4,030
Views
68
CrossRef citations to date
0
Altmetric
Review

Regulation of transcription factors by sumoylation

ORCID Icon, , , ORCID Icon &
Pages 220-231 | Received 13 Feb 2017, Accepted 22 Mar 2017, Published online: 30 May 2017

References

  • Flotho A, Melchior F. Sumoylation: a regulatory protein modification in health and disease. Annu Rev Biochem 2013; 82:357-385; PMID:23746258; https://doi.org/10.1146/annurev-biochem-061909-093311
  • Chymkowitch P, Nguéa PA, Enserink JM. SUMO-regulated transcription: challenging the dogma. Bioessays 2015; 37:1095-1105; PMID:26354225; https://doi.org/10.1002/bies.201500065
  • Hendriks IA, Vertegaal AC. A comprehensive compilation of SUMO proteomics. Nat Rev Mol Cell Biol 2016; 17:581-595; PMID:27435506; https://doi.org/10.1038/nrm.2016.81
  • Hendriks IA, Lyon D, Young C, Jensen LJ, Vertegaal AC, Nielsen ML. Site-specific mapping of the human SUMO proteome reveals co-modification with phosphorylation. Nat Struct Mol Biol 2017; 24:325-336; PMID:28112733; https://doi.org/10.1038/nsmb.3366
  • Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev 2005; 15:536-541; PMID:16095902; https://doi.org/10.1016/j.gde.2005.07.004
  • Lyst MJ, Stancheva I. A role for SUMO modification in transcriptional repression and activation. Biochem Soc Trans 2007; 35:1389-1392; PMID:18031228; https://doi.org/10.1042/BST0351389
  • Flotho A, Melchior F. Sumoylation: A regulatory protein modification in health and disease. Annu Rev Biochem 2013; 82:357-385; PMID:23746258; https://doi.org/10.1146/annurev-biochem-061909-093311
  • Liang YC, Lee CC, Yao YL, Lai CC, Schmitz ML, Yang WM. SUMO5, a novel poly-SUMO isoform, regulates PML nuclear bodies. Sci Rep 2016; 6:26509; PMID:27211601; https://doi.org/10.1038/srep26509
  • Yang SH, Galanis A, Witty J, Sharrocks AD. An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J 2006; 25:5083-5093; PMID:17036045; https://doi.org/10.1038/sj.emboj.7601383
  • Hietakangas V, Anckar J, Blomster HA, Fujimoto M, Palvimo JJ, Nakai A, Sistonen L. PDSM, a motif for phosphorylation-dependent SUMO modification. Proc Natl Acad Sci USA 2006; 103:45-50; PMID:16371476; https://doi.org/10.1073/pnas.0503698102
  • Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 2010; 11:861-871; PMID:21102611; https://doi.org/10.1038/nrm3011
  • Zhang L, Vogel WK, Liu X, Topark-Ngarm A, Arbogast BL, Maier CS, Filtz TM, Leid M. Coordinated regulation of transcription factor Bcl11b activity in thymocytes by the mitogen-activated protein kinase (MAPK) pathways and protein sumoylation. J Biol Chem 2012; 287:26971-26988; PMID:22700985; https://doi.org/10.1074/jbc.M112.344176
  • Nayak A, Müller S. SUMO-specific proteases/isopeptidases: SENPs and beyond. Genome Biol 2014; 15:422; PMID:25315341; https://doi.org/10.1186/s13059-014-0422-2
  • Keusekotten K, Bade VN, Meyer-Teschendorf K, Sriramachandran AM, Fischer-Schrader K, Krause A, Horst C, Schwarz G, Hofmann K, Dohmen RJ et al. Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochem J 2014; 457:207-214; PMID:24151981; https://doi.org/10.1042/BJ20130753
  • Sriramachandran AM, Dohmen RJ. SUMO-targeted ubiquitin ligases. Biochim Biophys Acta 2014; 1843:75-85; PMID:24018209; https://doi.org/10.1016/j.bbamcr.2013.08.022
  • Yang SH, Sharrocks AD. SUMO promotes HDAC-mediated transcriptional repression. Mol Cell 2004; 13:611-617; PMID:14992729; https://doi.org/10.1016/S1097-2765(04)00060-7
  • Ouyang J, Gill G. SUMO engages multiple corepressors to regulate chromatin structure and transcription. Epigenetics 2009; 4:440-444; PMID:19829068; https://doi.org/10.4161/epi.4.7.9807
  • Andrade D, Velinder M, Singer J, Maese L, Bareyan D, Nguyen H, Chandrasekharan MB, Lucente H, McClellan D, Jones D et al. SUMOylation regulates growth factor independence 1 in transcriptional control and hematopoiesis. Mol Cell Biol 2016; 36:1438-1450; PMID:26951200; https://doi.org/10.1128/MCB.01001-15
  • Hua G, Paulen L, Chambon P. GR SUMOylation and formation of an SUMO-SMRT/NCoR1-HDAC3 repressing complex is mandatory for GC-induced IR nGRE-mediated transrepression. Proc Natl Acad Sci 2016; 113:E626-634; PMID:26712002; https://doi.org/10.1073/pnas.1522821113
  • Wang Y, Shankar SR, Kher D, Ling BMT, Taneja R. Sumoylation of the basic helix-loop-helix transcription factor sharp-1 regulates recruitment of the histone methyltransferase G9a and function in myogenesis. J Biol Chem 2013; 288:17654-17662; PMID:23637228; https://doi.org/10.1074/jbc.M113.463257
  • Ouyang J, Shi Y, Valin A, Xuan Y, Gill G. Direct binding of CoREST1 to SUMO-2/3 contributes to gene-specific repression by the LSD1/CoREST1/HDAC complex. Mol Cell 2009; 34:145-154; PMID:19394292; https://doi.org/10.1016/j.molcel.2009.03.013
  • Lee Y, Chun SK, Kim K. Sumoylation controls CLOCK-BMAL1-mediated clock resetting via CBP recruitment in nuclear transcriptional foci. Biochim Biophys Acta 2015; 1853:2697-2708; PMID:26164627; https://doi.org/10.1016/j.bbamcr.2015.07.005
  • Ledsaak M, Bengtsen M, Molværsmyr A-K, Fuglerud BM, Matre V, Eskeland R, Gabrielsen OS. PIAS1 binds p300 and behaves as a coactivator or corepressor of the transcription factor c-Myb dependent on SUMO-status. Biochim Biophys Acta 2016; 1859:705-718; PMID:27032383; https://doi.org/10.1016/j.bbagrm.2016.03.011
  • Diehl C, Akke M, Bekker-Jensen S, Mailand N, Streicher W, Wikström M. Structural analysis of a complex between small ubiquitin-like modifier 1 (SUMO1) and the ZZ domain of CREB-binding protein (CBP/p300) reveals a new interaction surface on SUMO. J Biol Chem 2016; 291:12658-12672; PMID:27129204; https://doi.org/10.1074/jbc.M115.711325
  • Tu J, Chen Y, Cai L, Xu C, Zhang Y, Chen Y, Zhang C, Zhao J, Cheng J, Xie H et al. Functional proteomics study reveals SUMOylation of TFII-I is involved in liver cancer cell proliferation. J Proteome Res 2015; 14:2385-2397; PMID:25869096; https://doi.org/10.1021/acs.jproteome.5b00062
  • Van Rechem C, Boulay G, Pinte S, Stankovic-Valentin N, Guérardel C, Leprince D. Differential regulation of HIC1 target genes by CtBP and NuRD, via an acetylation/SUMOylation switch, in quiescent versus proliferating cells. Mol Cell Biol 2010; 30:4045-4059; PMID:20547755; https://doi.org/10.1128/MCB.00582-09
  • Escobar-Ramirez A, Vercoutter-Edouart AS, Mortuaire M, Huvent I, Hardivillé S, Hoedt E, Lefebvre T, Pierce A. Modification by SUMOylation controls both the transcriptional activity and the stability of delta-lactoferrin. PLoS One 2015; 10:e0129965; PMID:26090800; https://doi.org/10.1371/journal.pone.0129965
  • Kim D-H, Xiao Z, Kwon S, Sun X, Ryerson D, Tkac D, Ma P, Wu SY, Chiang CM, Zhou E et al. A dysregulated acetyl/SUMO switch of FXR promotes hepatic inflammation in obesity. EMBO J 2015; 34:184-199; PMID:25425577; https://doi.org/10.15252/embj.201489527
  • Van Nguyen T, Angkasekwinai P, Dou H, Lin FM, Lu LS, Cheng J, Chin YE, Dong C, Yeh ET. SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell 2012; 45:210-221; PMID:22284677; https://doi.org/10.1016/j.molcel.2011.12.026
  • Droescher M, Begitt A, Marg A, Zacharias M, Vinkemeier U. Cytokine-induced paracrystals prolong the activity of signal transducers and activators of transcription (STAT) and provide a model for the regulation of protein solubility by small ubiquitin-like modifier (SUMO). J Biol Chem 2011; 286:18731-18746; PMID:21460228; https://doi.org/10.1074/jbc.M111.235978
  • Cheema A, Knights CD, Rao M, Catania J, Perez R, Simons B, Dakshanamurthy S, Kolukula VK, Tilli M, Furth PA et al. Functional mimicry of the acetylated C-terminal tail of p53 by a SUMO-1 acetylated domain, SAD. J Cell Physiol 2010; 225:371-384; PMID:20458745; https://doi.org/10.1002/jcp.22224
  • Wu SY, Chiang CM, Anckar J, Hietakangas V, Denessiouk K, Thiele D, Johnson M, Sistonen L, Appella E, Anderson C et al. Crosstalk between sumoylation and acetylation regulates p53-dependent chromatin transcription and DNA binding. EMBO J 2009; 28:1246-1259; PMID:19339993; https://doi.org/10.1038/emboj.2009.83
  • Lee HY, Johnson KD, Fujiwara T, Boyer ME, Kim SI, Bresnick EH. Controlling hematopoiesis through sumoylation-dependent regulation of a GATA factor. Mol Cell 2009; 36:984-995; PMID:20064464; https://doi.org/10.1016/j.molcel.2009.11.005
  • Pan MR, Chang TM, Chang HC, Su JL, Wang HW, Hung WC. Sumoylation of Prox1 controls its ability to induce VEGFR3 expression and lymphatic phenotypes in endothelial cells. J Cell Sci 2009; 122:3358-3364; PMID:19706680; https://doi.org/10.1242/jcs.050005
  • Sutinen P, Rahkama V, Rytinki M, Palvimo JJ. Nuclear mobility and activity of FOXA1 with androgen receptor are regulated by SUMOylation. Mol Endocrinol 2014; 28:1719-1728; PMID:25127374; https://doi.org/10.1210/me.2014-1035
  • Smith M, Mallin DR, Simon JA, Courey AJ. Small ubiquitin-like modifier (SUMO) conjugation impedes transcriptional silencing by the polycomb group repressor Sex Comb on Midleg. J Biol Chem 2011; 286:11391-11400; PMID:21278366; https://doi.org/10.1074/jbc.M110.214569
  • Yokoyama S, Woods SL, Boyle GM, Aoude LG, MacGregor S, Zismann V, Gartside M, Cust AE, Haq R, Harland M et al. A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma. Nature 2011; 480:99-103; PMID:22080950; https://doi.org/10.1038/nature10630
  • Bertolotto C, Lesueur F, Giuliano S, Strub T, de Lichy M, Bille K, Dessen P, D'Hayer B, Mohamdi H, Remenieras A et al. A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma. Nature 2011; 480:94-98; PMID:22012259; https://doi.org/10.1038/nature10539
  • Cheng J, Huang M, Zhu Y, Xin YJ, Zhao YK, Huang J, Yu JX, Zhou WH, Qiu Z. SUMOylation of MeCP2 is essential for transcriptional repression and hippocampal synapse development. J Neurochem 2014; 128:798-806; PMID:24188180; https://doi.org/10.1111/jnc.12523
  • Balasubramaniyan N, Luo Y, Sun AQ, Suchy FJ. SUMOylation of the farnesoid X receptor (FXR) regulates the expression of FXR target genes. J Biol Chem 2013; 288:13850-13862; PMID:23546875; https://doi.org/10.1074/jbc.M112.443937
  • Wei F, Schöler HR, Atchison ML. Sumoylation of Oct4 enhances its stability, DNA binding, and transactivation. J Biol Chem 2007; 282:21551-21560; PMID:17525163; https://doi.org/10.1074/jbc.M611041200
  • Apostolov A, Litim-Mecheri I, Oravecz A, Goepp M, Kirstetter P, Marchal P, Ittel A, Mauvieux L, Chan S, Kastner P. Sumoylation inhibits the growth suppressive properties of ikaros. PLoS One 2016; 11:e0157767; PMID:27315244; https://doi.org/10.1371/journal.pone.0157767
  • Rosonina E, Duncan SM, Manley JL. SUMO functions in constitutive transcription and during activation of inducible genes in yeast. Genes Dev 2010; 24:1242-1252; PMID:20504900; https://doi.org/10.1101/gad.1917910
  • Chymkowitch P, Nguéa AP, Aanes H, Koehler CJ, Thiede B, Lorenz S, Meza-Zepeda LA, Klungland A, Enserink JM. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome Res 2015; 25:897-906; PMID:25800674; https://doi.org/10.1101/gr.185793.114
  • Neyret-Kahn H, Benhamed M, Ye T, Le Gras S, Cossec JC, Lapaquette P, Bischof O, Ouspenskaia M, Dasso M, Seeler J et al. Sumoylation at chromatin governs coordinated repression of a transcriptional program essential for cell growth and proliferation. Genome Res 2013; 23:1563-1579; PMID:23893515; https://doi.org/10.1101/gr.154872.113
  • Liu HW, Zhang J, Heine GF, Arora M, Gulcin Ozer H, Onti-Srinivasan R, Huang K, Parvin JD. Chromatin modification by SUMO-1 stimulates the promoters of translation machinery genes. Nucleic Acids Res 2012; 40:10172-10186; PMID:22941651; https://doi.org/10.1093/nar/gks819
  • Seifert A, Schofield P, Barton GJ, Hay RT. Proteotoxic stress reprograms the chromatin landscape of SUMO modification. Sci Signal 2015; 8:rs7; PMID:26152697; https://doi.org/10.1126/scisignal.aaa2213
  • Tempe D, Vives E, Brockly F, Brooks H, De Rossi S, Piechaczyk M, Bossis G. SUMOylation of the inducible (c-Fos:c-Jun)/AP-1 transcription complex occurs on target promoters to limit transcriptional activation. Oncogene 2014; 33:921-927; PMID:23396363; https://doi.org/10.1038/onc.2013.4
  • Akhter A, Rosonina E. Chromatin association of Gcn4 is limited by post-translational modifications triggered by its DNA-binding in saccharomyces cerevisiae. Genetics 2016; 204:1433-1445; PMID:27992414; https://doi.org/10.1534/genetics.116.194134
  • Rosonina E, Duncan SM, Manley JL. Sumoylation of transcription factor Gcn4 facilitates its Srb10-mediated clearance from promoters in yeast. Genes Dev 2012; 26:350-355; PMID:22345516; https://doi.org/10.1101/gad.184689.111
  • Wang M, Sang J, Ren Y, Liu K, Liu X, Zhang J, Wang H, Wang J, Orian A, Yang J et al. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/3-targeted ubiquitination and degradation. Protein Cell 2016; 7:63-77; PMID:26511642; https://doi.org/10.1007/s13238-015-0216-7
  • Wang M, Sang J, Ren Y, Liu K, Liu X, Zhang J, Wang H, Wang J, Orian A, Yang J et al. SENP3 regulates the global protein turnover and the Sp1 level via antagonizing SUMO2/3-targeted ubiquitination and degradation. Protein Cell 2016; 7:63-77; PMID:26511642; https://doi.org/10.1007/s13238-015-0216-7
  • González-Prieto R, Cuijpers SA, Kumar R, Hendriks IA, Vertegaal AC. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell Cycle 2015; 14:1859-1872; PMID:25895136; https://doi.org/10.1080/15384101.2015.1040965
  • Guo B, Sharrocks AD. Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator PEA3. Mol Cell Biol 2009; 29:3204-3218; PMID:19307308; https://doi.org/10.1128/MCB.01128-08
  • Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 1998; 2:233-239; PMID:9734360; https://doi.org/10.1016/S1097-2765(00)80133-1
  • Chen S, Yu X, Lei Q, Ma L, Guo D. The sumoylation of zinc-fingers and homeoboxes 1 (ZHX1) by ubc9 regulates its stability and transcriptional repression activity. J Cell Biochem 2013; 114:2323-2333; PMID:23686912; https://doi.org/10.1002/jcb.24579
  • Xing X, Bi H, Chang AK, Zang MX, Wang M, Ao X, Li S, Pan H, Guo Q, Wu H. SUMOylation of AhR modulates its activity and stability through inhibiting its ubiquitination. J Cell Physiol 2012; 227:3812-3819; PMID:22495806; https://doi.org/10.1002/jcp.24092
  • Zhang ZB, Ruan CC, Chen DR, Zhang K, Yan C, Gao PJ. Activating transcription factor 3 SUMOylation is involved in angiotensin II-induced endothelial cell inflammation and dysfunction. J Mol Cell Cardiol 2016; 92:149-157; PMID:26850942; https://doi.org/10.1016/j.yjmcc.2016.02.001
  • Ramachandran H, Herfurth K, Grosschedl R, Schäfer T, Walz G. SUMOylation Blocks the ubiquitin-mediated degradation of the nephronophthisis gene product Glis2/NPHP7. PLoS One 2015; 10:e0130275; PMID:26083374; https://doi.org/10.1371/journal.pone.0130275
  • Gong L, Ji WK, Hu XH, Hu WF, Tang XC, Huang ZX, Li L, Liu M, Xiang SH, Wu E et al. Sumoylation differentially regulates Sp1 to control cell differentiation. Proc Natl Acad Sci USA 2014; 111:5574-5579; PMID:24706897; https://doi.org/10.1073/pnas.1315034111
  • Yan Q, Gong L, Deng M, Zhang L, Sun S, Liu JJ, Ma H, Yuan D, Chen PC, Hu X et al. Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci U S A 2010; 107:21034-21039; PMID:21084637; https://doi.org/10.1073/pnas.1007866107
  • Zhang J, Yuan C, Wu J, Elsayed Z, Fu Z. Polo-like kinase 1-mediated phosphorylation of Forkhead box protein M1b antagonizes its SUMOylation and facilitates its mitotic function. J Biol Chem 2015; 290:3708-3719; PMID:25533473; https://doi.org/10.1074/jbc.M114.634386
  • Chen L, Ma Y, Qian L, Wang J. Sumoylation regulates nuclear localization and function of zinc finger transcription factor ZIC3. Biochim Biophys Acta 2013; 1833:2725-2733; PMID:23872418; https://doi.org/10.1016/j.bbamcr.2013.07.009
  • Sahin U, de Thé H, Lallemand-Breitenbach V. PML nuclear bodies: Assembly and oxidative stress-sensitive sumoylation. Nucleus 2014; 5:499-507; PMID:25482067; https://doi.org/10.4161/19491034.2014.970104
  • Nayak A, Glöckner-Pagel J, Vaeth M, Schumann JE, Buttmann M, Bopp T, Schmitt E, Serfling E, Berberich-Siebelt F. Sumoylation of the transcription factor NFATc1 leads to its subnuclear relocalization and interleukin-2 repression by histone deacetylase. J Biol Chem 2009; 284:10935-10946; PMID:19218564; https://doi.org/10.1074/jbc.M900465200
  • Sapetschnig A, Rischitor G, Braun H, Doll A, Schergaut M, Melchior F, Suske G. Transcription factor Sp3 is silenced through SUMO modification by PIAS1. EMBO J 2002; 21:5206-5215; PMID:12356736; https://doi.org/10.1093/emboj/cdf510
  • Ross S, Best JL, Zon LI, Gill G. SUMO-1 modification represses Sp3 transcriptional activation and modulates its subnuclear localization. Mol Cell 2002; 10:831-842; PMID:12419227; https://doi.org/10.1016/S1097-2765(02)00682-2
  • Bies J, Markus J, Wolff L. Covalent attachment of the SUMO-1 protein to the negative regulatory domain of the c-Myb transcription factor modifies its stability and transactivation capacity. J Biol Chem 2002; 277:8999-9009; PMID:11779867; https://doi.org/10.1074/jbc.M110453200
  • Muller S, Berger M, Lehembre F, Seeler JS, Haupt Y, Dejean A. c-Jun and p53 activity is modulated by SUMO-1 modification. J Biol Chem 2000; 275:13321-13329; PMID:10788439; https://doi.org/10.1074/jbc.275.18.13321
  • Hamard PJ, Boyer-Guittaut M, Camuzeaux B, Dujardin D, Hauss C, Oelgeschläger T, Vigneron M, Kedinger C, Chatton B. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity. Nucleic Acids Res 2007; 35:1134-1144; PMID:17264123; https://doi.org/10.1093/nar/gkl1168
  • Lee PC, Taylor-Jaffe KM, Nordin KM, Prasad MS, Lander RM, LaBonne C. SUMOylated SoxE factors recruit Grg4 and function as transcriptional repressors in the neural crest. J Cell Biol 2012; 198:799-813; PMID:22927467; https://doi.org/10.1083/jcb.201204161
  • van den Burg HA, Takken FL. SUMO-, MAPK-, and resistance protein-signaling converge at transcription complexes that regulate plant innate immunity. Plant Signal Behav 2010; 5:1597-1601; PMID:21150289; https://doi.org/10.4161/psb.5.12.13913
  • Lewicki MC, Srikumar T, Johnson E, Raught B. The S. cerevisiae SUMO stress response is a conjugation–deconjugation cycle that targets the transcription machinery. J Proteomics 2015; 118:39-48; PMID:25434491; https://doi.org/10.1016/j.jprot.2014.11.012
  • Enserink JM. SUMO and the cellular stress response. Cell Div 2015; 10:4; PMID:26101541; https://doi.org/10.1186/s13008-015-0010-1
  • Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT. System-wide changes to SUMO modifications in response to heat shock. Sci Signal 2009; 2:ra24; PMID:19471022; https://doi.org/10.1126/scisignal.2000282
  • Sramko M, Markus J, Kabat J, Wolff L, Bies J. Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem 2006; 281:40065-40075; PMID:17077080; https://doi.org/10.1074/jbc.M609404200
  • Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK, Sarge KD, Goodson M. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem 2001; 276:40263-40267; PMID:11514557; https://doi.org/10.1074/jbc.M104714200
  • Singh S, Pradhan AK, Chakraborty S. SUMO1 negatively regulates the transcriptional activity of EVI1 and significantly increases its co-localization with EVI1 after treatment with arsenic trioxide. Biochim Biophys Acta 2013; 1833:2357-2368; PMID:23770046; https://doi.org/10.1016/j.bbamcr.2013.06.003
  • Lin BS, Tsai PY, Hsieh WY, Tsao HW, Liu MW, Grenningloh R, Wang LF, Ho IC, Miaw SC. SUMOylation attenuates c-Maf-dependent IL-4 expression. Eur J Immunol 2010; 40:1174-1184; PMID:20127678; https://doi.org/10.1002/eji.200939788
  • Suico MA, Nakamura H, Lu Z, Saitoh H, Shuto T, Nakao M, Kai H. SUMO down-regulates the activity of Elf4/Myeloid Elf-1-like factor. Biochem Biophys Res Commun 2006; 348:880-888; PMID:16904644; https://doi.org/10.1016/j.bbrc.2006.07.151