1,886
Views
12
CrossRef citations to date
0
Altmetric
Articles

An in silico guided identification of nAChR agonists from Withania somnifera

, , &
Pages 201-213 | Received 18 Mar 2016, Accepted 27 Jun 2016, Published online: 22 Jul 2016

References

  • Asthana R, Raina MK. 1989. Pharmacology of Withania somnifera (L.) Dunal-a review. Indian Drugs. 26:199–205.
  • Atta-ur-Rahman, Abbas S, Dur-e-Shahwar, Jamal SA, Choudhary MI. 1993. New withanolides from Withania sp. J Nat Prod. 56:1000–1006. doi: 10.1021/np50097a003
  • Atta-ur-rahman, Jamal SA, Choudhary MI, Asif E. 1991. Two withanolides from Withania somnifera. Phytochemistry. 30:3824–3825. doi: 10.1016/0031-9422(91)80125-K
  • Bartus RT, Dean RL, Beer B, Lippa AS. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science. 217:408–417. doi: 10.1126/science.7046051
  • Bhattacharya SK, Kumar A, Ghosal S. 1995. Effects of glycowithanolides from Withania somnifera on an animal model of Alzheimer’s disease and perturbed central cholinergic markers of cognition in rats. Phytother Res. 9:110–113. doi: 10.1002/ptr.2650090206
  • Bhattacharya SK, Satyan KS, Ghosal S. 1997. Antioxidant activity of glycowithanolides from Withania somnifera. Indian J Exp Biol. 35:236–239.
  • Brams M, Pandya A, Kuzmin D, Van Elk R, Krijnen L, Yakel JL, Tsetlin V, Smit AB, Ulens C. 2011. A structural and mutagenic blueprint for molecular recognition of strychnine and d-tubocurarine by different cys-loop receptors. Plos ONE Biology. 9:01034.
  • Brejc K, van Dijk WJ, Klaassen RV, Schuurmans M, van Der Oost J, Smit AB, Sixma TK. 2001. Crystal structure of an ACh-binding protein reveals the ligand-binding domain of nicotinic receptors. Nature. 411:269–276. doi: 10.1038/35077011
  • Celie PHN, van Rossum-Fikkert SE, van Dijk WJ, Brejc K, Smit AB, Sixma TK. 2004. Nicotine and carbamylcholine binding to nicotinic acetylcholine receptors as studied in AChBP crystal structures. Neuron. 41:907–914. doi: 10.1016/S0896-6273(04)00115-1
  • Choudary MI, Abbas S, Jamal AS, Atta-ur-Rahman E. 1996. Withania somnifera – a source of exotic withanolides. Heterocycles. 42:555–563. doi: 10.3987/COM-94-6935
  • Coyle JT, Price DL, Delong MR. 1983. Alzheimer’s disease: a disorder of cortical cholinergic innervation. Science. 219:1184–1190. doi: 10.1126/science.6338589
  • D’Andrea MR, Nagele RG. 2006. Targeting the alpha 7 nicotinic acetylcholine receptor to reduce amyloid accumulations in Alzheimer’s disease pyramidal neurons. Curr Pharm Des. 12:677–684. doi: 10.2174/138161206775474224
  • Dani JA, Bertrand D. 2007. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu Rev Pharmacol. 47:699–729. doi: 10.1146/annurev.pharmtox.47.120505.105214
  • Davies P, Feisullin S. 1981. Postmortem stability of -bungarotoxin binding sites in mouse and human brain. Brain Res. 216:449–454. doi: 10.1016/0006-8993(81)90148-7
  • Davies P, Maloney AJ. 1976. Selective loss of central cholinergic neurons in Alzheimer’s disease. Lancet. 2:1403–1404. doi: 10.1016/S0140-6736(76)91936-X
  • Dhuley JN. 2001. Retracted: nootropic-like effect of ashwagandha (Withania somnifera L.) in mice. Phytother Res. 15:524–528. doi: 10.1002/ptr.874
  • Elsakka M, Grigorescu E, Stanescu U. 1990. New data referring to chemistry of Withania somnifera species. Revista medico-chirurgicala a Societatii de Medici si Naturalisti din Iasi. 94:385–387.
  • Fisher A. 2008. Cholinergic treatments with emphasis on M1 muscarinic agonists as potential disease-modifying agents for Alzheimer’s disease. Neurotherapeutics. 5:433–442. doi: 10.1016/j.nurt.2008.05.002
  • Gotti C, Clementi F. 2004. Neuronal nicotinic receptors: from structure to pathology. Prog Neurobiol. 6:363–396. doi: 10.1016/j.pneurobio.2004.09.006
  • Grimster NP, Stump B, Fotsing JR, Weide T, Talley TT, Yamauchi JG, Nemecz Kim C, Ho KY, Sharpless KB, Taylor P, Fokin VV. 2012. Generation of candidate ligands for nicotinic acetylcholine receptors via in situ click chemistry with a soluble acetylcholine binding protein template. J Am Chem Soc. 134:6732–6740. doi: 10.1021/ja3001858
  • Gupta GL, Rana AC. 2007. Withania somnifera (Ashwagandha): a review. Pharmacognosy Review. 1:129–136.
  • Gupta SK, Dua A, Vohra BP. 2003. Withania somnifera (Ashwagandha) attenuates antioxidant defense in aged spinal cord and inhibits copper induced lipid peroxidation and protein oxidative modifications. Drug Metabol Drug Interact. 19:211–222. doi: 10.1515/DMDI.2003.19.3.211
  • Hansen SB, Sulzenbacher G, Huxford T, Marchot P, Taylor P, Bourne Y. 2005. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. The EMBO Journal. 24:3635–3646. doi: 10.1038/sj.emboj.7600828
  • Hansen SB, Talley TT, Radic Z, Taylor P. 2004. Structural and ligand recognition characteristics of an acetylcholine-binding protein from Aplysia californica. J Biol Chem. 279:24197–24202. doi: 10.1074/jbc.M402452200
  • Heinrich M, Teoh HL. 2004. Galanthamine from snowdrop – the development of a modern drug against Alzheimer’s disease from local Caucasian knowledge. J Ethnopharmacol. 92:147–162. doi: 10.1016/j.jep.2004.02.012
  • Howes MJ, Perry E. 2011. The role of phytochemicals in the treatment and prevention of dementia. Drug Aging. 28:439–468. doi: 10.2165/11591310-000000000-00000
  • Ihara M, Okajima T, Yamashita A, Oda T, Hirata K, Nishiwaki H, Morimoto T, Akamatsu M, Ashikawa Y, Kuroda S, et al. 2008. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invertebr Neurosci. 8:71–81. doi: 10.1007/s10158-008-0069-3
  • Itier V, Bertrand D. 2001. Neuronal nicotinic receptors: from protein structure to function. FEBS Letters. 504:118–125. doi: 10.1016/S0014-5793(01)02702-8
  • Jayaprakasam B, Padmanabhan K, Nair MG. 2010. Withanamides in Withania somnifera fruit protect PC-12 cells from beta-amyloid responsible for Alzheimer’s disease. Phytother Res. 24:859–863.
  • Jensen AA, Frolund B, Liljefors T, Krogsgaard-Larsen P. 2005. Neuronal nicotinic acetylcholine receptors: structural revelations, target identifications, and therapeutic inspirations. J Med Chem. 48:4707–4745. doi: 10.1021/jm040219e
  • Kapoor LD. 2001. Handbook of Ayurvedic medicinal plants. London: CRC Press; p. 337–338.
  • Kar S, Slowikowski SP, Westaway D, Mount HT. 2004. Interactions between beta-amyloid and central cholinergic neurons: implications for Alzheimer’s disease. J. Psychiatry Neurosci. 29:427–441.
  • Kataria H, Wadhwa R, Kaul SC, Kaur G. 2012. Water extract from the leaves of Withania somnifera protect RA differentiated C6 and IMR-32 cells against Glutamate-induced excitotoxicity. PLoS ONE. 7:e37080. 10.1371/journal.pone.0037080. doi: 10.1371/journal.pone.0037080
  • Kem WR. 2000. The brain nicotinic receptor may be an important therapeutic target for the treatment of Alzheimer’s disease: studies with DMXBA (GTS-21). Behavioural Brain Research. 113:169–181. doi: 10.1016/S0166-4328(00)00211-4
  • Krall WJ, Sramek JJ, Cutler NR. 1999. Cholinesterase inhibitors: a therapeutic strategy for Alzheimer disease. Ann Pharmacother. 33:441–450. doi: 10.1345/aph.18211
  • Kuboyama T, Tohda C, Komatsu K. 2005. Neuritic regeneration and synaptic reconstruction induced by withanolide A. Br J Pharmacol. 144:961–971. doi: 10.1038/sj.bjp.0706122
  • Kumar S, Harris RJ, Seal CJ, Okello EJ. 2012. An aqueous extract of Withania somnifera root inhibits amyloid β fibril formation in vitro. Phytother Res. 26:113–117. doi: 10.1002/ptr.3512
  • Kumar V. 2006. Potential medicinal plants for CNS disorders: an overview. Phytother Res. 20:1023–1035. doi: 10.1002/ptr.1970
  • Li SX, Huang S, Bren N, Noridomi K, Dellisanti CD, Sine SM, Chen L. 2011. Ligand-binding domain of an alpha 7-nicotinic receptor chimera and its complex with agonist. Nature Neurosci. 14:1253–1259. doi: 10.1038/nn.2908
  • Lindstrom JM. 2003. Nicotinic acetylcholine receptors of muscles and nerves: comparison of their structures, functional roles, and vulnerability to pathology. Ann N Y Acad Sci. 998:41–52. doi: 10.1196/annals.1254.007
  • Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. 2001. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 46:3–26. doi: 10.1016/S0169-409X(00)00129-0
  • Mahnir V, Lin B, Prokai-Tatrai K, Kem WR. 1998. Pharmacokinetics and urinary excretion of DMXBA (GTS-21), a compound enhancing cognition. Biopharm Drug Disp. 19:147–151. doi: 10.1002/(SICI)1099-081X(199804)19:3<147::AID-BDD77>3.0.CO;2-9
  • Martin LF, Kem WR, Freedman R. 2004. Alpha-7 nicotinic receptor agonists: potential new candidates for the treatment of schizophrenia. Psychopharmacology. 174:54–64. doi: 10.1007/s00213-003-1750-1
  • McKay BE, Placzek AN, Dani JA. 2007. Regulation of synaptic transmission and plasticity by neuronal nicotinic acetylcholine receptors. Biochem Pharmacol. 74:1120–1133. doi: 10.1016/j.bcp.2007.07.001
  • Meyer EM, King MA, Meyers C. 1998. Neuroprotective effects of 2,4-dimethoxybenzylidene anabaseine (DMXB) and tetrahydroaminoacridine (THA) in neocortices of nucleus basalis lesioned rats. Brain Res. 768:49–56. doi: 10.1016/S0006-8993(97)00536-2
  • Miroslav P. 2012. Alpha7 nicotinic acetylcholine receptor is a target in pharmacology and toxicology. Int J Mol Sci. 13:2219–2238. doi: 10.3390/ijms13022219
  • Pajouhesh H, Lenz GR. 2005. Medicinal chemical properties of successful central nervous system drugs. NeuroRx. 2:541–553. doi: 10.1602/neurorx.2.4.541
  • Paterson D, Nordberg A. 2000. Neuronal nicotinic receptors in the human brain. Prog Neurobiol. 61:75–111. doi: 10.1016/S0301-0082(99)00045-3
  • Rastogi RP, Mehrotra BN. 1998. Compendium of Indian Medicinal Plants. New Delhi: Central Drug Research Institute.
  • Ringman JM, Frautschy SA, Cole GM, Masterman DL, Cummings JL. 2005. A potential role of the curry spice curcumin in Alzheimer’s disease. Curr Alzheimer Res. 2:131–136. doi: 10.2174/1567205053585882
  • Rosini M, Andrisano V, Bartolini M, Bolognesi ML, Hrelia P, Minarini A, Tarozzi A, Melchiorre C. 2005. Rational approach to discover multipotent anti-Alzheimer drugs. J. Med Chem. 48:360–363. doi: 10.1021/jm049112h
  • Russo A, Izzo AA, Cardile V, Borrelli F, Vanella A. 2001. Indian medicinal plants as antiradicals and DNA cleavage protectors. Phytomedicine. 8:125–132. doi: 10.1078/0944-7113-00021
  • Ryan EH, Gerlind S, Jianxin S, Todd TT, Sandrine C, William RK, Palmer T, Pascale M, Yves B. 2009. Structural determinants for interaction of partial agonists with acetylcholine binding protein and neuronal nicotinic acetylcholine receptor. EMBO Journal. 28:3040–3051. doi: 10.1038/emboj.2009.227
  • Sala F, Nistri A, Criado M. 2008. Nicotinic acetylcholine receptors of adrenal chromaffin cells. Acta Physiologica. 192:203–212. doi: 10.1111/j.1748-1716.2007.01804.x
  • Schliebs R, Liebmann A, Bhattacharya SK, Kumar A, Ghosal S, Bigl V. 1997. Systemic administration of defined extracts from Withania somnifera (Indian Ginseng) and Shilajit differentially affects cholinergic but not glutamatergic and GABAergic markers in rat brain. Neurochem Int. 30:181–190. doi: 10.1016/S0197-0186(96)00025-3
  • Scott BH, Gerlind S, Tom H, Pascale M, Palmer T, Yves B. 2005. Structures of Aplysia AChBP complexes with nicotinic agonists and antagonists reveal distinctive binding interfaces and conformations. The EMBO Journal. 24:3635–3646. doi: 10.1038/sj.emboj.7600828
  • Scott BH, Palmer T. 2007. Galanthamine and non-competitive inhibitor binding to ACh-binding protein: evidence for a binding site on non -subunit interfaces of heteromeric neuronal nicotinic receptors. J Mol Biol. 369:895–901. doi: 10.1016/j.jmb.2007.03.067
  • Selkoe D. 2001. Alzheimer’s disease: genes, proteins, and therapy. Physiol Rev. 81:741–766.
  • Shah ZA, Nada SE, Dore S. 2011. Heme oxygenase 1, beneficial role in permanent ischemic stroke and in Gingko biloba (EGb 761) neuroprotection. Neuroscience. 180:248–255. doi: 10.1016/j.neuroscience.2011.02.031
  • Singh S, Kumar S. 1999. Withania somnifera: the Indian ginseng Ashwagandha (Report). Lucknow, India: Central Institute of Medicinal and Aromatic Plants, 131–201.
  • Small DH, Fodero LR. 2002. Cholinergic regulation of synaptic plasticity as a therapeutic target in Alzheimer’s disease. J Alzheimers Dis. 4:349–355.
  • Smit AB, Syed NI, Schaap D, van Minnen J, Klumperman J, Kits KS, Lodder H, van der Schors RC, van Elk R, Sorgedrager B, et al. 2001. A glia-derived acetylcholine-binding protein that modulates synaptic transmission. Nature. 411:261–268. doi: 10.1038/35077000
  • Sugaya K, Giacobini E, Chiappinelli VA. 1990. Nicotinic acetylcholine receptor subtypes in human frontal cortex; changes in Alzheimer’s disease. J Neurosci Res. 27:349–359. doi: 10.1002/jnr.490270314
  • Todd TT, Michal H, Ryan EH, Zoran R, Motohiro T, John EC, Palmer T. 2008. Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore. Proc Natl Acad Sci USA. 105:7606–7611. doi: 10.1073/pnas.0802197105
  • Tohda C, Kuboyama T, Komatsu K. 2005. Search for natural products related to regeneration of the neuronal network. Neurosignals. 14:34–45. doi: 10.1159/000085384
  • Ulens C, Hogg RC, Celie PH, Bertrand D, Tsetlin V, Smit AB, Sixma TK. 2006. Structural determinants of selective alpha-conotoxin binding to a nicotinic acetylcholine receptor homolog AChBP. Proc Natl Acad Sci USA. 103:3615–3620. doi: 10.1073/pnas.0507889103
  • Wevers A, Schröder H. 1999. Nicotinic acetylcholine receptors in Alzheimer’s disease. J Alzheimers Dis. 1:207–219.
  • Wu PF, Zhang Z, Wang F, Chen JG. 2010. Natural compounds from traditional medicinal herbs in the treatment of cerebral ischemia/reperfusion injury. Acta Pharmacol Sin. 31:1523–1531. doi: 10.1038/aps.2010.186
  • Yves B, Zoran R, Rómulo A, Todd TT, Evelyne B, Denis S, Palmer T, Jordi M, Pascale M. 2010. Structural determinants in phycotoxins and AChBP conferring high affinity binding and nicotinic AChR antagonism. Proc Natl Acad Sci USA. 107:6076–6081. doi: 10.1073/pnas.0912372107
  • Zarei MM, Radcliffe KA, Chen D, Patrick JW, Dani JA. 1999. Distributions of nicotinic acetylcholine receptor alpha7 and beta2 subunits on cultured hippocampal neurons. Neuroscience. 88:755–764. doi: 10.1016/S0306-4522(98)00246-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.