Andres O, Sanchez-Nino MD, Cannata-Ortiz P, Ruiz-Ortega M, Egido J, Ortiz A, Sanz AB. Histone lysine crotonylation during acute kidney injury in mice. Dis Model Mech 2016; 9(6):633-645; PMID:27125278; http://dx.doi.org/10.1242/dmm.024455
  • Liu XHR, Zhang L, Wang X, Zhang LJ, Xie P. Borna disease virus alters histone lysine acetylation and crotonylation of human oligodendroglia cells. The 10th Biennial Conference of the Chinese Neuroscience Society. Beijing, China, 2013.
  • Li Y, Wen H, Xi Y, Tanaka K, Wang H, Peng D, Ren Y, Jin Q, Dent SY, Li W, et al. AF9 YEATS domain links histone acetylation to DOT1L-mediated H3K79 methylation. Cell 2014; 159:558-571; PMID:25417107; http://dx.doi.org/10.1016/j.cell.2014.09.049
  • Flynn EM, Huang OW, Poy F, Oppikofer M, Bellon SF, Tang Y, Cochran AG. A subset of human bromodomains recognizes butyryllysine and crotonyllysine histone peptide modifications. Structure 2015; 23:1801-1814; PMID:26365797; http://dx.doi.org/10.1016/j.str.2015.08.004
  • Nishio M, Hirota M, Umezawa Y. The CH-[pi] interaction: evidence, nature, and consequences. New York: Wiley; 1998.
  • Perlman EJ, Gadd S, Arold ST, Radhakrishnan A, Gerhard DS, Jennings L, Huff V, Guidry Auvil JM, Davidsen TM, Dome JS, et al. MLLT1 YEATS domain mutations in clinically distinctive Favourable Histology Wilms tumours. Nat Commun 2015; 6:10013; PMID:26635203; http://dx.doi.org/10.1038/ncomms10013
  • Collins EC, Appert A, Ariza-McNaughton L, Pannell R, Yamada Y, Rabbitts TH. Mouse Af9 is a controller of embryo patterning, like Mll, whose human homologue fuses with Af9 after chromosomal translocation in leukemia. Mol Cell Biol 2002; 22:7313-7324; PMID:12242306; http://dx.doi.org/10.1128/MCB.22.20.7313-7324.2002
  • Heisel S, Habel NC, Schuetz N, Ruggieri A, Meese E. The YEATS family member GAS41 interacts with the general transcription factor TFIIF. BMC Mol Biol 2010; 11:53; PMID:20618999; http://dx.doi.org/10.1186/1471-2199-11-53
  • Suganuma T, Gutierrez JL, Li B, Florens L, Swanson SK, Washburn MP, Abmayr SM, Workman JL. ATAC is a double histone acetyltransferase complex that stimulates nucleosome sliding. Nat Struct Mol Biol 2008; 15:364-372; PMID:18327268; http://dx.doi.org/10.1038/nsmb.1397
  • Wang YL, Faiola F, Xu M, Pan S, Martinez E. Human ATAC Is a GCN5/PCAF-containing acetylase complex with a novel NC2-like histone fold module that interacts with the TATA-binding protein. J Biol Chem 2008; 283:33808-3380815; PMID:18838386; http://dx.doi.org/10.1074/jbc.M806936200
  • Orpinell M, Fournier M, Riss A, Nagy Z, Krebs AR, Frontini M, Tora L. The ATAC acetyl transferase complex controls mitotic progression by targeting non-histone substrates. EMBO J 2010; 29:2381-2394; PMID:20562830; http://dx.doi.org/10.1038/emboj.2010.125