1,252
Views
2
CrossRef citations to date
0
Altmetric
Review

Function and dynamics of the Mediator complex: novel insights and new frontiers

ORCID Icon
Pages 39-52 | Received 22 Apr 2022, Accepted 27 May 2022, Published online: 16 Jun 2022

References

  • Kim YJ, Bjorklund S, Li Y, et al. A multiprotein mediator of transcriptional activation and its interaction with the C-terminal repeat domain of RNA polymerase II. Cell. 1994;77(4):599–608.
  • Koleske AJ, Young RA. An RNA polymerase II holoenzyme responsive to activators. Nature. 1994;368(6470):466–469.
  • Kornberg RD. Mediator and the mechanism of transcriptional activation. Trends Biochem Sci. 2005;30(5):235–239.
  • Thompson CM, Koleske AJ, Chao DM, et al. A multisubunit complex associated with the RNA polymerase II CTD and TATA-binding protein in yeast. Cell. 1993;73(7):1361–1375.
  • Holstege FC, Jennings EG, Wyrick JJ, et al. Dissecting the regulatory circuitry of a eukaryotic genome. Cell. 1998;95(5):717–728.
  • Paul E, Zhu ZI, Landsman D, et al. Genome-wide association of mediator and RNA polymerase II in wild-type and mediator mutant yeast. Mol Cell Biol. 2015;35(1):331–342.
  • Petrenko N, Jin Y, Wong KH, et al. Evidence that mediator is essential for Pol II transcription, but is not a required component of the preinitiation complex in vivo. Elife. 2017;6:e28447.
  • Plaschka C, Lariviere L, Wenzeck L, et al. Architecture of the RNA polymerase II-mediator core initiation complex. Nature. 2015;518(7539):376–380.
  • Thompson CM, Young RA. General requirement for RNA polymerase II holoenzymes in vivo. Proc Natl Acad Sci U S A. 1995;92(10):4587–4590.
  • Tourigny JP, Saleh MM, Schumacher K, et al. Mediator is essential for small nuclear and nucleolar RNA transcription in yeast. Mol Cell Biol. 2018;38:e00296–18.
  • Warfield L, Ramachandran S, Baptista T, et al. Transcription of nearly all yeast RNA polymerase II-transcribed genes is dependent on transcription factor TFIID. Mol Cell. 2017;68(1):118–129 e115.
  • Bourbon HM. Comparative genomics supports a deep evolutionary origin for the large, four-module transcriptional mediator complex. Nucleic Acids Res. 2008;36(12):3993–4008.
  • Farnung L, Vos SM. Assembly of RNA polymerase II transcription initiation complexes. Curr Opin Struct Biol. 2022;73:102335.
  • Lambert É, Puwakdandawa K, Tao YF, et al. From structure to molecular condensates: emerging mechanisms for mediator function. FEBS J. 2021. DOI:10.1111/febs.16250
  • Schier AC, Taatjes DJ. Everything at once: cryo-EM yields remarkable insights into human RNA polymerase II transcription. Nat Struct Mol Biol. 2021;28(7):540–543.
  • Tsai KL, Tomomori-Sato C, Sato S, et al. Subunit architecture and functional modular rearrangements of the transcriptional mediator complex. Cell. 2014;157(6):1430–1444.
  • Wang X, Sun Q, Ding Z, et al. Redefining the modular organization of the core mediator complex. Cell Res. 2014;24(7):796–808.
  • Jeronimo C, Langelier MF, Bataille AR, et al. Tail and kinase modules differently regulate core mediator recruitment and function in vivo. Mol Cell. 2016;64(3):455–466.
  • Plaschka C, Nozawa K, Cramer P. Mediator architecture and RNA polymerase II interaction. J Mol Biol. 2016;428(12):2569–2574.
  • Cevher MA, Shi Y, Li D, et al. Reconstitution of active human core mediator complex reveals a critical role of the MED14 subunit. Nat Struct Mol Biol. 2014;21(12):1028–1034.
  • Fan X, Chou DM, Struhl K. Activator-specific recruitment of mediator in vivo. Nat Struct Mol Biol. 2006;13(2):117–120.
  • Andrau JC, van de Pasch L, Lijnzaad P, et al. Genome-wide location of the coactivator mediator: Binding without activation and transient Cdk8 interaction on DNA. Mol Cell. 2006;22:179–192.
  • Eyboulet F, Cibot C, Eychenne T, et al. Mediator links transcription and DNA repair by facilitating Rad2/XPG recruitment. Genes Dev. 2013;27(23):2549–2562.
  • Grunberg S, Henikoff S, Hahn S, et al. Mediator binding to UAS s is broadly uncoupled from transcription and cooperative with TFIID recruitment to promoters. EMBO J. 2016;35(22):2435–2446.
  • Jeronimo C, Robert F. Kin28 regulates the transient association of mediator with core promoters. Nat Struct Mol Biol. 2014;21(5):449–455.
  • Wong KH, Jin Y, Struhl K. TFIIH phosphorylation of the Pol II CTD stimulates mediator dissociation from the preinitiation complex and promoter escape. Mol Cell. 2014;54(4):601–612.
  • Park D, Lee Y, Bhupindersingh G, et al. Widespread misinterpretable ChIP-seq Bias in yeast. PLoS One. 2013;8(12):e83506.
  • Teytelman L, Thurtle DM, Rine J, et al. Highly expressed loci are vulnerable to misleading ChIP localization of multiple unrelated proteins. Proc Natl Acad Sci U S A. 2013;110(46):18602–18607.
  • Ansari SA, Morse RH. Mechanisms of mediator complex action in transcriptional activation. Cell Mol Life Sci. 2013;70(15):2743–2756.
  • Petrenko N, Jin Y, Wong KH, et al. Mediator undergoes a compositional change during transcriptional activation. Mol Cell. 2016;64(3):443–454.
  • Knoll ER, Zhu ZI, Sarkar D, et al. Role of the pre-initiation complex in mediator recruitment and dynamics. Elife. 2018;7:e39633.
  • Lee YC, Park JM, Min S, et al. An activator binding module of yeast RNA polymerase II holoenzyme. Mol Cell Biol. 1999;19(4):2967–2976.
  • Myers LC, Gustafsson CM, Hayashibara KC, et al. Mediator protein mutations that selectively abolish activated transcription. Proc Natl Acad Sci U S A. 1999;96(1):67–72.
  • Ansari SA, Ganapathi M, Benschop JJ, et al. Distinct role of mediator tail module in regulation of SAGA-dependent, TATA-containing genes in yeast. EMBO J. 2012;31(1):44–57.
  • Kim S, Gross DS. Mediator recruitment to heat shock genes requires dual Hsf1 activation domains and mediator tail subunits Med15 and Med16. J Biol Chem. 2013;288(17):12197–12213.
  • Natarajan K, Jackson BM, Zhou H, et al. Transcriptional activation by Gcn4p involves independent interactions with the SWI/SNF complex and the SRB/mediator. Mol Cell. 1999;4(4):657–664.
  • Park JM, Kim HS, Han SJ, et al. In vivo requirement of activator-specific binding targets of mediator. Mol Cell Biol. 2000;20(23):8709–8719.
  • Thakur JK, Arthanari H, Yang F, et al. Mediator subunit Gal11p/MED15 is required for fatty acid-dependent gene activation by yeast transcription factor Oaf1p. J Biol Chem. 2009;284(7):4422–4428.
  • Zhang F, Sumibcay L, Hinnebusch AG, et al. A triad of subunits from the Gal11/tail domain of Srb mediator is an in vivo target of transcriptional activator Gcn4p. Mol Cell Biol. 2004;24(15):6871–6886.
  • Sanborn AL, Yeh BT, Feigerle JT, et al. Simple biochemical features underlie transcriptional activation domain diversity and dynamic, fuzzy binding to mediator. Elife. 2021;10:e68068.
  • Tuttle LM, Pacheco D, Warfield L, et al. Gcn4-mediator specificity is mediated by a large and dynamic fuzzy protein-protein complex. Cell Rep. 2018;22(12):3251–3264.
  • Tuttle LM, Pacheco D, Warfield L, et al. Mediator subunit Med15 dictates the conserved “fuzzy” binding mechanism of yeast transcription activators Gal4 and Gcn4. Nat Commun. 2021;12(1):2220.
  • Saleh MM, Jeronimo C, Robert F, et al. Connection of core and tail mediator modules restrains transcription from TFIID-dependent promoters. Plos Genet. 2021;17(8):e1009529.
  • Yarrington RM, Yu Y, Yan C, et al. A role for mediator core in limiting coactivator recruitment in Saccharomyces cerevisiae. Genetics. 2020;215(2):407–420.
  • Nguyen VQ, Ranjan A, Liu S, et al. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol Cell. 2021;81(17):3560–3575.
  • Huisinga KL, Pugh BF. A genome-wide housekeeping role for TFIID and a highly regulated stress-related role for SAGA in Saccharomyces cerevisiae. Mol Cell. 2004;13(4):573–585.
  • Donczew R, Warfield L, Pacheco D, et al. Two roles for the yeast transcription coactivator SAGA and a set of genes redundantly regulated by TFIID and SAGA. Elife. 2020;9:e50109.
  • Rhee HS, Pugh BF. Genome-wide structure and organization of eukaryotic pre-initiation complexes. Nature. 2012;483(7389):295–301.
  • Ansari SA, Morse RH. Selective role of mediator tail module in the transcription of highly regulated genes in yeast. Transcription. 2012;3(3):110–114.
  • Rossi MJ, Kuntala PK, Lai WKM, et al. A high-resolution protein architecture of the budding yeast genome. Nature. 2021;592(7853):309–314.
  • Harbison CT, Gordon DB, Lee TI, et al. Transcriptional regulatory code of a eukaryotic genome. Nature. 2004;431(7004):99–104.
  • Curcio MJ, Lutz S, Lesage P. The Ty1 LTR-retrotransposon of budding yeast, Saccharomyces cerevisiae. Microbiol Spectr. 2015;3(2):1–35.
  • Saha A, Mitchell JA, Nishida Y, et al. A trans -dominant form of Gag restricts Ty1 retrotransposition and mediates copy number control. J Virol. 2015;89(7):3922–3938.
  • Garfinkel DJ, Tucker JM, Saha A, et al. A self-encoded capsid derivative restricts Ty1 retrotransposition in Saccharomyces. Curr Genet. 2016;62(2):321–329.
  • Salinero AC, Knoll ER, Zhu ZI, et al. The mediator co-activator complex regulates Ty1 retromobility by controlling the balance between Ty1i and Ty1 promoters. Plos Genet. 2018;14(2):e1007232.
  • Happel AM, Swanson MS, Winston F. The SNF2, SNF5 and SNF6 genes are required for Ty transcription in Saccharomyces cerevisiae. Genetics. 1991;128(1):69–77.
  • Winston F, Durbin KJ, Fink GR. The SPT3 gene is required for normal transcription of Ty elements in S. cerevisiae. Cell. 1984;39(3):675–682.
  • Elmlund H, Baraznenok V, Lindahl M, et al. The cyclin-dependent kinase 8 module sterically blocks mediator interactions with RNA polymerase II. Proc Natl Acad Sci U S A. 2006;103(43):15788–15793.
  • Osman S, Mohammad E, Lidschreiber M, et al. The Cdk8 kinase module regulates interaction of the mediator complex with RNA polymerase II. J Biol Chem. 2021;296:100734.
  • Tsai KL, Sato S, Tomomori-Sato C, et al. A conserved mediator-CDK8 kinase module association regulates mediator-RNA polymerase II interaction. Nat Struct Mol Biol. 2013;20(5):611–619.
  • van de Peppel J, Kettelarij N, van Bakel H, et al. Mediator expression profiling epistasis reveals a signal transduction pathway with antagonistic submodules and highly specific downstream targets. Mol Cell. 2005;19(4):511–522.
  • Chi Y, Huddleston MJ, Zhang X, et al. Negative regulation of Gcn4 and Msn2 transcription factors by Srb10 cyclin-dependent kinase. Genes Dev. 2001;15(9):1078–1092.
  • Gonzalez D, Hamidi N, Del Sol R, et al. Suppression of mediator is regulated by Cdk8-dependent Grr1 turnover of the Med3 coactivator. Proc Natl Acad Sci U S A. 2014;111(7):2500–2505.
  • Nelson C, Goto S, Lund K, et al. Srb10/Cdk8 regulates yeast filamentous growth by phosphorylating the transcription factor Ste12. Nature. 2003;421(6919):187–190.
  • Raithatha S, Su TC, Lourenco P, et al. Cdk8 regulates stability of the transcription factor Phd1 to control pseudohyphal differentiation of Saccharomyces cerevisiae. Mol Cell Biol. 2012;32(3):664–674.
  • Hengartner CJ, Myer VE, Liao SM, et al. Temporal regulation of RNA polymerase II by Srb10 and Kin28 cyclin-dependent kinases. Mol Cell. 1998;2(1):43–53.
  • Liao SM, Zhang J, Jeffery DA, et al. A kinase-cyclin pair in the RNA polymerase II holoenzyme. Nature. 1995;374(6518):193–196.
  • Nonet ML, Young RA. Intragenic and extragenic suppressors of mutations in the heptapeptide repeat domain of Saccharomyces cerevisiae RNA polymerase II. Genetics. 1989;123(4):715–724.
  • Robinson PJ, Trnka MJ, Bushnell DA, et al. Structure of a complete mediator-RNA Polymerase II pre-initiation complex. Cell. 2016;166(1411–1422):e1416.
  • Stieg DC, Cooper KF, Strich R. The extent of cyclin C promoter occupancy directs changes in stress-dependent transcription. J Biol Chem. 2020;295(48):16280–16291.
  • Sarkar D, Zhu ZI, Knoll ER, et al. Mediator dynamics during heat shock in budding yeast. Genome Res. 2022;32(1):111–123.
  • Vinayachandran V, Reja R, Rossi MJ, et al. Widespread and precise reprogramming of yeast protein-genome interactions in response to heat shock. Genome Res. 2018;28:357–366.
  • Hall DB, Wade JT, Struhl K. An HMG protein, Hmo1, associates with promoters of many ribosomal protein genes and throughout the rRNA gene locus in Saccharomyces cerevisiae. Mol Cell Biol. 2006;26(9):3672–3679.
  • Kasahara K, Ohtsuki K, Ki S, et al. Assembly of regulatory factors on RRNA and ribosomal protein genes in Saccharomyces cerevisiae. Mol Cell Biol. 2007;27(19):6686–6705.
  • Knight B, Kubik S, Ghosh B, et al. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 2014;28(15):1695–1709.
  • Reja R, Vinayachandran V, Ghosh S, et al. Molecular mechanisms of ribosomal protein gene coregulation. Genes Dev. 2015;29(18):1942–1954.
  • Miller C, Matic I, Maier KC, et al. Mediator phosphorylation prevents stress response transcription during non-stress conditions. J Biol Chem. 2012;287:44017–44026.
  • Kagey MH, Newman JJ, Bilodeau S, et al. Mediator and cohesin connect gene expression and chromatin architecture. Nature. 2010;467(7314):430–435.
  • Sun F, Sun T, Kronenberg M, et al. The Pol II preinitiation complex (PIC) influences mediator binding but not promoter-enhancer looping. Genes Dev. 2021;35(15–16):1175–1189.
  • Petrenko N, Struhl K. Comparison of transcriptional initiation by RNA polymerase II across eukaryotic species. Elife. 2021;10:e67964.
  • El Khattabi L, Zhao H, Kalchschmidt J, et al. A pliable mediator acts as a functional rather than an architectural bridge between promoters and enhancers. Cell. 2019;178(1145–1158):e1120.
  • Jaeger MG, Schwalb B, Mackowiak SD, et al. Selective mediator dependence of cell-type-specifying transcription. Nat Genet. 2020;52(7):719–727.
  • Karczewski KJ, Francioli LC, Tiao G, et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature. 2020;581(7809):434–443.
  • Farnung L, Ochmann M, Cramer P. Nucleosome-CHD4 chromatin remodeler structure maps human disease mutations. Elife. 2020;9:e56178.
  • Robinson JT, Thorvaldsdottir H, Winckler W, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29(1):24–26.
  • Su CH, Shih CH, Chang TH, et al. Genome-wide analysis of the cis-regulatory modules of divergent gene pairs in yeast. Genomics. 2010;96(6):352–361.
  • Goecks J, Nekrutenko A, Taylor J. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 2010;11(8):R86.
  • Knoll ER, Zhu ZI, Sarkar D, et al. Kin28 depletion increases association of TFIID subunits Taf1 and Taf4 with promoters in Saccharomyces cerevisiae. Nucleic Acids Res. 2020;48(8):4244–4255.
  • Viswanatha R, Li Z, Hu Y, et al. Pooled genome-wide CRISPR screening for basal and context-specific fitness gene essentiality in drosophila cells. Elife. 2018;7:e36333.
  • Thul PJ, Akesson L, Wiking M, et al. A subcellular map of the human proteome. Science. 2017;356(6340):eaal3321.
  • K.j A, N K, J.n.y C, et al. Nucleolar RNA polymerase II drives ribosome biogenesis. Nature. 2020;585:298–302.