1,146
Views
8
CrossRef citations to date
0
Altmetric
Points-of-View

A long-range flexible billboard model of gene activation

, , &
Pages 261-267 | Received 02 Mar 2017, Accepted 05 Apr 2017, Published online: 10 Jul 2017

References

  • LeBowitz JH, Clerc RG, Brenowitz M, Sharp PA. The Oct-2 protein binds cooperatively to adjacent octamer sites. Genes Dev 1989; 3:1625-1638; PMID:2612908; https://doi.org/10.1101/gad.3.10.1625
  • Janson L, Pettersson U. Cooperative interactions between transcription factors Sp1 and OTF-1. Proc Natl Acad Sci USA 1990; 87:4732-4736; PMID:2191301; https://doi.org/10.1073/pnas.87.12.4732
  • Collado-Vides J. The search for a grammatical theory of gene regulation is formally justified by showing the inadequacy of context-free grammars. Comput Appl Biosci 1991; 7:321-326; PMID:1913213; https://doi.org/10.1093/bioinformatics/7.3.321
  • Collado-Vides J. Grammatical model of the regulation of gene expression. Proc Natl Acad Sci USA 1992; 89:9405-9409; PMID:1409648; https://doi.org/10.1073/pnas.89.20.9405
  • Weingarten-Gabbay S, Segal E. The grammar of transcriptional regulation. Hum Genet 2014; 133:701-711; PMID:24390306; https://doi.org/10.1007/s00439-013-1413-1
  • Kulkarni MM, Arnosti DN. Information display by transcriptional enhancers. Development 2003; 130:6569-6575; PMID:14660545; https://doi.org/10.1242/dev.00890
  • Rastegar S, Hess I, Dickmeis T, Nicod JC, Ertzer R, Hadzhiev Y, Thies WG, Scherer G, Strähle U. The words of the regulatory code are arranged in a variable manner in highly conserved enhancers. Dev Biol 2008; 318:366-377; PMID:18455719; https://doi.org/10.1016/j.ydbio.2008.03.034
  • Smith RP, Taher L, Patwardhan RP, Kim MJ, Inoue F, Shendure J, Ovcharenko I, Ahituv N. Massively parallel decoding of mammalian regulatory sequences supports a flexible organizational model. Nat Genet 2013; 45:1021-1028; PMID:23892608; https://doi.org/10.1038/ng.2713
  • Sherwood RI, Hashimoto T, O'Donnell CW, Lewis S, Barkal AA, van Hoff JP, Karun V, Jaakkola T, Gifford DK. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape. Nat Biotechnol 2014; 32:171-178; PMID:24441470; https://doi.org/10.1038/nbt.2798
  • Kioussis D, Vanin E, deLange T, Flavell RA, Grosveld FG. Beta-globin gene inactivation by DNA translocation in gamma beta-thalassaemia. Nature 1983; 306:662-666; PMID:6318113; https://doi.org/10.1038/306662a0
  • Grosveld F, van Assendelft GB, Greaves DR, Kollias G. Position-independent, high-level expression of the human beta-globin gene in transgenic mice. Cell 1987; 51:975-985; PMID:3690667; https://doi.org/10.1016/0092-8674(87)90584-8
  • Kollias G, Wrighton N, Hurst J, Grosveld F. Regulated expression of human A gamma-, beta-, and hybrid gamma beta-globin genes in transgenic mice: manipulation of the developmental expression patterns. Cell 1986; 46:89-94; PMID:3719696; https://doi.org/10.1016/0092-8674(86)90862-7
  • Magram J, Chada K, Costantini F. Developmental regulation of a cloned adult beta-globin gene in transgenic mice. Nature 1985; 315:338-340; PMID:3858676; https://doi.org/10.1038/315338a0
  • Townes TM, Lingrel JB, Chen HY, Brinster RL, Palmiter RD. Erythroid-specific expression of human beta-globin genes in transgenic mice. EMBO J 1985; 4:1715-1723; PMID:2992937
  • Fullwood MJ, Liu MH, Pan YF, Liu J, Xu H, Mohamed YB, Orlov YL, Velkov S, Ho A, Mei PH et al. An oestrogen-receptor-alpha-bound human chromatin interactome. Nature 2009; 462:58-64; PMID:19890323; https://doi.org/10.1038/nature08497
  • Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009; 326:289-293; PMID:19815776; https://doi.org/10.1126/science.1181369
  • Vockley CM, D'Ippolito AM, McDowell IC, Majoros WH, Safi A, Song L, Crawford GE, Reddy TE. Direct GR binding sites potentiate clusters of TF binding across the human genome. Cell 2016; 166:1269-1281.e19; PMID:27565349; https://doi.org/10.1016/j.cell.2016.07.049
  • Joseph R, Orlov YL, Huss M, Sun W, Kong SL, Ukil L, Pan YF, Li G, Lim M, Thomsen JS et al. Integrative model of genomic factors for determining binding site selection by estrogen receptor-alpha. Mol Syst Biol 2010; 6:456; PMID:21179027; https://doi.org/10.1038/msb.2010.109
  • Steger DJ, Grant GR, Schupp M, Tomaru T, Lefterova MI, Schug J, Manduchi E, Stoeckert CJ Jr, Lazar MA. Propagation of adipogenic signals through an epigenomic transition state. Genes Dev 2010; 24:1035-1044; PMID:20478996; https://doi.org/10.1101/gad.1907110
  • Mei S, Qin Q, Wu Q, Sun H, Zheng R, Zang C, Zhu M, Wu J, Shi X, Taing L et al. Cistrome Data Browser: a data portal for ChIP-Seq and chromatin accessibility data in human and mouse. Nucleic Acids Res 2017; 45:D658-D662; PMID:27789702; https://doi.org/10.1093/nar/gkw983
  • Grossman SR, Zhang X, Wang L, Engreitz J, Melnikov A, Rogov P, Tewhey R, Isakova A, Deplancke B, Bernstein BE et al. Systematic dissection of genomic features determining transcription factor binding and enhancer function. Proc Natl Acad Sci USA 2017; 114:E1291-E1300; PMID:28137873; https://doi.org/10.1073/pnas.1621150114
  • Verfaillie A, Svetlichnyy D, Imrichova H, Davie K, Fiers M, Kalender Atak Z, Hulselmans G, Christiaens V, Aerts S. Multiplex enhancer-reporter assays uncover unsophisticated TP53 enhancer logic. Genome Res 2016; 26:882-895; PMID:27197205; https://doi.org/10.1101/gr.204149.116
  • Kuznetsova T, Wang SY, Rao NA, Mandoli A, Martens JH, Rother N, Aartse A, Groh L, Janssen-Megens EM, Li G et al. Glucocorticoid receptor and nuclear factor kappa-b affect three-dimensional chromatin organization. Genome Biol 2015; 16:264; PMID:26619937; https://doi.org/10.1186/s13059-015-0832-9
  • Guertin MJ, Zhang X, Coonrod SA, Hager GL. Transient estrogen receptor binding and p300 redistribution support a squelching mechanism for estradiol-repressed genes. Mol Endocrinol 2014; 28:1522-1533; PMID:25051172; https://doi.org/10.1210/me.2014-1130
  • Hakim O, John S, Ling JQ, Biddie SC, Hoffman AR, Hager GL. Glucocorticoid receptor activation of the Ciz1-Lcn2 locus by long range interactions. J Biol Chem 2009; 284:6048-52; PMID:19124469; https://doi.org/10.1074/jbc.C800212200
  • Deng W, Rupon JW, Krivega I, Breda L, Motta I, Jahn KS, Reik A, Gregory PD, Rivella S, Dean A et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 2014; 158:849-860; PMID:25126789; https://doi.org/10.1016/j.cell.2014.05.050
  • Jin F, Li Y, Dixon JR, Selvaraj S, Ye Z, Lee AY, Yen CA, Schmitt AD, Espinoza CA, Ren B. A high-resolution map of the three-dimensional chromatin interactome in human cells. Nature 2013; 503:290-294; PMID:24141950; https://doi.org/10.1038/nature12644
  • Dixon JR, Gorkin DU, Ren B. Chromatin domains: the unit of chromosome organization. Mol Cell 2016; 62:668-680; PMID:27259200; https://doi.org/10.1016/j.molcel.2016.05.018
  • Rao SS, Huntley MH, Durand NC, Stamenova EK, Bochkov ID, Robinson JT, Sanborn AL, Machol I, Omer AD, Lander ES et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell 2014; 159:1665-1680; PMID:25497547; https://doi.org/10.1016/j.cell.2014.11.021
  • Cirillo LA, Lin FR, Cuesta I, Friedman D, Jarnik M, Zaret KS. Opening of compacted chromatin by early developmental transcription factors HNF3 (FoxA) and GATA-4. Mol Cell 2002; 9:279-289; PMID:11864602; https://doi.org/10.1016/S1097-2765(02)00459-8
  • John S, Sabo PJ, Thurman RE, Sung MH, Biddie SC, Johnson TA, Hager GL, Stamatoyannopoulos JA. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet 2011; 43:264-268; PMID:21258342; https://doi.org/10.1038/ng.759
  • Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA, Schiltz RL, Miranda TB, Sung MH, Trump S, Lightman SL et al. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol Cell 2011; 43:145-155; PMID:21726817; https://doi.org/10.1016/j.molcel.2011.06.016
  • Wang S, Su JH, Beliveau BJ, Bintu B, Moffitt JR, Wu CT, Zhuang X. Spatial organization of chromatin domains and compartments in single chromosomes. Science 2016; 353:598-602; PMID:27445307; https://doi.org/10.1126/science.aaf8084

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.