303
Views
5
CrossRef citations to date
0
Altmetric
Original Research

Three-Dimensional Shoe Kinematics During Unexpected Slips: Implications for Shoe–Floor Friction Testing

, &
Pages 1-11 | Received 01 May 2016, Accepted 01 Sep 2016, Published online: 16 Nov 2016

REFERENCES

  • Andres, R., O'Connor, D., & Eng, T. (1992). A practical synthesis of biomechanical results to prevent slips and falls in the workplace. In S. Kumar (Ed.). Advances in industrial ergonomics and safety IV (pp. 1001–1006). London, United Kingdom: Taylor & Francis.
  • American Society for Testing and Materials (ASTM). (2011). ASTM F2913-11: Standard test method for measuring the coefficient of friction for evaluation of slip performance of footwear and test surfaces/flooring using a whole shoe tester. West Conshohocken, PA: ASTM International.
  • American Society for Testing and Materials (ASTM). (2012). ASTM F2508-12a: Standard practice for validation, calibration, and certification of walkway tribometers using reference surfaces. West Conshohocken, PA: ASTM International.
  • Beschorner, K., & Cham, R. (2008). Impact of joint torques on heel acceleration at heel contact, a contributor to slips and falls. Ergonomics, 51(12), 1799–1813.
  • Beschorner, K., Lovell, M., Higgs III, C. F., & Redfern, M. S. (2009). Modeling mixed-lubrication of a shoe-floor interface applied to a pin-on-disk apparatus. Tribology Transactions, 52(4), 560–568.
  • Beschorner, K., & Singh, G. (2012). A novel method for evaluating the effectiveness of shoe-tread designs relevant to slip and fall accidents. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 2388–2392.
  • Beschorner, K. E., Albert, D. A., Chambers, A. J., & Redfern, M. R. (2014). Fluid pressures at the shoe-floor-contaminant interface during slips: Effects of tread & implications on slip severity. Journal of Biomechanics, 47(2), 458–463.
  • Beschorner, K. E., Albert, D. L., & Redfern, M. S. (2016). Required coefficient of friction during level walking is predictive of slipping. Gait & Posture, 48, 256–260.
  • Beschorner, K. E., Redfern, M. S., Porter, W. L., & Debski, R. E. (2007). Effects of slip testing parameters on measured coefficient of friction. Applied Ergonomics, 38(6), 773–780.
  • Blanchette, M. G., & Powers, C. M. (2015a). The influence of footwear tread groove parameters on available friction. Applied Ergonomics, 50, 237–241.
  • Blanchette, M. G., & Powers, C. M. (2015b). Slip prediction accuracy and bias of the SATRA STM 603 whole shoe tester. Journal of Testing and Evaluation, 43(3), 491–498.
  • Brady, R. A., Pavol, M. J., Owings, T. M., & Grabiner, M. D. (2000). Foot displacement but not velocity predicts the outcome of a slip induced in young subjects while walking. Journal of Biomechanics, 33(7), 803–808.
  • Burnfield, J. M., & Powers, C. M. (2006). Prediction of slips: An evaluation of utilized coefficient of friction and available slip resistance. Ergonomics, 49(10), 982–995.
  • Cham, R., Musolino, M., & Redfern, M. S. (2000). Heel contact dynamics during slip events. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44(28), 514–517.
  • Cham, R., & Redfern, M. S. (2002a). Changes in gait when anticipating slippery floors. Gait Posture, 15(2), 159–171.
  • Cham, R., & Redfern, M. S. (2002b). Heel contact dynamics during slip events on level and inclined surfaces. Safety Science, 40(7–8), 559–576.
  • Chambers, A. J., Harchick, E. A., & Cham, R. (2014). Shoe-floor frictional requirements during gait after experiencing an unexpected slip. IIE Transactions on Occupational Ergonomics and Human Factors, 2(1), 15–26.
  • Chambers, A. J., Margerum, S., Redfern, M. S., & Cham, R. (2003). Kinematics of the foot during slips. Occupational Ergonomics, 3(4), 225–234.
  • Chander, H., Garner, J. C., & Wade, C. (2015). Heel contact dynamics in alternative footwear during slip events. International Journal of Industrial Ergonomics, 48, 158–166.
  • Chang, W. R., Kim, I. J., Manning, D. P., & Bunterngchit, Y. (2001). The role of surface roughness in the measurement of slipperiness. Ergonomics, 44(13), 1200–1216.
  • Chang, W. R., Gronqvist, R., Leclercq, S., Brungraber, R. J., Mattke, U., Strandberg, L., … Courtney, T. K. (2001). The role of friction in the measurement of slipperiness, Part 2: Survey of friction measurement devices. Ergonomics, 44(13), 1233–1261.
  • Chang, W. R., Gronqvist, R., Leclercq, S., Myung, R., Makkonen, L., Strandberg, L., … Thorpe, S. C. (2001). The role of friction in the measurement of slipperiness, Part 1: Friction mechanisms and definition of test conditions. Ergonomics, 44(13), 1217–1232.
  • Courtney, T. K., Chang, W. R., Gronqvist, R., & Redfern, M. S. (2001). The measurement of slipperiness-An international scientific symposium. Ergonomics, 44(13), 1097–1101.
  • Courtney, T. K., Sorock, G. S., Manning, D. P., Collins, J. W., & Holbein-Jenny, M. A. (2001). Occupational slip, trip, and fall-related injuries-Can the contribution of slipperiness be isolated? Ergonomics, 44(13), 1118–1137.
  • Cowap, M., Moghaddam, S., Menezes, P., & Beschorner, K. (2015). Contributions of adhesion and hysteresis to coefficient of friction between shoe and floor surfaces: Effects of floor roughness and sliding speed. Tribology-Materials, Surfaces & Interfaces, 9(2), 77–84.
  • Florence, C., Haegerich, T., Simon, T., Zhou, C., & Luo, F. (2015). Estimated lifetime medical and work-loss costs of emergency department-treated nonfatal injuries—United States, 2013. MMWR: Morbidity and Mortality Weekly Report, 64(38), 1078–1082.
  • Florence, C., Simon, T., Haegerich, T., Luo, F., & Zhou, C. (2015). Estimated lifetime medical and work-loss costs of fatal injuries—United States, 2013. MMWR: Morbidity and Mortality Weekly Report, 64(38), 1074–1077.
  • Grönqvist, R. (1995). Mechanisms of friction and assessment of slip resistance of new and used footwear soles on contaminated floors. Ergonomics, 28, 224–241.
  • Grönqvist, R., Abeysekera, J., Gard, G., Hsiang, S. M., Leamon, T. B., Newman, D. J., … Lund, U. (2001). Human-centered approaches in slipperiness measurement. Ergonomics, 44(13), 1167–1199. doi:10.1080/00140130110085556
  • Grönqvist, R., Chang, W. R., Courtney, T. K., Leamon, T. B., Redfern, M. S., Strandberg, L., … Linköpings, U. (2001). Measurement of slipperiness: Fundamental concepts and definitions. Ergonomics, 44(13), 1102–1117. doi:10.1080/00140130110085529
  • Grönqvist, R., & Hirvonen, M. (1995). Slipperiness of footwear and mechanisms of walking friction on icy surfaces. International Journal of Industrial Ergonomics, 16(3), 191–200.
  • Grönqvist, R., Matz, S., & Hirvonen, M. (2003). Assessment of shoe-floor slipperiness with respect to contact-time-related variation in friction during heel strike. Occupational Ergonomics, 3, 197–208.
  • Grönqvist, R., Roine, J., Jarvinen, E., & Korhonen, E. (1989). An apparatus and a method for determining the slip resistance of shoes and floors by simulation of human foot motions. Ergonomics, 32(8), 979–995.
  • Hanson, J. P., Redfern, M. S., & Mazumdar, M. (1999). Predicting slips and falls considering required and available friction. Ergonomics, 42(12), 1619–1633.
  • Holbein-Jenny, M. A., Redfern, M. S., Gottesman, D., & Chaffin, D. B. (2007). Kinematics of heelstrike during walking and carrying: Implications for slip resistance testing. Ergonomics, 50(3), 352–363.
  • International Standards Organization. (2012). EN ISO 13287: Personal protective equipment—Footwear—Test method for slip resistance. Geneva, Switzerland: Author.
  • Leamon, T., & Li, K. (1990, September). Microslip length and the perception of slipping. Paper presented at the 23rd International Congress on Occupational Health, Montreal, Canada.
  • Li, K. W., Chang, W. R., Leamon, T. B., & Chen, C. J. (2004). Floor slipperiness measurement: Friction coefficient, roughness of floors, and subjective perception under spillage conditions. Safety Science, 42(6), 547–565.
  • Li, K. W., & Chen, C. J. (2005). Effects of tread groove orientation and width of the footwear pads on measured friction coefficients. Safety Science, 43(7), 391–405.
  • Li, K. W., Hsu, Y. W., Chang, W. R., & Lin, C. H. (2007). Friction measurements on three commonly used floors on a college campus under dry, wet, and sand-covered conditions. Safety Science, 45(9), 980–992.
  • Li, K. W., Wu, H. H., & Lin, Y. C. (2006). The effect of shoe sole tread groove depth on the friction coefficient with different tread groove widths, floors and contaminants. Applied Ergonomics, 37(6), 743–748.
  • Liberty Mutual Research Institute for Safety. (2016). 2016 Liberty Mutual workplace safety index. Hopkinton, MA: Author.
  • Llewellyn, M., & Nevola, V. (1992, November). Strategies for walking on low-friction surfaces. Paper presented at the Fifth International Conference on Environmental Ergonomics, Maastricht, The Netherlands.
  • Lloyd, D., & Stevenson, M. (1989). Measurement of slip resistance of shoes on floor surfaces: Part 2. Effect of a beveled heel. Journal of Occupational Health and Safety, 5(3), 229–235.
  • Lockhart, T. E., Woldstad, J. C., & Smith, J. L. (2003). Effects of age-related gait changes on the biomechanics of slips and falls. Ergonomics, 46(12), 1136–1160.
  • Manning, D., Ayers, I., Jones, C., Bruce, M., & Cohen, K. (1988). The incidence of underfoot accidents during 1985 in a working population of 10,000 Merseyside people. Journal of Occupational Accidents, 10(2), 121–130.
  • Marigold, D. S., Bethune, A. J., & Patla, A. E. (2003). Role of the unperturbed limb and arms in the reactive recovery response to an unexpected slip during locomotion. Journal of Neurophysiology, 89(4), 1727–1737.
  • Mcgorry, R. W., Chang, C. C., & Didomenico, A. (2008). Rearward movement of the heel at heel strike. Applied Ergonomics, 39(6), 678–684.
  • Mcgorry, R. W., Didomenico, A., & Chang, C. C. (2010). The anatomy of a slip: Kinetic and kinematic characteristics of slip and non-slip matched trials. Applied Ergonomics, 41(1), 41–46.
  • Moghaddam, S. R. M., Redfern, M. S., & Beschorner, K. E. (2015). A microscopic finite element model of shoe-floor hysteresis and adhesion friction. Tribology Letters, 59(3), 1–10.
  • Moore, C. T., Menezes, P. L., Lovell, M. R., & Beschorner, K. E. (2012). Analysis of shoe friction during sliding against floor material: Role of fluid contaminant. Journal of Tribology, 134(4), 041104.
  • Moyer, B., Chambers, A., Redfern, M. S., & Cham, R. (2006). Gait parameters as predictors of slip severity in younger and older adults. Ergonomics, 49(4), 329–343.
  • Pio, R. L. (1966). Euler angle transformations. IEEE Transactions on Automatic Control, 11(4), 707–715.
  • Powers, C. M., Blanchette, M. G., Brault, J. R., Flynn, J., & Siegmund, G. P. (2010). Validation of walkway tribometers: Establishing a reference standard. Journal of Forensic Sciences, 55(2), 366–370.
  • Powers, C. M., Brault, J. R., Stefanou, M. A., Tsai, Y. J., Flynn, J., & Siegmund, G. P. (2007). Assessment of walkway tribometer readings in evaluating slip resistance: A gait-based approach. Journal of Forensic Sciences, 52(2), 400–405.
  • Redfern, M. S., & Bidanda, B. (1994). Slip resistance of the shoe-floor interface under biomechanically-relevant conditions. Ergonomics, 37, 511–524.
  • Redfern, M. S., Cham, R., Gielo-Perczak, K., Grönqvist, R., Hirvonen, M., Lanshammar, H., … Powers, C. (2001). Biomechanics of slips. Ergonomics, 44(13), 1138–1166.
  • Redfern, M. S., & Rhoades, T. P. (1996). Fall prevention in industry using slip resistance testing. Occupational Safety and Health–New York, 27, 463–476.
  • Strandberg, L. (1983). On accident analysis and slip-resistance measurement. Ergonomics, 26(1), 11–32.
  • Strandberg, L., & Lanshammar, H. (1981). The dynamics of slipping accidents. Journal of Occupational Accidents, 3(3), 153–162.
  • Troy, K. L., & Grabiner, M. D. (2006). Recovery responses to surrogate slipping tasks differ from responses to actual slips. Gait & Posture, 24(4), 441–447.
  • Tsai, Y. J., & Powers, C. M. (2008). The influence of footwear sole hardness on slip initiation in young adults. Journal of Forensic Sciences, 53(4), 884–888.
  • U.S. Department of Labor, Bureau of Labor Statistics. (2015a). Nonfatal occupational injuries and illnesses requiring days away from work: Table 5: Number, incidence rate, and median days away from work for nonfatal occupational injuries and illnesses involving days away from work by injury or illness characteristics and ownership, 2014. Washington, DC: Author. Retrieved from http://www.bls.gov/news.release/osh2.t05.htm
  • U.S. Department of Labor, Bureau of Labor Statistics. (2015b). Nonfatal occupational injuries and illnesses requiring days away from work: Table 15: Number, incidence rate, and median days away from work for nonfatal occupational injuries and illnesses involving days away from work for event or exposure and part of body by nature of injury or illness, all ownerships, 2014. Washington, DC: Author. Retrieved from http://www.bls.gov/news.release/osh2.t05.htm
  • Wilson, M. (1996). Slip resistance characteristics of footwear solings assessed using the SATRA friction tester. Journal of Testing and Evaluation, 24(6), 377–385.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.