2,206
Views
13
CrossRef citations to date
0
Altmetric
Articles

Charge transfer in DNA and its diverse modelling approaches

, &
Pages 214-225 | Received 22 Mar 2016, Accepted 27 Jun 2016, Published online: 05 Aug 2016

References

  • Aerschot AV, Meldgaard M, Schepers G, Volders F, Rozenski J, Busson R, Herdewijn P. 2001. Improved hybridisation potential of oligonucleotides comprising O-methylated anhydrohexitol nucleoside congeners. Nucleic Acids Res. 29:4187–4194. doi: 10.1093/nar/29.20.4187
  • Barnett RN. 2001. Charge migration in DNA: ion-gated transport. Science. 294:567–571. doi: 10.1126/science.1062864
  • Bauschlicher CW, Lawson JW. 2007. Current-voltage curves for molecular junctions: effect of substitutients. Phys Rev B. 75:115406–115411. doi: 10.1103/PhysRevB.75.115406
  • Benenson Y, Adar R, Paz-Elizur T, Livneh Z, Shapiro E. 2003. DNA molecule provides a computing machine with both data and fuel. Proc Natl Acad Sci USA. 100:2191–2196. doi: 10.1073/pnas.0535624100
  • Berlin YA, Burin AL, Ratner MA. 2000. On the long range charge transfer in DNA. J Phys Chem A. 104:443–445. doi: 10.1021/jp9933323
  • Berlin YA, Burin AL, Ratner MA. 2001. Charge hopping in DNA. J Am Chem Soc. 123:260–268. doi: 10.1021/ja001496n
  • Bidzinska J, Cimino-Reale G, Zaffaroni N, Folini M. 2013. G-Quadruplex structures in the human genome as novel therapeutic targets. Molecules. 18:12368–12395. doi: 10.3390/molecules181012368
  • Bjork MT, Ohlsson BJ, Thelander C, Persson AI, Deppert K, Wallenberg LR, Samuelson L. 2002. Nanowire resonant tunneling diodes. Appl Phys Lett. 81:4458–4460. doi: 10.1063/1.1527995
  • Boon EA, Livingston AL, Chmiel N, David S, and Barton J. 2003. DNA mediated charge transport for DNA repair. Proc Natl Acad Sci USA. 100:12543–12547. doi: 10.1073/pnas.2035257100
  • Boon EM, Barton JK. 2002. Charge transport in DNA. Curr Opin Struct Biol. 12:320–329. doi: 10.1016/S0959-440X(02)00327-5
  • Boon EM, Barton JK, Pradeepkumar PI, Isaksson J, Petit C, Chattopadhyaya JB. 2002. An electrochemical probe of DNA stacking in an antisense oligonucleotide containing a C3′-endo-locked sugar. Angew Chem Int Ed. 41:3402–3405. doi: 10.1002/1521-3773(20020916)41:18<3402::AID-ANIE3402>3.0.CO;2-6
  • Carroll RL, Gorman CB. 2002. The genesis of molecular electronics. Angew Chem Int Ed Engl. 41:4378–4400. doi: 10.1002/1521-3773(20021202)41:23<4378::AID-ANIE4378>3.0.CO;2-A
  • Choi J, Park J, Tanaka A, Park MJ, Jang YJ, Fujitsuka M, Kim SK, Majima T. 2013. Hole trapping of G-Quartets in a G-Quadruplex. Angew Chem Int Ed. 52:1134–1138. doi: 10.1002/anie.201208149
  • Clever GH, Shionoya M. 2010. Metal–base pairing in DNA. Coord Chem Rev. 254:2391–2402. doi: 10.1016/j.ccr.2010.04.014
  • Conwell EM, Rakhmanova SV. 2000. Polarons in DNA. Proc Natl Acad Sci USA. 97:4556–4560. doi: 10.1073/pnas.050074497
  • Dekker C, Ratner MA. 2001. Electronic properties of DNA. Phys World. 14:29–33. doi: 10.1088/2058-7058/14/8/33
  • Delaney S, Barton JK. 2003. Long-range DNA charge transport. J Org Chem. 68:6475–6483. doi: 10.1021/jo030095y
  • Dieter-Wurm I, Sabat M, Lippert B. 1992. Model for a platinated DNA triplex: Watson-Crick and metal-modified Hoogsteen pairing. J Am Chem Soc. 114:357–359. doi: 10.1021/ja00027a054
  • Di Felice R. 2015. 122 Optimizing charge transfer through G-quadruplex. J Biomol Struct Dyn. 33:77. doi: 10.1080/07391102.2015.1032755
  • Drummond TG, Hill MG, Barton JK. 2003. Electrochemical DNA sensors. Nature Biotechnol. 21:1192–1199. doi: 10.1038/nbt873
  • Fasman GD. 1975. Handbook of biochemistry and molecular biology—nucleic acids. 3rd ed. Boca Raton, FL: CRC Press.
  • Fink HW, Schönenberger C. 1999. Electrical conduction through DNA molecules. Nature. 398:407–410. doi: 10.1038/18855
  • Giese B. 2000. Long-distance charge transport in DNA:  the hopping mechanism. Acc Chem Res. 33:631–636. doi: 10.1021/ar990040b
  • Giese B. 2002. Long-distance electron transfer through DNA. Annu Rev Biochem. 71:51–70. doi: 10.1146/annurev.biochem.71.083101.134037
  • Giese B, Amaudrut J, Köhler AK, Spormann M, Wessely S. 2001. Direct observation of the hole transfer through DNA by hopping between adenine bases and by tunneling. Nature. 412:318–320. doi: 10.1038/35085542
  • Giese B, Spichty M. 2000. Long distance charge transport through DNA: quantification and extension of the hopping model. Chem Phys Chem. 1:195–198.
  • Grinstaff MW. 1999. How do charges travel through DNA?—An update on a current debate. Angew Chem Int Ed. 38:3629–3635. doi: 10.1002/(SICI)1521-3773(19991216)38:24<3629::AID-ANIE3629>3.0.CO;2-4
  • Gust D, Moore TA, Moore AL. 1993. Molecular mimicry of photosynthetic energy and electron transfer. Acc Chem Res. 26:198–205. doi: 10.1021/ar00028a010
  • Hall DB, Holmlin RE, Barton JK. 1996. Oxidative DNA damage through long-range electron transfer. Nature. 382:731–735. doi: 10.1038/382731a0
  • Hu J, Zhang Y, Gao H, Li M, Hartmann U. 2002. Artificial DNA patterns by mechanical nanomanipulation. Nano Lett. 2:55–57. doi: 10.1021/nl0156336
  • Ingold GL, Nazarov YuV. 1992. Charge tunneling rates in ultrasmall junctions in single charge tunneling. New York, NY: Plenum; p. 21–107.
  • Jortner J, Bixon M, Langenbacher T, Michel-Beyerle ME. 1998. Charge transfer and transport in DNA. Chemistry. 95:12759–12765.
  • Joseph J, Schuster GB. 2007. Long-distance radical cation hopping in DNA: the effect of Thymine−Hg(II)−Thymine base pairs. Org Lett. 9:1843–1846. doi: 10.1021/ol070135a
  • Kawai K, Takada T, Tojo S, Ichinose N, Majima T. 2001. Observation of hole transfer through DNA by monitoring the transient absorption of pyrene radical cation. J Am Chem Soc. 123:12688–12689. doi: 10.1021/ja0158152
  • Kawano S, Maruyama Y. 2005. Mathematical model for polaronic effects of charge transport in DNA. JSME Int J Ser B. 48:456–463. doi: 10.1299/jsmeb.48.456
  • Klotsa D, Römer RA, Turner MS. 2005. Electronic transport in DNA. Biophys J. 89:2187–2198. doi: 10.1529/biophysj.105.064014
  • Kratochvílova I, Golan M, Vala M, Špérová M, Weiter M, Páv O, Šebera J, Rosenberg I, Sychrovský V, Tanaka Y, Bickelhaupt FM. 2014. Theoretical and experimental study of charge transfer through DNA: impact of mercury mediated T-Hg-T base pair. J Phys Chem B. 118:5374–5381. doi: 10.1021/jp501986a
  • Kratochvılova I, Todorciuc T, Kral K, Nemec H, Buncek M, Sebera J, Zalis S, Vokacova Z, Sychrovsky V, Bednarova L, et al. 2010. Charge transport in DNA oligonucleotides with various base-pairing patterns. J Phys Chem B. 114:5196–5205. doi: 10.1021/jp100264v
  • Kumarasamy VM, Sun D. 2013. Current and future views in G-Quadruplex secondary structure as an anti-cancer target. Sabin J Phys Chem Biophys. 3:5.
  • Kurnikov IV, Tong GSM, Madrid M, Beratan DN. 2002. Hole size in oxidized double helical DNA: competition between quantum delocalization and solvation localization energies. J Phys Chem B. 106:7–10. doi: 10.1021/jp0132329
  • LaBean TH, Yan H, Kopatsch J, Liu FR, Winfree E, Reif JH, Seeman NC. 2000. Construction, analysis, ligation and self-assembly of DNA triple crossover complexes. J Am Chem Soc. 122:1848–1860. doi: 10.1021/ja993393e
  • Lewis FD, Liu X, Liu J, Miller SE, Hayes RT, Wasielewski MR. 2000. Direct measurement of hole transport dynamics in DNA. Nature. 406:51–53. doi: 10.1038/35017524
  • Lewis FD, Liu X, Miller SE, Hayes RT, Wasielewski MR. 2002. Dynamics of electron injection in DNA hairpins. J Am Chem Soc. 124:11280. doi: 10.1021/ja026751d
  • Lewis JP, Cheatham TE, Starikov EB, Wang H, Sankey OF. 2003. Dynamically amorphous character of electronic states in poly(dA)-poly(dT) DNA. J Phys Chem B. 107:2581–2587. doi: 10.1021/jp026772u
  • Liu H, Gao J, Lynch SR, Saito YD, Maynard L, Kool ET. 2003. A four-base paired genetic helix with expanded size. Science. 302:868–871. doi: 10.1126/science.1088334
  • Macía E, Triozon F, Roche S. 2005. Contact-dependent effects and tunneling currents in DNA molecules. Phys Rev B. 71:113106. doi: 10.1103/PhysRevB.71.113106
  • Mujica V, Roitberg AE, Ratner M. 2000. Molecular wire conductance: electrostatic potential spatial profile. J Phys Chem. 112:6834–6839. doi: 10.1063/1.481258
  • Niemeyer CM. 2001. Nanoparticles, proteins, and nucleic acids: biotechnology meets materials science. Angew Chem Int Ed. 40:4128–4158. doi: 10.1002/1521-3773(20011119)40:22<4128::AID-ANIE4128>3.0.CO;2-S
  • Niemeyer CM. 2002. The developments of semisynthetic DNA-protein conjugates. Trends Biotechnol. 20:395–401. doi: 10.1016/S0167-7799(02)02022-X
  • Nunez ME, Hall DB, Barton JK. 1999. Long-range oxidative damage to DNA: effects of distance and sequence. Chem Bio. 6:85–97. doi: 10.1016/S1074-5521(99)80005-2
  • Olofsson J, Larsson S. 2001. Electron hole transport in DNA. J Phys Chem B. 105:10398–10406. doi: 10.1021/jp011052t
  • Ortmann F, Hannewald K, Bechsted F. 2009. Charge transport in guanine-based materials. J Phys Chem B. 113:7367–7371. doi: 10.1021/jp901029t
  • Osakada Y, Kawai K, Fujitsuka M, Majima T. 2006. Charge transfer through DNA nanoscaled assembly programmable with DNA building blocks. PNAS. 103:18072–18076. doi: 10.1073/pnas.0607148103
  • Peyrard M. 2004. Nonlinear dynamics and statistical physics of DNA. Nonlinearity. 17:R1–R40. doi: 10.1088/0951-7715/17/2/R01
  • Porath D, Cuniberti G, Felice RD. 2004. Charge transport in DNA based devices. Curr Chem. 237:183–228. doi: 10.1007/b94477
  • Rakitin A, Aich P, Papadopoulos C, Kobzar Yu, Vedeneev AS, Lee JS, Xu JM. 2001. Metallic conduction through engineered DNA: DNA nanoelectronic building blocks. Phys Rev Lett. 86:3670–3673. doi: 10.1103/PhysRevLett.86.3670
  • Rawtani D, Agrawal YK. 2012. Study the interaction of DNA with Halloysite nanotube-gold nanoparticle based composite. J BioNanoSci. 6:95–98. doi: 10.1166/jbns.2012.1080
  • Rawtani D, Agrawal YK. 2013. A Study of the bBehavior of HNT with DNA Intercalator Acridine Orange. BioNanoSci. 3:52–57. doi: 10.1007/s12668-012-0066-1
  • Rawtani D, Agrawal YK. 2014. Interaction of Methotrexate with DNA Analyzed by using gold nanoparticles as a probe. Instrum Sci Technol. 42:308–319. doi: 10.1080/10739149.2013.869757
  • Roche S, Bicout D, Macia E, Kats E. 2003. Long-range correlation in DNA: scaling properties and charge transfer efficiency. Phys Rev Lett. 91:228101–228104. doi: 10.1103/PhysRevLett.91.228101
  • Rothemund PWK. 2006a. Folding DNA to create nanoscale shapes and patterns. Nature. 440:297–302. doi: 10.1038/nature04586
  • Rothemund PWK. 2006b. Scaffolded DNA origami: from generalized multi-crossovers to polygonal networks. In: Nanotechnology: science and computation. Natural computing series. Berlin: Springer; p. 3–21. http://link.springer.com/chapter/10.1007%2F3-540-30296-4_1http://link.springer.com/chapter/10.1007%2F3-540-30296-4_1
  • Schlag EW, Sheu SY, Yang DY, Selzle HL, Lin SH. 2000a. Theory of charge transport in polypeptides. J Phys Chem B. 104:7790–7794. doi: 10.1021/jp000606+
  • Schlag EW, Yang DY, Sheu SY, Selzle HL, Lin SH, Rentzepis PM. 2000b. Dynamical principles in biological processes: a model of charge migration in proteins and DNA. PNAS. 97:9849–9854. doi: 10.1073/pnas.140196597
  • Schleif R. 1988. DNA binding by proteins. Science. 241:1182–1187. doi: 10.1126/science.2842864
  • Schuster GB. 2004. Long-range charge transfer in DNA. Berlin, Heidelberg: Springer.
  • Schwögler A, Carell T. 2000. Toward catalytically active oligonucleotides:  synthesis of a Flavin Nucleotide and its incorporation into DNA. Org Lett. 2:1415–1418. doi: 10.1021/ol005739s
  • Seeman NC. 1998. Nucleic acid nanostructures and topology. Angew Chemie Int Ed. 37:3220–3238. doi: 10.1002/(SICI)1521-3773(19981217)37:23<3220::AID-ANIE3220>3.0.CO;2-C
  • Seeman NC. 2003. Biochemistry and structural DNA nanotechnology: an evolving symbiotic relationship. Biochemistry. 42:7259–7269. doi: 10.1021/bi030079v
  • Sessler JL, Jayawickramarajah J. 2005. Functionalized base-pairs: versatile scaffolds for self-assembly. Chem Commun. 21:1939–1949. doi: 10.1039/b418526a
  • Storhoff JJ, Mirkin CA. 1999. Programmed materials synthesis with DNA. Chem Rev. 99:1849–1862. doi: 10.1021/cr970071p
  • Takada T, Kawai K, Cai XC, Sugimoto A, Fujitsuka M, Majima T. 2004. Charge separation in DNA via consecutive adenine hopping. J Am Chem Soc. 126:1125–1129. doi: 10.1021/ja035730w
  • Takezawa Y, Shionoya M. 2012. Metal-mediated DNA base pairing: alternatives to hydrogen-bonded Watson–Crick base pairs. Acc Chem Res. 45:2066–2076. doi: 10.1021/ar200313h
  • Travers AA. 1989. DNA conformation and protein binding. Annu Rev Biochem. 58:427–452. doi: 10.1146/annurev.bi.58.070189.002235
  • Treadway CR, Hill MG, Barton JK. 2002. Charge transport through a molecular stack: Double helical DNA. Chem Phys. 281:409–428. doi: 10.1016/S0301-0104(02)00447-0
  • Troisi A, Orlandi G. 2001. The hole transfer in DNA: calculation of electron coupling between close bases. Chem Phys Lett. 344:509–518. doi: 10.1016/S0009-2614(01)00792-8
  • Tucker WO, Shum KT, Tanner JA. 2012. G-quadruplex DNA Aptamers and their ligands: structure, function and application. Curr Pharm Des. 18:2014–2026. doi: 10.2174/138161212799958477
  • Vázquez de Parga AL, Hernán OS, Miranda R, Levy Yeyati A, Mingo N, Martín-Rodero A, Flores F. 1998. Electron resonances in sharp tips and their role in tunneling spectroscopy. Phys Rev Lett. 80:357–360. doi: 10.1103/PhysRevLett.80.357
  • Wang H, Lewis JP, Sankey OF. 2004. Band-gap tunneling states in DNA. Phys Rev Lett. 93:016401. doi: 10.1103/PhysRevLett.93.016401
  • Wang X, Liang S. 2015. Topological effects of charge transfer in telomere G-quadruplex mechanism on telomerase activation and inhibition. Int J Mod Phys B. 9:54.
  • Wengel J. 2004. Nucleic acid nanotechnology–towards Angstrom-scale engineering. Org Biomol Chem. 2:277–280. doi: 10.1039/B313986G
  • Woiczikowski PB, Kubar T, Gutiérrez R, Cuniberti G, Elstner M. 2010. Standard stability vs conformational sampling in biomolecular systems: why is the charge transfer efficiency in G4-DNA better than in double stranded DNA? J Chem Phys. 133:035103. doi: 10.1063/1.3460132
  • Xu MS, Tsukamoto S, Ishida S, Kitamura M, Arakawa Y, Endres RG, Shimoda M. 2005. Conductance of single thiolated poly(GC)-poly(GC) DNA molecules. Appl Phys Lett. 87:083902. doi: 10.1063/1.2032605
  • Yaku H, Fujimoto T, Murashima T, Miyoshi D, Sugimoto N. 2012. Phthalocyanines: a new class of G-quadruplex-ligands with many potential applications. Chem. Commun. 48:6203–6216. doi: 10.1039/c2cc31037f
  • Yavin E, Boal AK; Stemp EDA, Boon EM, Livingston AL, O’Shea VL, David SS, Barton JK. 2005. Protein-DNA charge transport: redox activation of a DNA repair protein by guanine radical. Proc Natl Acad Sci USA. 102:3546–3551. doi: 10.1073/pnas.0409410102
  • You ZQ, Shao Y, Hsu C-P. 2004. Calculating electron transfer couplings by the Spin-Flip approach: energy splitting and dynamical correlation effects. Chem Phys Lett. 390:116–123. doi: 10.1016/j.cplett.2004.03.142
  • Yu Z, Song X. 2001. Variable range hopping and electrical conductivity along the DNA double helix. Phy Rev Lett. 86:6018–6021. doi: 10.1103/PhysRevLett.86.6018
  • Zhao Y, Kan Z, Zeng Z, Hao Y, Chen H, Tan Z. 2004. Determining the folding and unfolding rate constants of nucleic acids by biosensor. Application to telomere G-Quadruplex. J Am Chem Soc. 126:13255–13264. doi: 10.1021/ja048398c

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.