1,248
Views
8
CrossRef citations to date
0
Altmetric
Point-of-View

Same same but different: The evolution of TBP in archaea and their eukaryotic offspring

ORCID Icon &
Pages 162-168 | Received 16 Dec 2016, Accepted 29 Jan 2017, Published online: 24 Mar 2017

References

  • Werner F, Grohmann D. Evolution of multisubunit RNA polymerases in the three domains of life. Nat Rev Microbiol 2011; 9(2):85-98; PMID: 21233849; https://doi.org/10.1038/nrmicro2507
  • Vannini A, Cramer P. Conservation between the RNA polymerase I, II, and III transcription initiation machineries. Mol Cell 2012; 45(4):439-446; PMID: 22365827; https://doi.org/10.1016/j.molcel.2012.01.023
  • Cramer P. A tale of chromatin and transcription in 100 structures. Cell 2014; 159(5):985-994; PMID: 25416940; https://doi.org/10.1016/j.cell.2014.10.047
  • Delgadillo RF, Whittington JE, Parkhurst LK, Parkhurst LJ. The TATA-binding protein core domain in solution variably bends TATA sequences via a three-step binding mechanism. Biochemistry 2009; 48(8):1801-1809; PMID: 19199812; https://doi.org/10.1021/bi8018724
  • Schluesche P, Stelzer G, Piaia E, Lamb DC, Meisterernst M. NC2 mobilizes TBP on core promoter TATA boxes. Nat Struct Mol Biol 2007; 14(12):1196-1201; https://doi.org/10.1038/nsmb1328
  • Blair RH, Goodrich JA, Kugel JF. Single-molecule fluorescence resonance energy transfer shows uniformity in TATA binding protein-induced DNA bending and heterogeneity in bending kinetics. Biochemistry 2012; 977:203-215; PMID: 22934924
  • Gietl A, Holzmeister P, Blombach F, Schulz S, von Voithenberg LV, Lamb DC, Werner F, Tinnefeld P, Grohmann D. Eukaryotic and archaeal TBP and TFB/TF(II)B follow different promoter DNA bending pathways. Nucleic Acids Res 2014; 42(10):6219-6231; PMID: 24744242; https://doi.org/10.1093/nar/gku273
  • Becker NB, Everaers R. DNA nanomechanics in the nucleosome. Structure 2009; 17(4):579-589; PMID: 19368891; https://doi.org/10.1016/j.str.2009.01.013
  • Nickels PC, Wünsch B, Holzmeister P, Bae W, Kneer LM, Grohmann D, Tinnefeld P, Liedl T. Molecular force spectroscopy with a DNA origami-based nanoscopic force clamp. Science 2016; 354(6310):305-307; PMID: 27846560; https://doi.org/10.1126/science.aah5974
  • Liu D, Ishima R, Tong KI, Bagby S, Kokubo T, Muhandiram DR, Kay LE, Nakatani Y, Ikura M. Solution structure of a TBP-TAF(II)230 complex: protein mimicry of the minor groove surface of the TATA box unwound by TBP. Cell 1998; 94(5):573-583; PMID: 9741622; https://doi.org/10.1016/S0092-8674(00)81599-8
  • Bagby S, Mal TK, Liu D, Raddatz E, Nakatani Y, Ikura M. TFIIA-TAF regulatory interplay: NMR evidence for overlapping binding sites on TBP. FEBS Lett 2000; 468(2–3):149-154; PMID: 10692576; https://doi.org/10.1016/S0014-5793(00)01213-8
  • Cianfrocco MA, Kassavetis GA, Grob P, Fang J, Juven-Gershon T, Kadonaga JT, Nogales E. Human TFIID binds to core promoter DNA in a reorganized structural state. Cell 2013; 152(1–2):120-131; PMID: 23332750; https://doi.org/10.1016/j.cell.2012.12.005
  • Auble DT. The dynamic personality of TATA-binding protein. Trends Biochem Sci 2009; 34(2):49-52; PMID: 19038550; https://doi.org/10.1016/j.tibs.2008.10.008
  • Zentner GE, Henikoff S. Mot1 redistributes TBP from TATA-containing to TATA-less promoters. Mol Cell Biol 2013; 33(24):4996-5004; PMID: 24144978; https://doi.org/10.1128/MCB.01218-13
  • Zhang Z, English BP, Grimm JB, Kazane SA, Hu W, Tsai A, Inouye C, You C, Piehler J, Schultz PG et al. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Genes Dev 2016; 30(18):2106-2118; ; https://doi.org/10.1101/gad.285395.116
  • Bell SD, Jackson SP. Transcription and translation in archaea: a mosaic of eukaryal and bacterial features. Trends Microbiol 1998; 6(6):222-228; PMID: 9675798; https://doi.org/10.1016/S0966-842X(98)01281-5
  • Ouhammouch M, Dewhurst RE, Hausner W, Thomm M, Geiduschek EP. Activation of archaeal transcription by recruitment of the TATA-binding protein. Proc Natl Acad Sci USA 2003; 100(9):5097-5102; PMID: 12692306; https://doi.org/10.1073/pnas.0837150100
  • Ochs SM, Thumann S, Richau R, Weirauch MT, Lowe TM, Thomm M, Hausner W. Activation of archaeal transcription mediated by recruitment of transcription factor B. J Biol Chem 2012; 287(22):18863-18871; PMID: 22496454; https://doi.org/10.1074/jbc.M112.365742
  • Louder RK, He Y, López-Blanco JR, Fang J, Chacón P, Nogales E. Structure of promoter-bound TFIID and model of human pre-initiation complex assembly. Nature 2016; 531(7596):604-609; PMID: 27007846; https://doi.org/10.1038/nature17394
  • Carninci P, Sandelin A, Lenhard B, Katayama S, Shimokawa K, Ponjavic J, Semple CA, Taylor MS, Engström PG, Frith MC et al. Genome-wide analysis of mammalian promoter architecture and evolution. Nat Genet 2006; 38(6):626-635; PMID: 16645617; https://doi.org/10.1038/ng1789
  • Kadonaga JT. Perspectives on the RNA polymerase II core promoter. Wiley Interdiscip Rev Dev Biol 2012; 1(1):40-51; PMID: 23801666; https://doi.org/10.1002/wdev.21
  • Rhee HS, Pugh BF, Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature 2012; 483(7389):295-301; PMID: 22258509; https://doi.org/10.1038/nature10799
  • Duttke SH. Evolution and diversification of the basal transcription machinery. Trends Biochem Sci 2015; 40(3):127-129; PMID: 25661246; https://doi.org/10.1016/j.tibs.2015.01.005
  • Facciotti MT, Reiss DJ, Pan M, Kaur A, Vuthoori M, Bonneau R, Shannon P, Srivastava A, Donohoe SM, Hood LE et al. General transcription factor specified global gene regulation in archaea. Proc Natl Acad Sci USA 2007; 104(11):4630-4635; PMID: 17360575; https://doi.org/10.1073/pnas.0611663104
  • Santangelo TJ, Cubonová L, James CL, Reeve JN. TFB1 or TFB2 is sufficient for Thermococcus kodakaraensis viability and for basal transcription in vitro. J Mol Biol 2007; 367(2):344-357; PMID: 17275836; https://doi.org/10.1016/j.jmb.2006.12.069
  • Micorescu M, Grünberg S, Franke A, Cramer P, Thomm M, Bartlett M. Archaeal transcription: function of an alternative transcription factor B from Pyrococcus furiosus. J Bacteriol 2008; 190(1):157-167; PMID: 17965161; https://doi.org/10.1128/JB.01498-07
  • Reichlen MJ, Murakami KS, Ferry JG. Functional analysis of the three TATA binding protein homologs in Methanosarcina acetivorans. J Bacteriol 2010; 192(6):1511-1517; PMID: 20081030; https://doi.org/10.1128/JB.01165-09
  • Bell SD, Kosa PL, Sigler PB, Jackson SP. Orientation of the transcription preinitiation complex in archaea. Proc Natl Acad Sci USA 1999; 96(24):13662-13667; PMID: 10570129; https://doi.org/10.1073/pnas.96.24.13662
  • Lagrange T, Kapanidis AN, Tang H, Reinberg D, Ebright RH. New core promoter element in RNA polymerase II-dependent transcription: sequence-specific DNA binding by transcription factor IIB. Genes Dev 1998; 12(1):34-44; PMID: 9420329; https://doi.org/10.1101/gad.12.1.34
  • Seitzer P, Wilbanks EG, Larsen DJ, Facciotti MT. A Monte Carlo-based framework enhances the discovery and interpretation of regulatory sequence motifs. BMC Bioinform 2012; 13:317; PMID: 23181585; https://doi.org/10.1186/1471-2105-13-317