11,119
Views
0
CrossRef citations to date
0
Altmetric
Articles

Cosmic origin of the chemical elements rarety in nuclear astrophysics

&
Pages 84-97 | Received 07 Aug 2017, Accepted 23 Nov 2017, Published online: 10 Jan 2018

References

  • Ade PAR, Aghanim N, Arnaud M, Ashdown M, Aumont J, Baccigalupi C, Banday AJ, Barreiro RB, Bartlett JG, Bartolo N, et al. 2016. [Planck Collaboration], Planck 2015 results. XVI. Cosmological parameters. Astron Astrophys. 594:A13. doi: 10.1051/0004-6361/201525830
  • Arnould M, Goriely S, Takahashi K. 2007. The r-process of stellar nucleosynthesis: astrophysics and nuclear physics achievements and mysteries. Phys Rep. 450:97– 213. doi: 10.1016/j.physrep.2007.06.002
  • Aver E, Olive KA, Porter RL, Skillman ED. 2013. The primordial helium abundance from updated emissivities. J Cosmol Astropart Phys. 11:17. doi: 10.1088/1475-7516/2013/11/017
  • Aver E, Olive KA, Porter RL, Skillman ED. 2015. The effects of He I λ 10830 on helium abundance determinations. J Cosmol Astropart Phys. 07:11. doi: 10.1088/1475-7516/2015/07/011
  • Coc A, Goriely S, Saimpert M, Vangioni E. 2012. Standard big bang nucleosynthesis up to CNO with an improved extended nuclear network. Astrophys J. 744:158. doi: 10.1088/0004-637X/744/2/158
  • Coc A, Petitjean P, Uzan JP, Vangioni E, Descouvemont P, Illiadis C, Longland R. 2015. New reaction rates for improved primordial D/H calculation and the cosmic evolution of deuterium. Phys Rev D. 92:123526. doi: 10.1103/PhysRevD.92.123526
  • Coc A, Uzan JP, Vangioni E. 2014. Standard big bang nucleosynthesis and primordial CNO abundances after Planck. J Cosmol Astropart Phys. 10:50. doi: 10.1088/1475-7516/2014/10/050
  • Cooke RJ, Pettini M, Jorgenson RA, Murphy MT, Steidel CC. 2014. Precision measures of the primordial abundance of deuterium. Astrophys J. 781:31. doi: 10.1088/0004-637X/781/1/31
  • Cooke RJ, Pettini M, Nollett KM, Jorgenson RA. 2016. The primordial deuterium abundance of the most metal-poor Damped Lyman-? System. Astrophys J. 830:148. doi: 10.3847/0004-637X/830/2/148
  • Cooke R, Pettini M, Steidel CC. 2017. A one percent determination of the primordial deuterium abundance. arXiv: 1710.11129.
  • Dirac PA, 1934. Discussion of the infinite distribution of electrons in the theory of the positron. Proc Cambridge Philos Soc. 30:150. doi: 10.1017/S030500410001656X
  • Ekstrom S , Coc A, Descouvemont P, Meynet G, Olive KA, Uzan J-P, Vangioni E. 2010. Effects of the variation of fundamental constants on Population III stellar evolution. Astron Astrophys. 514:A62. doi: 10.1051/0004-6361/200913684
  • Fields BD, Molaro P, Sarkar P. 2016. Big bang nucleosynthesis, in online version [Particle Data Group Collaboration]. Chin Phys C. 40:100001.
  • Hinshaw G, Larson D, Komatsu E, Spergel DN, Bennett CL, Dunkley J, Nolta MR, Halpern M, Hill RS, Odegard N, et al. 2013. Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological parameter results. Astrophys J Suppl Ser. 208:19. doi: 10.1088/0067-0049/208/2/19
  • Sakharov AD. 1979. Baryon asymmetry of the universe. Zhurnal Eksperimental'noi i Teoreticheskoi Fiziki. 76:1172–1181.
  • Salpeter EE. 1952. Nuclear reactions in stars without hydrogen. Astrophys J. 115:326–328. doi: 10.1086/145546
  • Sbordone L, Bonifacio P, Caffau E, Ludwig H-G, Behara NT, González Hernández JI, Steffen M, Cayrel R, Freytag B, Van't Veer C, et al. 2010. The metal-poor end of the Spite plateau. I. Stellar parameters, metallicities, and lithium abundances. Astron Astroph. 522:A26. doi: 10.1051/0004-6361/200913282
  • Smoot GF. 2000. CMB anisotropy experiments. Phys Rep. 333–334:269–308. doi: 10.1016/S0370-1573(00)00026-0
  • Spite F, Spite M. 1982. Abundance of lithium in unevolved halo stars and old disk stars: interpretation and consequences. Astron Astrophys. 115:357.
  • Vangioni-Flam E, Cassé M, Audouze J. 2000. Lithium-beryllium-boron: origin and evolution. Phys Rep. 333:365–387. doi: 10.1016/S0370-1573(00)00030-2
  • Vangioni E. 2012. Cosmic chemical evolution with intermediate mass pop III stars. J Phys. 337:2074.