9,433
Views
4
CrossRef citations to date
0
Altmetric
Articles

CRISPR-Cas9-mediated loss-of-function screens

& ORCID Icon
Pages 1-13 | Received 24 Jan 2019, Accepted 11 Sep 2019, Published online: 27 Sep 2019

References

  • Adamson B, Norman TM, Jost M, Parnas O, Regev A, Weissman JS. 2016. A multiplexed single-cell CRISPR screening platform enables systematic dissection of the unfolded protein response. Cell. 67(7):1867–1882.e21. doi: 10.1016/j.cell.2016.11.048
  • Adhemar D. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science. 343(6172):776–779. doi: 10.1126/science.1247651
  • Aguirre AJ, Meyers RM, Weir BA. 2017. Genomic copy number dictates a gene-independent cell response to CRISPR-Cas9 targeting. Cancer Discov. 6(8):914–929. doi: 10.1158/2159-8290.CD-16-0154
  • Ali N, Karlsson C, Aspling M, Larsson J. 2009. Forward RNAi screens in primary human hematopoietic stem/progenitor cells. Blood. 113(16):3690–3695. doi: 10.1182/blood-2008-10-176396
  • Bae S, Park J, Kim JS. 2014. Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics. 30(10):1473–1475. doi: 10.1093/bioinformatics/btu048
  • Baggen J, Jan H, Staring J. 2016. Enterovirus D68 receptor requirements unveiled by haploid genetics. Proc Natl Acad Sci USA. 113(5):1399–1404. doi: 10.1073/pnas.1524498113
  • Bikard D, Jiang W, Samai P, Hochschild A, Zhang F, Marraffini LA. 2013. Programmable repression and activation of bacterial gene expression using an engineered CRISPR-Cas system. Nucleic Acids Res. 41(15):7429–7437. doi: 10.1093/nar/gkt520
  • Bitinaite J, Wah DA, Aggarwal AK, Schildkraut I. 1998. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci USA. 95(18):10570–10575. doi: 10.1073/pnas.95.18.10570
  • Brenner S. 1974. The genetics of Caenorhabdztzs elegans. Genetics. 77:71–94.
  • Broome JD. 1963. Evidence that the L-asparaginase activity of Guinea pig serum is responsible for its antilymphoma effects. J Exp Med. 118:99–120. doi: 10.1084/jem.118.1.99
  • Chavez A, Scheiman J, Vora S. 2015. Highly efficient Cas9-mediated transcriptional programming. Nat Methods. 12(4):326–328. doi: 10.1038/nmeth.3312
  • Cho SW, Kim S, Kim JM, Kim J. 2013. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 31(3):230–232. doi: 10.1038/nbt.2507
  • Concordet JP, Haeussler M. 2018. CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res. 46(W1):W242–W245. doi: 10.1093/nar/gky354
  • Cong L, Zhang F. 2015. Genome engineering using the CRISPR-Cas9 system. Methods Mol Biol. 1239:197–217. doi: 10.1007/978-1-4939-1862-1_10
  • Conte D, Mello CC. 2003. RNA interference in Caenorhabditis elegans. Curr Protoc Mol Biol. 109:26.3.1–30.
  • Datlinger P, Rendeiro AF, Schmidl C. 2017. Pooled CRISPR screening with single-cell transcriptome read- out. Nat Methods. 14(3):297–301. doi: 10.1038/nmeth.4177
  • Deltcheva E, Chylinski K, Sharma CM. 2011. CRISPR RNA maturation by trans-encoded small RNA and host factor RNase III. Nature. 471(7340):602–607. doi: 10.1038/nature09886
  • Dixit A, Parnas O, Li B. 2016. Perturb-seq: dissecting molecular circuits with scalable single cell RNA profiling of pooled genetic screens. Cell. 167(7):1853–1866.e17. doi: 10.1016/j.cell.2016.11.038
  • Dominguez AA, Lim WA, Qi LS. 2016. Beyond editing: repurposing CRISPR–Cas9 for precision genome regulation and interrogation. Nat Rev Mol Cell Biol. 17(1):5–15. doi: 10.1038/nrm.2015.2
  • Dunham I, Kundaje A, Aldred SF. 2012. An integrated encyclopedia of DNA elements in the human genome. Nature. 489(7414):57–74. doi: 10.1038/nature11247
  • Fong PC, Boss DS, Yap TA. 2009. Inhibition of poly(ADP-ribose) polymerase in tumors from BRCA mutation carriers. N Engl J Med. 361(2):123–134. doi: 10.1056/NEJMoa0900212
  • Fortin JP, Tan J, Gascoigne KE. 2019. Multiple-gene targeting and mismatch tolerance can confound analysis of genome-wide pooled CRISPR screens. Genome Biol. 20(1):21. doi: 10.1186/s13059-019-1621-7
  • Fu Y, Sander JD, Reyon D, Cascio VM, Joung JK. 2014. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat Biotechnol. 32(3):279–284. doi: 10.1038/nbt.2808
  • Gans M, Audit C, Masson M. 1975. Isolation and characterization of sex-linked female- sterile mutants in Drosophila melanogaster. Genetics. 81(4):683–704.
  • Gilbert LA, Horlbeck MA, Adamson B. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell. 159(3):647–661. doi: 10.1016/j.cell.2014.09.029
  • Gilbert LA, Larson MH, Morsut L. 2013. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell. 154(2):442–451. doi: 10.1016/j.cell.2013.06.044
  • Groff AF, Sanchez-Gomez DB, Soruco MML. 2016. In vivo characterization of Linc-p21 reveals functional cis-regulatory DNA elements. Cell Rep. 16(8):2178–2186. doi: 10.1016/j.celrep.2016.07.050
  • Guilinger JP, Thompson DB, Liu DR. 2014. Fusion of catalytically inactive Cas9 to FokI nuclease improves the specificity of genome modification. Nat Biotechnol. 32(6):577–582. doi: 10.1038/nbt.2909
  • Habib N, Hsu PD, Wu X, Jiang W, Luciano A. 2013. Multiplex genome engineering using CRISPR / Cas systems. Science. 339(6121):819–823. doi: 10.1126/science.1231143
  • Han K, Jeng EE, Hess GT, Bassik MC. 2017. Synergistic drug combinations for cancer identified in a CRISPR screen for pairwise genetic interactions. Nat Biotechnol. 35(5):463–474. doi: 10.1038/nbt.3834
  • Hart T, Brown KR, Sircoulomb F, Moffat J. 2018. Measuring error rates in genomic perturbation screens: gold standards for human functional genomics. Mol Syst Bio. 10:733. doi: 10.15252/msb.20145216
  • Hart T, Chandrashekhar M, Aregger M. 2015. High-resolution CRISPR screens reveal fitness genes and genotype-specific cancer liabilities. Cell. 163(6):1515–1526. doi: 10.1016/j.cell.2015.11.015
  • Hinze L, Pfirrmann M, Karim S. 2019. Synthetic lethality of wnt pathway activation and asparaginase in drug-resistant acute leukemias. Cancer Cell. 35(4):664–676.e7. doi: 10.1016/j.ccell.2019.03.004
  • Horvath P, Barrangou R. 2010. CRISPR/cas, the immune system of bacteria and archaea. Science. 327(5962):167–170. doi: 10.1126/science.1179555
  • Hutchinson L. 2010. Targeted therapies: PARP inhibitor olaparib is safe and effective in patients with BRCA1 and BRCA2 mutations. Nat Rev Clin Oncol. 7(10):549. doi: 10.1038/nrclinonc.2010.143
  • Jaitin DA, Weiner A, Yofe I. 2016. Dissecting immune circuits by linking crispr- pooled screens with single-cell RNA-Seq. Cell. 167(7):1883–1888.e15. doi: 10.1016/j.cell.2016.11.039
  • Ji W, Lee D, Wong E. 2014. Specific gene repression by CRISPRi system transferred through bacterial conjugation. ACS Synth Biol. 3(12):929–931. doi: 10.1021/sb500036q
  • Jiang W, Bikard D, Cox D, Zhang F, Marraffini LA. 2013. RNA-guided editing of bacterial genomes using CRISPR-Cas systems. Nat Biotechnol. 31(3):233–239. doi: 10.1038/nbt.2508
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. 2012. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc Natl Acad Sci USA. 109(39):E2579–E2586. doi: 10.1073/pnas.1208507109
  • Khorashad JS, Eiring AM, Mason CC. 2015. shRNA library screening identifies nucleocytoplasmic transport as a mediator of BCR-ABL1 kinase-independent resistance. Blood. 125(11):1772–1781. doi: 10.1182/blood-2014-08-588855
  • Kim D, Bae S, Park J. 2015. Digenome-seq: genome-wide profiling of CRISPR-Cas9 off-target effects in human cells. Nat Methods. 12(3):237–243. 1 p following 243. doi: 10.1038/nmeth.3284
  • Kim HS, Lee K, Bae S. 2017. CRISPR / Cas9-mediated gene knockout screens and target identification via whole-genome sequencing uncover host genes required for picornavirus infection. J Biol Chem. 292(25):10664–10671. doi: 10.1074/jbc.M117.782425
  • Konermann S, Brigham MD, Trevino AE. 2015. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature. 517(7536):583–588. doi: 10.1038/nature14136
  • Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. 2016. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 44(W1):W272–W276. doi: 10.1093/nar/gkw398
  • Li W, Xu H, Xiao T. 2014. MAGeCK enables robust identification of essential genes from genome-scale CRISPR/Cas9 knockout screens. Genome Biol. 15(12):554. doi: 10.1186/s13059-014-0554-4
  • Lin Y, Cradick TJ, Brown MT. 2014. CRISPR/cas9 systems have off-target activity with insertions or deletions between target DNA and guide RNA sequences. Nucleic Acids Res. 42(11):7473–7485. doi: 10.1093/nar/gku402
  • Liu SJ, Horlbeck MA, Cho SW. 2017. CRISPRi-based genome-scale identification of functional long non-coding RNA loci in human cells. Science. 355:6320. doi: 10.1126/science.aah4712
  • Liu R, Paxton WA, Choe S. 1996. Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell. 86(3):367–377. doi: 10.1016/S0092-8674(00)80110-5
  • Marceau CD, Puschnik AS, Majzoub K. 2017. Genetic dissection of Flaviviridae host factors through genome- scale CRISPR screens. Nature. 535(7610):159–163. doi: 10.1038/nature18631
  • Nüsslein-volhard C, Wieschaus E. 1980. Mutations affecting segment number and polarity in Drosophila. Nature. 287(5785):795–801. doi: 10.1038/287795a0
  • Pagliarini R, Shao W, Sellers WR. 2015. Oncogene addiction: pathways of therapeutic response, resistance, and road maps toward a cure. EMBO Rep. 16(3):280–296. doi: 10.15252/embr.201439949
  • Paralkar VR, Taborda CC, Huang P. 2016. Unlinking an lncRNA from its associated cis element. Mol Cell. 62(1):104–110. doi: 10.1016/j.molcel.2016.02.029
  • Pattanayak V, Lin S, Guilinger JP, Ma E, Doudna JA, Liu DR. 2013. High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol. 31(9):839–843. doi: 10.1038/nbt.2673
  • Ran FA, Hsu PD, Lin CY. 2013. Double nicking by RNA-guided CRISPR Cas9 for enhanced genome editing specificity. Cell. 154(6):1380–1389. doi: 10.1016/j.cell.2013.08.021
  • Rédei GP. 2007. The connectivity map: a new tool for biomedical research. Nat Rev Cancer. 7(1):54–60. doi: 10.1038/nrc2044
  • Ren X, Yang Z, Xu J. 2014. Manuscript A. Enhanced specificity and efficiency of the CRISPR/Cas9 system with optimized sgRNA parameters in Drosophila. Cell Rep. 9(3):1151–1162. doi: 10.1016/j.celrep.2014.09.044
  • Rosenbluh J, Xu H, Harrington W. 2017. Complementary information derived from CRISPR Cas9 mediated gene deletion and suppression. Nat Commun. 8:15403. doi: 10.1038/ncomms15403
  • Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME, Doench JG. 2018. Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun. 9(1):5416. doi: 10.1038/s41467-018-07901-8
  • Shalem O, Sanjana NE, Hartenian E, Zhang F. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells science. Science. 343(6166):84–87. doi: 10.1126/science.1247005
  • Shen JP, Zhao D, Sasik R. 2017. Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions. Nat Methods. 14(6):573–576. doi: 10.1038/nmeth.4225
  • Shi J, Wang E, Milazzo JP, Wang Z, Kinney JB, Vakoc CR. 2015. Discovery of cancer drug targets by CRISPR-Cas9 screening of protein domains. Nat Biotechnol. 33(6):661–667. doi: 10.1038/nbt.3235
  • Sigoillot FD, Lyman S, Huckins JF. 2012. A bioinformatics method identifies prominent off-targeted transcripts in RNAi screens. Nat Methods. 9(4):363–366. doi: 10.1038/nmeth.1898
  • Simeonov DR, Gowen BG, Boontanrart M. 2017. Discovery of stimulation-responsive immune enhancers with CRISPR activation. Nature. 549(7670):111–115. doi: 10.1038/nature23875
  • Smith I, Greenside PG, Natoli T. 2017a. Evaluation of RNAi and CRISPR technologies by large-scale gene expression profiling in the connectivity map. PLoS Biol. 15(11):e2003213. doi: 10.1371/journal.pbio.2003213
  • Smith TS, Heger A, Sudbery I. 2017b. UMI-tools: modeling sequencing errors in Unique Molecular Identifiers to improve quantification accuracy. Genome Res. 27(3):491–499. doi: 10.1101/gr.209601.116
  • Tebas P, Stein D, Tang WW. 2014. Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med. 370(10):901–910. doi: 10.1056/NEJMoa1300662
  • Tsai SQ, Zheng Z, Nguyen NT. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat Biotechnol. 33(2):187–197. doi: 10.1038/nbt.3117
  • Tzelepis K, Koike-Yusa H, De Braekeleer E. 2016. A CRISPR dropout screen identifies genetic vulnerabilities and therapeutic targets in acute myeloid leukemia. Cell Rep. 17(4):1193–1205. doi: 10.1016/j.celrep.2016.09.079
  • Wang B, Wang M, Zhang W. 2019. Integrative analysis of pooled CRISPR genetic screens using MAGeCKFlute. Nat Protoc. 14(3):756–780. doi: 10.1038/s41596-018-0113-7
  • Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR/Cas9 system. Science. 343(6166):80–84. doi: 10.1126/science.1246981
  • Wang H, Yang H, Shivalila CS. 2013. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153(4):910–918. doi: 10.1016/j.cell.2013.04.025
  • Wang T, Yu H, Hughes NW. 2017. Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic ras. Cell. 168(5):890–903.e15. doi: 10.1016/j.cell.2017.01.013
  • Wiedenheft B, Sternberg SH, Doudna JA. 2012. RNA-guided genetic silencing systems in bacteria and archaea. Nature. 482(7385):331–338. doi: 10.1038/nature10886
  • Wong AS, Choi GC, Cui CH. 2016. Multiplexed barcoded CRISPR-Cas9 screening enabled by CombiGEM. Proc Natl Acad Sci USA. 113(9):2544–2549. doi: 10.1073/pnas.1517883113
  • Xie S, Duan J, Li B, Zhou P, Hon GC. 2017. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol Cell. 66(2):285–299.e5. doi: 10.1016/j.molcel.2017.03.007
  • Yau EH, Kummetha IR, Lichinchi G, Rana TM. 2017. Genome-wide CRISPR screen for essential cell growth mediators in mutant KRAS colorectal cancers. Cancer Res. 77(22):6330–6339. doi: 10.1158/0008-5472.CAN-17-2043
  • Yin Y, Yan P, Lu J. 2015. Opposing roles for the lncRNA haunt and its genomic locus in regulating HOXA gene activation during embryonic stem cell differentiation. Cell Stem Cell. 16(5):504–516. doi: 10.1016/j.stem.2015.03.007
  • Zheng GX, Terry JM, Belgrader P. 2017. Massively parallel digital transcriptional profiling of single cells. Nat Commun. 8:1–12. doi: 10.1038/s41467-016-0009-6
  • Zhu S, Li W, Liu J. 2016. Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 34(12):1279–1286. doi: 10.1038/nbt.3715
  • Ziegenhain C, Vieth B, Parekh S. 2017. Comparative analysis of single-cell RNA sequencing methods. Mol Cell. 65(4):631–643.e4. doi: 10.1016/j.molcel.2017.01.023