1,191
Views
12
CrossRef citations to date
0
Altmetric
Points-of-View

Transcriptional control of yeast ribosome biogenesis: A multifaceted role for general regulatory factors

, &
Pages 254-260 | Received 27 Feb 2017, Accepted 04 Apr 2017, Published online: 10 Jul 2017

References

  • Broach JR. Nutritional control of growth and development in yeast. Genetics 2012; 192:73-105; PMID:22964838; https://doi.org/10.1534/genetics.111.135731
  • Warner JR. The economics of ribosome biosynthesis in yeast. Trends Biochem Sci 1999; 24:437-440; PMID:10542411; https://doi.org/10.1016/S0968-0004(99)01460-7
  • Wade C, Shea KA, Jensen RV, McAlear MA. EBP2 is a member of the yeast RRB regulon, a transcriptionally coregulated set of genes that are required for ribosome and rRNA biosynthesis. Mol Cell Biol 2001; 21:8638-8650; PMID:11713296; https://doi.org/10.1128/MCB.21.24.8638-8650.2001
  • Jorgensen P, Rupes I, Sharom JR, Schneper L, Broach JR, Tyers M. A dynamic transcriptional network communicates growth potential to ribosome synthesis and critical cell size. Genes Dev 2004; 18:2491-2505; PMID:15466158; https://doi.org/10.1101/gad.1228804
  • Wade CH, Umbarger, MA, McAlear, MA. The budding yeast rRNA and ribosome biosynthesis (RRB) regulon contains over 200 genes. Yeast 2006; 23:293-306; PMID:16544271; https://doi.org/10.1002/yea.1353
  • Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V, Denervaud N, Jacquet P, Ozkan B, Rougemont J et al. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev 2014; 28:1695-1709; PMID:25085421; https://doi.org/10.1101/gad.244434.114
  • Reja R, Vinayachandran V, Ghosh S, Pugh BF. Molecular mechanisms of ribosomal protein gene coregulation. Genes Dev 2015; 29:1942-1954; PMID:26385964; https://doi.org/10.1101/gad.268896.115
  • Kim MS, Hahn JS. Role of CK2-dependent phosphorylation of Ifh1 and Crf1 in transcriptional regulation of ribosomal protein genes in Saccharomyces cerevisiae. Biochim Biophys Acta 2016; 1859:1004-1013; PMID:27321754; https://doi.org/10.1016/j.bbagrm.2016.06.003
  • Huber A, French SL, Tekotte H, Yerlikaya S, Stahl M, Perepelkina MP, Tyers M, Rougemont J, Beyer AL, Loewith R. Sch 9 regulates ribosome biogenesis via Stb3, Dot6 and Tod6 and the histone deacetylase complex RPD3L. EMBO J 2011; 30:3052-3064; PMID:21730963; https://doi.org/10.1038/emboj.2011.221
  • Bosio MC, Negri R, Dieci G. Promoter architectures in the yeast ribosomal expression program. Transcription 2011; 2:71-77; PMID:21468232; https://doi.org/10.4161/trns.2.2.14486
  • Fermi B, Bosio MC, Dieci G. Promoter architecture and transcriptional regulation of Abf1-dependent ribosomal protein genes in Saccharomyces cerevisiae. Nucleic Acids Res 2016; 44:6113-6126; PMID:27016735; https://doi.org/10.1093/nar/gkw194
  • Hughes JD, Estep PW, Tavazoie S, Church GM. Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 2000; 296:1205-1214; PMID:10698627; https://doi.org/10.1006/jmbi.2000.3519
  • Liko D, Slattery MG, Heideman W. Stb3 binds to ribosomal RNA processing element motifs that control transcriptional responses to growth in Saccharomyces cerevisiae. J Biol Chem 2007; 282:26623-26628; PMID:17616518; https://doi.org/10.1074/jbc.M704762200
  • Liko D, Conway MK, Grunwald DS, Heideman W. Stb3 plays a role in the glucose-induced transition from quiescence to growth in Saccharomyces cerevisiae. Genetics 2010; 185:797-810; PMID:20385783; https://doi.org/10.1534/genetics.110.116665
  • Bosio MC, Fermi B, Spagnoli G, Levati E, Rubbi L, Ferrari R, Pellegrini M, Dieci G. Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast. Nucleic Acids Res 2017; PMID:28158860; https://doi.org/10.1093/nar/gkx058
  • Yu S, Smirnova JB, Friedberg EC, Stillman B, Akiyama M, Owen-Hughes T, Waters R, Reed SH. ABF1-binding sites promote efficient global genome nucleotide excision repair. J Biol Chem 2009; 284:966-973; https://doi.org/10.1074/jbc.M806830200
  • Bonetti D, Anbalagan S, Lucchini G, Clerici M, Longhese MP. Tbf1 and Vid22 promote resection and non-homologous end joining of DNA double-strand break ends. EMBO J 2013; 32:275-289; PMID:23222485; https://doi.org/10.1038/emboj.2012.327
  • Ribaud V, Ribeyre C, Damay P, Shore D. DNA-end capping by the budding yeast transcription factor and subtelomeric binding protein Tbf1. EMBO J 2012; 31:138-149; PMID:21952045; https://doi.org/10.1038/emboj.2011.349
  • Fukunaga K, Hirano Y, Sugimoto K. Subtelomere-binding protein Tbf1 and telomere-binding protein Rap1 collaborate to inhibit localization of the Mre11 complex to DNA ends in budding yeast. Mol Biol Cell 2012; 23:347-359; PMID:22130795; https://doi.org/10.1091/mbc.E11-06-0568
  • Colin J, Candelli T, Porrua O, Boulay J, Zhu C, Lacroute F, Steinmetz LM, Libri D. Roadblock termination by reb1p restricts cryptic and readthrough transcription. Mol Cell 2014; 56:667-680; PMID:25479637; https://doi.org/10.1016/j.molcel.2014.10.026
  • Preti M, Ribeyre C, Pascali C, Bosio MC, Cortelazzi B, Rougemont J, Guarnera E, Naef F, Shore D, Dieci G. The telomere-binding protein Tbf1 demarcates snoRNA gene promoters in Saccharomyces cerevisiae. Mol Cell 2010; 38:614-620; PMID:20513435; https://doi.org/10.1016/j.molcel.2010.04.016
  • Fermi B, Bosio MC, Dieci G. Multiple roles of the general regulatory factor Abf1 in yeast ribosome biogenesis. Curr Genet 2017; 63:65-68; PMID:27262581; https://doi.org/10.1007/s00294-016-0621-3
  • Hahn S, Young ET. Transcriptional regulation in Saccharomyces cerevisiae: transcription factor regulation and function, mechanisms of initiation, and roles of activators and coactivators. Genetics 2011; 189:705-736; PMID:22084422; https://doi.org/10.1534/genetics.111.127019
  • Chong YT, Koh JL, Friesen H, Duffy SK, Cox MJ, Moses A, Moffat J, Boone C, Andrews BJ. Yeast proteome dynamics from single cell imaging and automated analysis. Cell 2015; 161:1413-1424; PMID:26046442; https://doi.org/10.1016/j.cell.2015.04.051
  • Silve S, Rhode PR, Coll B, Campbell J, Poyton RO. ABF1 is a phosphoprotein and plays a role in carbon source control of COX6 transcription in Saccharomyces cerevisiae. Mol Cell Biol 1992; 12:4197-4208; PMID:1324416; https://doi.org/10.1128/MCB.12.9.4197
  • Oliveira AP, Ludwig C, Zampieri M, Weisser H, Aebersold R, Sauer U. Dynamic phosphoproteomics reveals TORC1-dependent regulation of yeast nucleotide and amino acid biosynthesis. Sci Signal 2015; 8:rs4; PMID:25921291; https://doi.org/10.1126/scisignal.2005768
  • Upton T, Wiltshire S, Francesconi S, Eisenberg S. ABF1 Ser-720 is a predominant phosphorylation site for casein kinase II of Saccharomyces cerevisiae. J Biol Chem 1995; 270:16153-16159; PMID:7608180; https://doi.org/10.1074/jbc.270.27.16153
  • Sanchez-Casalongue ME, Lee J, Diamond A, Shuldiner S, Moir RD, Willis IM. Differential phosphorylation of a regulatory subunit of protein kinase CK2 by target of rapamycin complex 1 signaling and the Cdc-like kinase Kns1. J Biol Chem 2015; 290:7221-7233; PMID:25631054; https://doi.org/10.1074/jbc.M114.626523
  • Paul E, Tirosh I, Lai W, Buck MJ, Palumbo MJ, Morse RH. Chromatin mediation of a transcriptional memory effect in yeast. G3 (Bethesda) 2015; 5:829-838; PMID:25748434; https://doi.org/10.1534/g3.115.017418
  • Wade JT, Hall DB, Struhl K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature 2004; 432:1054-1058; PMID:15616568; https://doi.org/10.1038/nature03175
  • Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature 2004; 432:1058-1061; PMID:15616569; https://doi.org/10.1038/nature03200
  • Lippman SI, Broach JR. Protein kinase A and TORC1 activate genes for ribosomal biogenesis by inactivating repressors encoded by Dot6 and its homolog Tod6. Proc Natl Acad Sci USA 2009; 106:19928-19933; PMID:19901341; https://doi.org/10.1073/pnas.0907027106
  • Reid JL, Iyer VR, Brown PO, Struhl K. Coordinate regulation of yeast ribosomal protein genes is associated with targeted recruitment of Esa1 histone acetylase. Mol Cell 2000; 6:1297-1307; PMID:11163204; https://doi.org/10.1016/S1097-2765(00)00128-3
  • Rohde JR, Cardenas ME. The tor pathway regulates gene expression by linking nutrient sensing to histone acetylation. Mol Cell Biol 2003; 23:629-635; PMID:12509460; https://doi.org/10.1128/MCB.23.2.629-635.2003
  • Humphrey EL, Shamji AF, Bernstein BE, Schreiber SL. Rpd3p relocation mediates a transcriptional response to rapamycin in yeast. Chem Biol 2004; 11:295-299; PMID:15123258; https://doi.org/10.1016/j.chembiol.2004.03.001
  • McKnight JN, Boerma JW, Breeden LL, Tsukiyama T. Global promoter targeting of a conserved lysine deacetylase for transcriptional shutoff during quiescence entry. Mol Cell 2015; 59:732-743; PMID:26300265; https://doi.org/10.1016/j.molcel.2015.07.014
  • Nacht AS, Beato M, Vicent GP. Steroid hormone receptors silence genes by a chromatin-targeted mechanism similar to those used for gene activation. Transcription 2017; 8:15-20; PMID:27700223; https://doi.org/10.1080/21541264.2016.1242456
  • Huisinga KL, Pugh BF. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell 2004; 13:573-885; PMID:14992726; https://doi.org/10.1016/S1097-2765(04)00087-5
  • Uprety B, Sen R, Bhaumik SR. Eaf1p is required for recruitment of NuA4 in targeting TFIID to the promoters of the ribosomal protein genes for transcriptional initiation in vivo. Mol Cell Biol 2015; 35:2947-2964; PMID:26100014; https://doi.org/10.1128/MCB.01524-14
  • Hassan AH, Prochasson P, Neely KE, Galasinski SC, Chandy M, Carrozza MJ, Workman JL. Function and selectivity of bromodomains in anchoring chromatin-modifying complexes to promoter nucleosomes. Cell 2002; 111:369-379; PMID:12419247; https://doi.org/10.1016/S0092-8674(02)01005-X
  • Costanzo M, VanderSluis B, Koch EN, Baryshnikova A, Pons C, Tan G, Wang W, Usaj M, Hanchard J, Lee SD et al. A global genetic interaction network maps a wiring diagram of cellular function. Science 2016; 353:aaf1420; https://doi.org/10.1126/science.aaf1420
  • Albert B, Knight B., Merwin J, Martin V, Ottoz D, Gloor Y, Bruzzone MJ, Rudner A, Shore D. A Molecular titration system coordinates ribosomal protein gene transcription with ribosomal RNA synthesis. Mol Cell 2016; 64:720-733; PMID:27818142; https://doi.org/10.1016/j.molcel.2016.10.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.