2,478
Views
4
CrossRef citations to date
0
Altmetric
Review

Emerging insights into the function and structure of the Integrator complex

Pages 251-265 | Received 21 Dec 2021, Accepted 24 Feb 2022, Published online: 20 Mar 2022

References

  • Baillat D, Hakimi M-A, Näär AM, et al. Integrator, a Multiprotein Mediator of Small Nuclear RNA Processing, Associates with the C-Terminal Repeat of RNA Polymerase II. Cell. 2005;123(2):265–276.
  • Lai F, Gardini A, Zhang A, et al. Integrator mediates the biogenesis of enhancer RNAs. Nature. 2015;525(7569):399–403.
  • Cazalla D, Xie M, Steitz JA. A Primate Herpesvirus Uses the Integrator Complex to Generate Viral MicroRNAs. Mol Cell. 2011;43(6):982–992.
  • Rubtsova MP, Vasilkova DP, Moshareva MA, et al. Integrator is a key component of human telomerase RNA biogenesis. Sci Rep. 2019;9(1). DOI:https://doi.org/10.1038/s41598-018-38297-6.
  • Xie M, Zhang W, Shu M-D, et al. The host Integrator complex acts in transcription-independent maturation of herpesvirus microRNA 3′ ends. Genes Dev. 2015;29(14):1552–1564.
  • Tatomer DC, Elrod ND, Liang D, et al. The Integrator complex cleaves nascent mRNAs to attenuate transcription. Genes Dev. 2019;33(21–22):1525–1538.
  • Elrod ND, Henriques T, Huang K-L, et al. The Integrator Complex Attenuates Promoter-Proximal Transcription at Protein-Coding Genes. Mol Cell. 2019;76(5):738–752.e7.
  • Lykke-Andersen S, Žumer K, Molska EŠ, et al. Integrator is a genome-wide attenuator of non-productive transcription. Mol Cell. 2021;81(3):514–529.e6.
  • Gardini A, Baillat D, Cesaroni M, et al. Integrator Regulates Transcriptional Initiation and Pause Release Following Activation. Mol Cell. 2014;56(1):128–139.
  • Yamamoto J, Hagiwara Y, Chiba K, et al. DSIF and NELF interact with Integrator to specify the correct post-transcriptional fate of snRNA genes. Nat Commun. 2014;5(1):4263.
  • Fianu I, Chen Y, Dienemann C, et al. Structural basis of Integrator-mediated transcription regulation. Science. 2021;374(6569):883–887.
  • Skaar JR, Ferris AL, Wu X, et al. The Integrator complex controls the termination of transcription at diverse classes of gene targets. Cell Res. 2015;25(3):288–305.
  • Stadelmayer B, Micas G, Gamot A, et al. Integrator complex regulates NELF-mediated RNA polymerase II pause/release and processivity at coding genes. Nat Commun. 2014;5(1):5531.
  • Zheng H, Jin Q, Qi Y, et al. Structural basis of INTAC-regulated transcription. bioRxiv. 2021.
  • Chen J, Ezzeddine N, Waltenspiel B, et al. An RNAi screen identifies additional members of the Drosophila Integrator complex and a requirement for cyclin C/Cdk8 in snRNA 3′-end formation. RNA. 2012;18(12):2148–2156.
  • Ren W, Chen H, Sun Q, et al. Structural basis of SOSS1 complex assembly and recognition of ssDNA. Cell Rep. 2014;6(6):982–991.
  • Wu Y, Albrecht TR, Baillat D, et al. Molecular basis for the interaction between Integrator subunits IntS9 and IntS11 and its functional importance. Proc Natl Acad Sci USA. 2017;114(17):4394–4399.
  • Pfleiderer MM, Galej WP. Structure of the catalytic core of the Integrator complex. Mol Cell. 2021;81(6):1246–1259.e8.
  • Sabath K, Stäubli ML, Marti S, et al. INTS10–INTS13–INTS14 form a functional module of Integrator that binds nucleic acids and the cleavage module. Nat Commun. 2020;11(1):3422.
  • Zheng H, Qi Y, Hu S, et al. Identification of Integrator-PP2A complex (INTAC), an RNA polymerase II phosphatase. Science. 2020;370(6520). DOI:https://doi.org/10.1126/science.abb5872.
  • Marzluff WF, Koreski KP. Birth and Death of Histone mRNAs. Trends Genet. 2017;33(10):745–759.
  • Kumar A, Clerici M, Muckenfuss LM, et al. Mechanistic insights into mRNA 3’-end processing. Curr Opin Struct Biol. 2019;59:143–150.
  • Sun Y, Hamilton K, Tong L. Recent molecular insights into canonical pre-mRNA 3’-end processing. Transcription. 2020;11(2):83–96.
  • Wilusz JE, Spector DL. An unexpected ending: noncanonical 3′ end processing mechanisms. RNA. 2010;16(2):259–266.
  • Hernandez N. Formation of the 3’ end of U1 snRNA is directed by a conserved sequence located downstream of the coding region. EMBO J. 1985;4(7):1827–1837.
  • Guiro J, Murphy S. Regulation of expression of human RNA polymerase II-transcribed snRNA genes. Open Biol. 2017;7(6):170073.
  • Cazalla D, Yario T, Steitz JA. Down-Regulation of a Host MicroRNA by a Herpesvirus saimiri Noncoding RNA. Science. 2010;328(5985):1563–1566.
  • O’Reilly D, Kuznetsova OV, Laitem C, et al. Human snRNA genes use polyadenylation factors to promote efficient transcription termination. Nucleic Acids Res. 2014;42(1):264–275.
  • Davidson L, Francis L, Eaton JD, et al. Integrator-Dependent and Allosteric/Intrinsic Mechanisms Ensure Efficient Termination of snRNA Transcription. Cell Rep. 2020;33(4):108319.
  • Nojima T, Tellier M, Foxwell J, et al. Deregulated Expression of Mammalian lncRNA through Loss of SPT6 Induces R-Loop Formation, Replication Stress, and Cellular Senescence. Mol Cell. 2018;72(6):970–984.e7.
  • Berkyurek AC, Furlan G, Lampersberger L, et al. The RNA polymerase II subunit RPB-9 recruits the integrator complex to terminate Caenorhabditis elegans piRNA transcription. EMBO J. 2021;40(5):e105565.
  • Beltran T, Pahita E, Ghosh S, et al. Integrator is recruited to promoter-proximally paused RNA Pol II to generate Caenorhabditis elegans piRNA precursors. EMBO J. 2021;40(5). DOI:https://doi.org/10.15252/embj.2020105564
  • Gómez-Orte E, Sáenz-Narciso B, Zheleva A, et al. Disruption of the Caenorhabditis elegans Integrator complex triggers a non-conventional transcriptional mechanism beyond snRNA genes. PLoS Genet. 2019;15(2):e1007981.
  • Schmidt D, Reuter H, Hüttner K, et al. The Integrator complex regulates differential snRNA processing and fate of adult stem cells in the highly regenerative planarian Schmidtea mediterranea. PLoS Genet. 2018;14(12):e1007828.
  • Corden JL. RNA polymerase II C-terminal domain: tethering transcription to transcript and template. Chem Rev. 2013;113(11):8423–8455.
  • Zaborowska J, Egloff S, Murphy S. The pol II CTD: new twists in the tail. Nat Struct Mol Biol. 2016;23:771–777.
  • Adelman K, Lis JT. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat Rev Genet. 2012;13(10):720–731.
  • Vos SM, Farnung L, Urlaub H, et al. Structure of paused transcription complex Pol II-DSIF-NELF. Nature. 2018;560(7720):601–606.
  • Zhou Q, Li T, Price DH. RNA Polymerase II Elongation Control. Annu Rev Biochem. 2012;81(1):119–143.
  • Egloff S, Szczepaniak SA, Dienstbier M, et al. The Integrator Complex Recognizes a New Double Mark on the RNA Polymerase II Carboxyl-terminal Domain. J Biol Chem. 2010;285(27):20564–20569.
  • Shah N, Maqbool MA, Yahia Y, et al. Tyrosine-1 of RNA Polymerase II CTD Controls Global Termination of Gene Transcription in Mammals. Mol Cell. 2018;69(1):48–61.e6.
  • West S, Gromak N, Proudfoot NJ. Human 5′ → 3′ exonuclease Xrn2 promotes transcription termination at co-transcriptional cleavage sites. Nature. 2004;432(7016):522–525.
  • Huang K-L, Jee D, Stein CB, et al. Integrator Recruits Protein Phosphatase 2A to Prevent Pause Release and Facilitate Transcription Termination. Mol Cell. 2020;80(2):345–358.e9.
  • Cho H, Kim T-K, Mancebo H, et al. A protein phosphatase functions to recycle RNA polymerase II. Genes Dev. 1999;13(12):1540–1552.
  • Hsin J-P, Manley JL. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev. 2012;26(19):2119–2137.
  • Erickson B, Sheridan RM, Cortazar M, et al. Dynamic turnover of paused Pol II complexes at human promoters. Genes Dev. 2018;32(17–18):1215–1225.
  • Krebs AR, Imanci D, Hoerner L, et al. Genome-wide Single-Molecule Footprinting Reveals High RNA Polymerase II Turnover at Paused Promoters. Mol Cell. 2017;67(3):411–422.e4.
  • Steurer B, Janssens RC, Geverts B, et al. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA Polymerase II. Proc Natl Acad Sci U S A. 2018;115(19):E4368–E4376.
  • Kamieniarz-Gdula K, Proudfoot NJ. Transcriptional Control by Premature Termination: a Forgotten Mechanism. Trends Genet. 2019;35(8):553–564.
  • Merino E, Yanofsky C. Transcription attenuation: a highly conserved regulatory strategy used by bacteria. Trends Genet. 2005;21(5):260–264.
  • Evans R, Weber J, Ziff E, et al. Premature termination during adenovirus transcription. Nature. 1979;278(5702):367–370.
  • Porrua O, Libri D. Transcription termination and the control of the transcriptome: why, where and how to stop. Nat Rev Mol Cell Biol. 2015;16(3):190–202.
  • Naville M, Gautheret D. Premature terminator analysis sheds light on a hidden world of bacterial transcriptional attenuation. Genome Biol. 2010;11(9):R97.
  • Barbieri E, Trizzino M, Welsh SA, et al. Targeted enhancer activation by a subunit of the Integrator complex. Mol Cell. 2018;71(1):103–116.e7.
  • Vervoort SJ, Welsh SA, Devlin JR, et al. The PP2A-Integrator-CDK9 axis fine-tunes transcription and can be targeted therapeutically in cancer. Cell. 2021;184(12):3143–3162.
  • Ezzeddine N, Chen J, Waltenspiel B, et al. A Subset of Drosophila Integrator Proteins Is Essential for Efficient U7 snRNA and Spliceosomal snRNA 3′-End Formation. Mol Cell Biol. 2011;31(2):328–341.
  • Beckedorff F, Blumenthal E, daSilva LF, et al. The Human Integrator Complex Facilitates Transcriptional Elongation by Endonucleolytic Cleavage of Nascent Transcripts. Cell Rep. 2020;32(3):107917.
  • Rosa-Mercado NA, Zimmer JT, Apostolidi M, et al. Hyperosmotic stress alters the RNA polymerase II interactome and induces readthrough transcriptional despite widespread transcriptional repression. Mol Cell. 2021;81(3):502–513.e4.
  • Dasilva LF, Blumenthal E, Beckedorff F, et al. Integrator enforces the fidelity of transcriptional termination at protein-coding genes. Sci Adv. 2021;7(45):eabe3393.
  • Wlodarchak N, Guo F, Satyshur KA, et al. Structure of the Ca2+-dependent PP2A heterotrimer and insights into Cdc6 dephosphorylation. Cell Res. 2013;23(7):931–946.
  • Virshup DM, Shenolikar S. From Promiscuity to Precision: protein Phosphatases Get a Makeover. Mol Cell. 2009;33(5):537–545.
  • Albrecht TR, Shevtsov SP, Wu Y, et al. Integrator subunit 4 is a ‘Symplekin-like’ scaffold that associates with INTS9/11 to form the Integrator cleavage module. Nucleic Acids Res. 2018;46(8):4241–4255.
  • Skaar JR, Richard DJ, Saraf A, et al. INTS3 controls the hSSB1-mediated DNA damage response. J Cell Biol. 2009;187(1):25–32.
  • Li Y, Bolderson E, Kumar R, et al. HSSB1 and hSSB2 form similar multiprotein complexes that participate in DNA damage response. J Biol Chem. 2009;284(35):23525–23531.
  • Huang J, Gong Z, Ghosal G, et al. SOSS complexes participate in the maintenance of genomic stability. Mol Cell. 2009;35(3):384–393.
  • Li J, Ma X, Banerjee S, et al. Structural basis for multifunctional roles of human Ints3 C-terminal domain. J Biol Chem. 2020;296(100112).
  • Jia Y, Cheng Z, Bharath SR, et al. Crystal structure of the INTS3/INTS6 complex reveals the functional importance of INTS3 dimerization in DSB repair. Cell Discov. 2021;7(1):66.
  • Lin M-H, Jensen MK, Elrod ND, et al. Inositol hexakisphosphate is a critical regulator of Integrator assembly and function. biorxiv. 2021. http://biorxiv.org/lookup/doi/10.1101/2021.09.14.460315
  • Dominski Z, Yang X, Purdy M, et al. A CPSF-73 Homologue Is Required for Cell Cycle Progression but Not Cell Growth and Interacts with a Protein Having Features of CPSF-100. Mol Cell Biol. 2005;25(4):1489–1500.
  • Clerici M, Faini M, Aebersold R, et al. Structural insights into the assembly and polyA signal recognition mechanism of the human CPSF complex. eLife. 2017;6:e33111.
  • Zhang F, Ma T, Yu X. A core hSSB1–INTS complex participates in the DNA damage response. J Cell Sci. 2013;126(Pt 21):4850–4855.
  • Vos SM, Farnung L, Linden A, et al. Structure of complete Pol II-DSIF-PAF-SPT6 transcription complex reveals RTF1 allosteric activation. Nat Struct Mol Biol. 2020;27(7):668–677.
  • Richard DJ, Bolderson E, Cubeddu L, et al. Single-stranded DNA-binding protein hSSB1 is critical for genomic stability. Nature. 2008;453(7195):677–681.
  • Boeing S, Williamson L, Encheva V, et al. Multiomic Analysis of the UV-Induced DNA Damage Response. Cell Rep. 2016;15(7):1597–1610.
  • Vidhyasagar V, He Y, Guo M, et al. Biochemical characterization of INTS3 and C9ORF80, two subunits of hNABP1/2 heterotrimeric complex in nucleic acid binding. Biochem J. 2018;475(1):45–60.
  • Marzluff WF, Duronio RJ. Histone mRNA expression: multiple levels of cell cycle regulation and important developmental consequences. Curr Opin Cell Biol. 2002;14(6):692–699.
  • Sun Y, Zhang Y, Aik WS, et al. Structure of an active human histone pre-mRNA 3′-end processing machinery. Science. 2020;367(6478):700–703.
  • Zhang Y, Sun Y, Shi Y, et al. Structural Insights into the Human Pre-mRNA 3′-End Processing Machinery. Mol Cell. 2020;77(4):800–809.e6.
  • Hill CH, Boreikaitė V, Kumar A, et al. Activation of the Endonuclease that Defines mRNA 3′ Ends Requires Incorporation into an 8-Subunit Core Cleavage and Polyadenylation Factor Complex. Mol Cell. 2019;73(6):1217–1231.e11.
  • Rodríguez-Molina JB, O’Reilly FJ, Sheekey E, et al. Mpe1 senses the polyadenylation signal in pre-mRNA to control cleavage and polyadenylation. biorxiv. 2021. http://biorxiv.org/lookup/doi/10.1101/2021.09.02.458805
  • Boreikaite V, Elliott TS, Chin JW, et al. RBBP6 activates the pre-mRNA 3′ end processing machinery in humans. Genes Dev. 2022;36(3–4):210–224.
  • Schmidt M, Kluge S, Sandmeir F, et al. Reconstitution of ATP-dependent 3’-cleavage of mammalian pre-mRNA reveals a central role of RBBP6. Genes Dev. 2022;36(3–4):195–209.
  • Xiang K, Nagaike T, Xiang S, et al. Crystal structure of the human symplekin–Ssu72–CTD phosphopeptide complex. Nature. 2010;467(7316):729–733.
  • Mendoza-Figueroa MS, Tatomer DC, Wilusz JE. The Integrator Complex in Transcription and Development. Trends Biochem Sci. 2020;45(11):923–934.
  • Zhang Y, Koe CT, Tan YS, et al. The Integrator Complex Prevents Dedifferentiation of Intermediate Neural Progenitors back into Neural Stem Cells. Cell Rep. 2019;27(4):987–996.e3.
  • Kapp LD, Abrams EW, Marlow FL, et al. The Integrator Complex Subunit 6 (Ints6) Confines the Dorsal Organizer in Vertebrate Embryogenesis. PLoS Genet. 2013;9(10):e1003822.
  • Otani Y, Nakatsu Y, Sakoda H, et al. Integrator complex plays an essential role in adipose differentiation. Biochem Biophys Res Commun. 2013;434:197–202.
  • Zhang P, Sui P, Chen S, et al. INTS11 regulates hematopoiesis by promoting PRC2 function. Sci Adv. 2021;7(36):eabh1684.
  • Bult CJ, Blake JA, Smith CL, et al. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 2019;47(D1):D801–D806.
  • Oegema R, Baillat D, Schot R, et al. Human mutations in integrator complex subunits link transcriptome integrity to brain development. PLoS Genet. 2017;13(5):e1006809.
  • Krall M, Htun S, Schnur RE, et al. Biallelic sequence variants in INTS1 in patients with developmental delays, cataracts, and craniofacial anomalies. Eur J Hum Genet. 2019;27(4):582–593.
  • Zhang X, Wang Y, Yang F, et al. Biallelic INTS1 Mutations Cause a Rare Neurodevelopmental Disorder in Two Chinese Siblings. J Mol Neurosci. 2020;70(1):1–8.
  • Federico A, Rienzo M, Abbondanza C, et al. Pan-Cancer Mutational and Transcriptional Analysis of the Integrator Complex. Int J Mol Sci. 2017;18(5):936.
  • Hanahan D, Weinberg RA. Hallmarks of Cancer: the Next Generation. Cell. 2011;144(5):646–674.
  • Rhodes DR, Chinnaiyan AM. Integrative analysis of the cancer transcriptome. Nat Genet. 2005;37(S6):S31–S37.
  • Wieland I, Arden KC, Michels D, et al. Isolation of DICE1: a gene frequently affected by LOH and downregulated in lung carcinomas. Oncogene. 1999;18(32):4530–4537.
  • Filleur S, Hirsch J, Wille A, et al. INTS6/DICE1 inhibits growth of human androgen-independent prostate cancer cells by altering the cell cycle profile and Wnt signaling. Cancer Cell Int. 2009;9(1):28.
  • Li W-J, Hu N, Su H, et al. Allelic loss on chromosome 13q14 and mutation in deleted in cancer 1 gene in esophageal squamous cell carcinoma. Oncogene. 2003;22(2):314–318.
  • Chen J, Waltenspiel B, Warren WD, et al. Functional Analysis of the Integrator Subunit 12 Identifies a Microdomain That Mediates Activation of the Drosophila Integrator Complex. J Biol Chem. 2013;288(7):4867–4877.