1,247
Views
4
CrossRef citations to date
0
Altmetric
Point-of-View

Transcription factors in eukaryotic cells can functionally regulate gene expression by acting in oligomeric assemblies formed from an intrinsically disordered protein phase transition enabled by molecular crowding

ORCID Icon
Pages 298-306 | Received 01 Mar 2018, Accepted 03 May 2018, Published online: 09 Aug 2018

References

  • Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins. J Mol Biol. 1961;3:318–356.
  • Gertz J, Siggia ED, Cohen BA. Analysis of combinatorial cis-regulation in synthetic and genomic promoters. Nature. 2009;457:215–218.
  • Berg OG, Winter RB, Von Hippel PH. Diffusion-driven mechanisms of protein translocation on nucleic acids. 1. Models and theory. Biochemistry. 1981;20:6929–6948.
  • Mahmutovic A, Berg OG, Elf J. What matters for lac repressor search in vivo–sliding, hopping, intersegment transfer, crowding on DNA or recognition? Nucleic Acids Res. 2015;43:3454–3464.
  • Halford SE, Marko JF. How do site-specific DNA-binding proteins find their targets? Nucleic Acids Res. 2004;32:3040–3052.
  • Gowers DM, Halford SE. Protein motion from non-specific to specific DNA by three-dimensional routes aided by supercoiling. EMBO J. 2003;22:1410–1418.
  • Whiteside ST, Goodbourn S. Signal transduction and nuclear targeting: regulation of transcription factor activity by subcellular localisation. J Cell Sci. 1993;104(Pt 4):949–955.
  • Harbison CT, Gordon DB, Lee TI, et al. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431:99–104.
  • Schmidt HG, Sewitz S, Andrews SS, et al. An integrated model of transcription factor diffusion shows the importance of intersegmental transfer and quaternary protein structure for target site finding. PLOS one. 2014;9:e108575.
  • Li G-W, Xie XS. Central dogma at the single-molecule level in living cells. Nature. 2011;475:308–315.
  • Gebhardt JCM, Suter DM, Roy R, et al. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat Methods. 2013;10:421–426.
  • Normanno D, Boudarène L, Dugast-Darzacq C, et al. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. Nat Commun. 2015;6:7357.
  • Mazza D, Abernathy A, Golob N, et al. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 2012;40:e119.
  • Liu Z, Legant WR, Chen B-C, et al. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. Elife. 2014;3:e04236.
  • Chen J, Zhang Z, Li L, et al. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell. 2014;156:1274–1285.
  • Zhang Z, English BP, Grimm JB, et al. Rapid dynamics of general transcription factor TFIIB binding during preinitiation complex assembly revealed by single-molecule analysis. Genes Dev. 2016;30:2106–2118.
  • Hammar P, Leroy P, Mahmutovic A, et al. The lac repressor displays facilitated diffusion in living cells. Science. 2012;336:1595–1598.
  • Nehlin JO, Carlberg M, Ronne H. Control of yeast GAL genes by MIG1 repressor: a transcriptional cascade in the glucose response. EMBO J. 1991;10:3373–3377.
  • Frolova E. Binding of the glucose-dependent Mig1p repressor to the GAL1 and GAL4 promoters in vivo: regulationby glucose and chromatin structure. Nucleic Acids Res. 1999;27:1350–1358.
  • De Vit MJ, Waddle JA, Johnston M. Regulated nuclear translocation of the Mig1 glucose repressor. Mol Biol Cell. 1997;8:1603–1618.
  • Bendrioua L, Smedh M, Almquist J, et al. Yeast AMP-activated protein kinase monitors glucose concentration changes and absolute glucose levels. J Biol Chem. 2014;289:12863–12875.
  • Shashkova S, Wollman AJM, Leake MC, et al. The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms. FEMS Microbiol Lett. 2017;364. DOI:10.1093/femsle/fnx133.
  • Wollman A. J. M. J., Shashkova S, Hedlund EG, et al. Transcription factor clusters regulate genes in eukaryotic cells. Elife. 2017;6:e27451.
  • Leake MC. The physics of life: one molecule at a time. Philos Trans R Soc Lond B Biol Sci. 2013;368:20120248.
  • Miller H, Zhou Z, Shepherd J, et al. Single-molecule techniques in biophysics: a review of the progress in methods and applications. Rep Prog Phys. 2018;81:24601.
  • Shashkova S, Leake MC. Single-molecule fluorescence microscopy review: shedding new light on old problems. Biosci Rep. 2017;37. DOI:10.1042/BSR20170031.
  • Huang B, Wu H, Bhaya D, et al. Counting Low-Copy Number Proteins in a Single Cell. Science. 2007;315:81–84.
  • Wu M, Singh AK. Single-cell protein analysis. Curr Opin Biotechnol. 2012;23:83–88.
  • Bryan SJ, Burroughs NJ, Shevela D, et al. Localisation and interactions of the Vipp1 protein in cyanobacteria. Mol Microbiol. 2014;94:1179–1195.
  • Nenninger A, Mastroianni G, Robson A, et al. Independent mobility of proteins and lipids in the plasma membrane of Escherichia coli. Mol Microbiol. 2014;92:1142–1153.
  • Lenn T, Leake MC. Single-molecule studies of the dynamics and interactions of bacterial OXPHOS complexes. Biochim Biophys Acta Bioenerg. 2016;1857:224–231.
  • Llorente-Garcia I, Lenn T, Erhardt H, et al. Single-molecule in vivo imaging of bacterial respiratory complexes indicates delocalized oxidative phosphorylation. Biochim Biophys Acta. 2014;1837:811–824.
  • Lenn YT, Leake MC, Mullineaux CW. Are Escherichia coli OXPHOS complexes concentrated in specialized zones within the plasma membrane? Biochem Soc Trans. 2008;36:1032–1036.
  • Lenn T, Leake MC, Mullineaux CW. Clustering and dynamics of cytochrome bd-I complexes in the Escherichia coli plasma membrane in vivo. Mol Microbiol. 2008;70:1397–1407.
  • Badrinarayanan A, Leake MC. Using fluorescence recovery after photobleaching (FRAP) to study dynamics of the structural maintenance of chromosome (SMC) complex in vivo. Methods Mol Biol. 2016;1431:37–46.
  • Chiu S-WS-W, Roberts MAJ, Leake MC, et al. Positioning of chemosensory proteins and ftsz through the rhodobacter sphaeroides cell cycle. Mol Microbiol. 2013;90:322–337.
  • Bisson-Filho AW, Hsu Y-P, Squyres GR, et al. Treadmilling by FtsZ filaments drives peptidoglycan synthesis and bacterial cell division. Science. 2017;355:739–743.
  • Lund VA, Wacnik K, Turner RD, et al. Molecular coordination of Staphylococcus aureus cell division. Elife. 2018;7:e32057.
  • Leake MC, Greene NP, Godun RM, et al. Variable stoichiometry of the TatA component of the twin-arginine protein transport system observed by in vivo single-molecule imaging. Proc Natl Acad Sci U S A. 2008;105:15376–15381.
  • Reid SWW, Leake MC, Chandler JH, et al. The maximum number of torque-generating units in the flagellar motor of Escherichia coli is at least 11. Proc Natl Acad Sci U S A. 2006;103:8066–8071.
  • Sowa Y, Rowe AD, Leake MC, et al. Direct observation of steps in rotation of the bacterial flagellar motor. Nature. 2005;437:916–919.
  • Pilizota T, Brown MT, Leake MC, et al. A molecular brake, not a clutch, stops the Rhodobacter sphaeroides flagellar motor. Proc Natl Acad Sci U S A. 2009;106:11582–11587.
  • Lo C-J, Leake MC, Pilizota T, et al. Nonequivalence of membrane voltage and ion-gradient as driving forces for the bacterial flagellar motor at low load. Biophys J. 2007;93:294–302.
  • Reyes-Lamothe R, Sherratt DJ, Leake MC. Stoichiometry and architecture of active DNA replication machinery in Escherichia coli. Science. 2010;328:498–501.
  • Badrinarayanan A, Reyes-Lamothe R, Uphoff S, et al. In vivo architecture and action of bacterial structural maintenance of chromosome proteins. Science. 2012;338:528–531.
  • Wollman AJM, Syeda AH, McGlynn P, et al. Single-molecule observation of DNA replication repair pathways in E. coli. Adv Exp Med Biol. 2016;915:5–16.
  • Leake MC. The Biophysics of Infection. Adv Exp Med Biol. 2016;915:1–3.
  • Miller H, Wollman AJM, Leake MC. Designing a single-molecule biophysics tool for characterising DNA damage for techniques that kill infectious pathogens through DNA damage effects. Adv Exp Med Biol. 2016;915:115–127.
  • Wollman AJM, Miller H, Foster S, et al. An automated image analysis framework for segmentation and division plane detection of single live Staphylococcus aureus cells which can operate at millisecond sampling time scales using bespoke Slimfield microscopy. Phys Biol. 2016;5:55002.
  • Lin Y, Sohn CH, Dalal CK, et al. Combinatorial gene regulation by modulation of relative pulse timing. Nature. 2015;527:54–58.
  • Plank M, Wadhams GH, Leake MC. Millisecond timescale slimfield imaging and automated quantification of single fluorescent protein molecules for use in probing complex biological processes. Integr Biol (Camb). 2009;1:602–612.
  • M. C. Leake, Chandler, JH, Wadhams, GH, et al. Stoichiometry and turnover in single, functioning membrane protein complexes. Nature. 2006;443:355–358.
  • Shashkova S, Wollman A, Hohmann S, et al. Characterising maturation of GFP and mCherry of genomically integrated fusions in saccharomyces cerevisiae. Bio Protoc. 2018;7:e2710.
  • Miller H, Cosgrove J, Wollman A, et al. High-speed single-molecule trackiung of CXCL13 in the B-Follicle. Front Immunol. 2018.
  • Tokunaga M, Imamoto N, Sakata-Sogawa K. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat Methods. 2008;5:159–161.
  • Chen B-C, Liu Y, Duzhko VV, et al. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science. 2014;346:1257998.
  • Abrahamsson S, Chen J, Hajj B, et al. Fast multicolor 3D imaging using aberration-corrected multifocus microscopy. Nat Methods. 2013;10:60–63.
  • B. Yang, Wang, Y, Feng, S, et al. High numerical aperture epi-illumination selective plane illumination microscopy. bioRxiv. 2018;273359. Available from: https://doi.org/10.1101/273359
  • Dean KM, Roudot P, Reis C, et al. Diagonally scanned light-sheet microscopy for fast volumetric imaging of adherent cells. Biophys J. 2016;110:1456–1465.
  • McKinney SA, Murphy CS, Hazelwood KL, et al. A bright and photostable photoconvertible fluorescent protein. Nat Methods. 2009;6:131–133.
  • Duan Z, Andronescu M, Schutz K, et al. A three-dimensional model of the yeast genome. Nature. 2010;465:363–367.
  • Miller H, Zhou Z, Wollman AJM, et al. Superresolution imaging of single DNA molecules using stochastic photoblinking of minor groove and intercalating dyes. Methods. 2015;88:81–88.
  • Wollman AJM, Leake MC. Millisecond single-molecule localization microscopy combined with convolution analysis and automated image segmentation to determine protein concentrations in complexly structured, functional cells, one cell at a time. Faraday Discuss. 2015;184:401–424.
  • Izeddin I, Récamier V, Bosanac L, et al. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. Elife. 2014;3:e02230.
  • Adam SA. The nuclear pore complex. Genome Biol. 2001;2:reviews0007.1- reviews0007.7.
  • Strambio-de-Castillia C, Niepel M, Rout MP. The nuclear pore complex: bridging nuclear transport and gene regulation. Nat Rev Mol Cell Biol. 2010;11:490–501.
  • Yang W, Gelles J, Musser SM. Imaging of single-molecule translocation through nuclear pore complexes. Proc Natl Acad Sci U S A. 2004;101:12887–12892.
  • Lowe AR, Siegel JJ, Kalab P, et al. Selectivity mechanism of the nuclear pore complex characterized by single cargo tracking. Nature. 2010;467:600–603.
  • Treitel MA, Carlson M. Repression by SSN6-TUP1 is directed by MIG1, a repressor/activator protein. Proc Natl Acad Sci U S A. 1995;92:3132–3136.
  • Phillip Y, Schreiber G. Formation of protein complexes in crowded environments–from in vitro to in vivo. FEBS Lett. 2013;587:1046–1052.
  • Sode K, Ochiai S, Kobayashi N, et al. Effect of reparation of repeat sequences in the human alpha-synuclein on fibrillation ability. Int J Biol Sci. 2007;3:1–7.
  • Avitabile C, D'Andrea LD, Romanelli A. Circular Dichroism studies on the interactions of antimicrobial peptides with bacterial cells. Sci Rep. 2014;4:337–360.
  • Cisse II, Izeddin I, Causse SZ, et al. Real-time dynamics of RNA polymerase II clustering in live human cells. Science. 2013;341:664–667.
  • Cho W-K, Jayanth N, English BP, et al. RNA polymerase II cluster dynamics predict mRNA output in living cells. Elife. 2016;5:e13617.
  • Qian J, Alföldi J, Pyntikova T, et al. B cell super-enhancers and regulatory clusters recruit AID tumorigenic activity. Cell. 2014;159:1524–1537.
  • Mir M, Reimer A, Haines JE, et al. Dense bicoid hubs accentuate binding along the morphogen gradient. Genes & Dev. 2017;31:1784–1794.
  • Liu J, Perumal NB, Oldfield CJ, et al. Intrinsic disorder in transcription factors. Biochemistry. 2006;45:6873–6888.
  • Uversky VN, Patel VB. Intrinsically disordered proteins and their (disordered) proteomes in neurodegenerative disorders. Front Aging Neurosci. 2015;7:18.
  • Leake MC, Wilson D, Gautel M, et al. The elasticity of single titin molecules using a two-bead optical tweezers assay. Biophys J. 2004;87:1112–1135.
  • Leake MC, Wilson D, Bullard B, et al. The elasticity of single kettin molecules using a two-bead laser-tweezers assay. FEBS Lett. 2003;535:55–60.