595
Views
8
CrossRef citations to date
0
Altmetric
Letter to the Editor

The challenge of ORF1p phosphorylation: Effects on L1 activity and its host

&
Article: e1119927 | Received 10 Sep 2015, Accepted 06 Nov 2015, Published online: 13 Jan 2016

References

  • Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH Jr. High frequency retrotransposition in cultured mammalian cells. Cell 1996; 7(5):917-27; PMID:8945518; http://dx.doi.org/10.1016/S0092-8674(00)81998-4
  • Martin SL. Ribonucleoprotein particles with LINE-1 RNA in mouse embryonal carcinoma cells. Mol Cell Biol 1991; 11(9):4804-7; PMID:1715025; http://dx.doi.org/10.1128/MCB.11.9.4804
  • Hohjoh H, Singer MF. Cytoplasmic ribonucleoprotein complexes containing human LINE-1 protein and RNA. Embo J 1996; 15(3):630-9; PMID:8599946
  • Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Boeke JD, Moran JV. Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol 2001; 21(4):1429-39; PMID:11158327; http://dx.doi.org/10.1128/MCB.21.4.1429-1439.2001
  • Kulpa DA, Moran JV. Ribonucleoprotein particle formation is necessary but not sufficient for LINE-1 retrotransposition. Hum Mol Genet 2005; 14(21):3237-48; PMID:16183655; http://dx.doi.org/10.1093/hmg/ddi354
  • Kulpa DA, Moran JV. Cis-preferential LINE-1 reverse transcriptase activity in ribonucleoprotein particles. Nat Struct Mol Biol 2006; 13(7):655-60; PMID:16783376; http://dx.doi.org/10.1038/nsmb1107
  • Doucet AlJ, Hulme AE, Sahinovic E, Kulpa DA, Moldovan JB, Kopera HC, Athanikar JN, Hasnaoui M, Bucheton A, Moran JV, et al. Characterization of LINE-1 ribonucleoprotein particles. PLoS Genet 2010; 6(10):e1001150; PMID:20949108; http://dx.doi.org/10.1371/journal.pgen.1001150
  • Beck CR, Collier P, Macfarlane C, Malig M, Kidd JM, Eichler EE, Badge RM, Moran JV. LINE-1 retrotransposition activity in human genomes. Cell 2010; 141(7):1159-70; PMID:20602998; http://dx.doi.org/10.1016/j.cell.2010.05.021
  • Martin SL. Nucleic acid chaperone properties of ORF1p from the non-LTR retrotransposon, LINE-1. RNA Biol 2010; 7(6):67-72; PMID:20009507; http://dx.doi.org/10.4161/rna.7.6.13766
  • Mathias SL, Scott AF, Kazazian HH Jr, Boeke JD, Gabriel A. Reverse transcriptase encoded by a human transposable element. Science 1991; 254(5039):1808-10; PMID:1722352; http://dx.doi.org/10.1126/science.1722352
  • Feng Q, Moran JV, Kazazian HH Jr, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell 1996; 87(5):905-16; PMID:8945517; http://dx.doi.org/10.1016/S0092-8674(00)81997-2
  • Luan DD, Korman MH, Jakubczak JL, Eickbush TH. Reverse transcription of R2Bm RNA is primed by a nick at the chromosomal target site: a mechanism for non-LTR retrotransposition. Cell 1993; 72(4):595-605; PMID:7679954; http://dx.doi.org/10.1016/0092-8674(93)90078-5
  • Martin SL, Branciforte D, Keller D, Bain DL. Trimeric structure for an essential protein in L1 retrotransposition. Proc Natl Acad Sci USA 2003; 100(24):13815-20; PMID:14615577; http://dx.doi.org/10.1073/pnas.2336221100
  • Demers GW, Matunis MJ, Hardison RC. The L1 family of long interspersed repetitive DNA in rabbits: sequence, copy number, conserved open reading frames, and similarity to keratin. J Mol Evol 1989; 29(1):3-19; PMID:2475641; http://dx.doi.org/10.1007/BF02106177
  • Furano AV. The biological properties and evolutionary dynamics of mammalian LINE-1 retrotransposons. Progr Nucleic Acids Res Mol Biol 2000; 64:255-94; PMID:10697412; http://dx.doi.org/10.1016/S0079-6603(00)64007-2
  • Boissinot S, Entezam A, Furano AV. Selection against deleterious LINE-1-containing loci in the human lineage. Mol Biol Evol 2001; 18(6):926-35; PMID:11371580; http://dx.doi.org/10.1093/oxfordjournals.molbev.a003893
  • Boissinot S, Furano AV. The recent evolution of human L1 retrotransposons. Cytogenet Genome Res 2005; 110(1-4):402-6; PMID:16093692; http://dx.doi.org/10.1159/000084972
  • Khan H, Smit A, Boissinot S. Molecular evolution and tempo of amplification of human LINE-1 retrotransposons since the origin of primates. Genome Res 2006; 16(1):78-87; PMID:16344559; http://dx.doi.org/10.1101/gr.4001406
  • Kolosha VO, Martin SL. High-affinity, non-sequence-specific RNA binding by the open reading frame 1 (ORF1) protein from long interspersed nuclear element 1 (LINE-1). J Biol Chem 2003; 278(10):8112-7; PMID:12506113; http://dx.doi.org/10.1074/jbc.M210487200
  • Basame S, Wai-lun Li P, Howard G, Branciforte D, Keller D, Martin SL. Spatial assembly and RNA binding stoichiometry of a LINE-1 protein essential for retrotransposition. J Mol Biol 2006; 357(2):351-7; PMID:16434051; http://dx.doi.org/10.1016/j.jmb.2005.12.063
  • Martin SL, Cruceanu M, Branciforte D, Wai-Lun Li P, Kwok SC, Hodges RS, Williams MC. LINE-1 retrotransposition requires the nucleic acid chaperone activity of the ORF1 protein. J Mol Biol 2005; 348(3):549-61; PMID:15826653; http://dx.doi.org/10.1016/j.jmb.2005.03.003
  • Januszyk K, Li PW, Villareal V, Branciforte D, Wu H, Xie Y, Feigon J, Loo JA, Martin SL, Clubb RT. Identification and solution structure of a highly conserved C-terminal domain within ORF1p required for retrotransposition of long interspersed nuclear element-1. J Biol Chem 2007; 282(34):24893-904; PMID:17569664; http://dx.doi.org/10.1074/jbc.M702023200
  • Martin SL, Bushman D, Wang F, Li PW, Walker A, Cummiskey J, Branciforte D, Williams MC. A single amino acid substitution in ORF1 dramatically decreases L1 retrotransposition and provides insight into nucleic acid chaperone activity. Nucleic Acids Research 2008; 36(18):5845-54; PMID:18790804; http://dx.doi.org/10.1093/nar/gkn554
  • Khazina E, Weichenrieder O. Non-LTR retrotransposons encode noncanonical RRM domains in their first open reading frame. Proc Natl Acad Sci USA 2009; 106(3):731-6; PMID:19139409; http://dx.doi.org/10.1073/pnas.0809964106
  • Khazina E, Truffault V, Büttner R, Schmidt S, Coles M, Weichenrieder O. Trimeric structure and flexibility of the L1ORF1 protein in human L1 retrotransposition. Nature Structural & Molecular Biology 2011; 18(9):1006-U64; PMID:21822284; http://dx.doi.org/10.1038/nsmb.2097
  • Callahan KE, Hickman AB, Jones CE, Ghirlando R, Furano AV. Polymerization and nucleic acid-binding properties of human L1 ORF1 protein. Nucleic Acids Res 2012; 40(2):813-27; PMID:21937507; http://dx.doi.org/10.1093/nar/gkr728
  • Burton FH, Loeb DD, Voliva CF, Martin SL, Edgell MH, Hutchison CA 3rd. Conservation throughout mammalia and extensive protein-encoding capacity of the highly repeated DNA long interspersed sequence one. J Mol Biol 1986; 187(2):291-304; PMID:3009828; http://dx.doi.org/10.1016/0022-2836(86)90235-4
  • IHGS-Consortium. Initial sequencing and analysis of the human genome. Nature 2001; 409(6822):860-921; PMID:11237011; http://dx.doi.org/10.1038/35057062
  • Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet 2012; 13(1):36-46; PMID:22124482
  • Boissinot S, Davis J, Entezam A, Petrov D, Furano AV. Fitness cost of LINE-1 (L1) activity in humans. Proc Natl Acad Sci USA 2006; 103(25):9590-4; PMID:16766655; http://dx.doi.org/10.1073/pnas.0603334103
  • Bourc'his D, Bestor TH. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 2004; 431(7004):96-9; PMID:15318244; http://dx.doi.org/10.1038/nature02886
  • Soper SFC, van der Heijden GW, Hardiman TC, Goodheart M, Martin SL, de Boer P, Bortvin A. Mouse maelstrom, a component of nuage, is essential for spermatogenesis and transposon repression in meiosis. Dev Cell 2008; 15(2):285-97; PMID:18694567; http://dx.doi.org/10.1016/j.devcel.2008.05.015
  • Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH Jr. Isolation of an active human transposable element. Science 1991; 254(5039):1805-8; PMID:1662412; http://dx.doi.org/10.1126/science.1662412
  • Boissinot S, Entezam A, Young L, Munson PJ, Furano AV. The insertional history of an active family of L1 retrotransposons in humans. Genome Res 2004; 14:1221-31; PMID:15197167; http://dx.doi.org/10.1101/gr.2326704
  • Boissinot S, Chevret , Furano AV. L1 (LINE-1) retrotransposon evolution and amplification in recent human history. Mol Biol Evol 2000; 17(6):915-28; PMID:10833198; http://dx.doi.org/10.1093/oxfordjournals.molbev.a026372
  • Moran JV, DeBerardinis RJ, Kazazian, Jr. HH. Exon shuffling by L1 retrotransposition. Science 1999; 283(5407):1530-4; PMID:10066175; http://dx.doi.org/10.1126/science.283.5407.1530
  • Gilbert N, Lutz-Prigge S, Moran JV. Genomic deletions created upon LINE-1 retrotransposition. Cell 2002; 110(3):315-25; PMID:12176319; http://dx.doi.org/10.1016/S0092-8674(02)00828-0
  • Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 2005; 435(7044):903-10; PMID:15959507; http://dx.doi.org/10.1038/nature03663
  • Ewing AD, Kazazian HH. High-throughput sequencing reveals extensive variation in human-specific L1 content in individual human genomes. Genome Res 2010; 20(9):1262-72; PMID:20488934; http://dx.doi.org/10.1101/gr.106419.110
  • Iskow RC, McCabe MT, Mills RE, Torene S, Pittard WS, Neuwald AF, Van Meir EG, Vertino PM, Devine SE. Natural mutagenesis of human genomes by endogenous retrotransposons. Cell 2010; 141(7):1253-61; PMID:20603005; http://dx.doi.org/10.1016/j.cell.2010.05.020
  • Tubio JMC, Li Y, Ju YS, Martincorena I, Cooke SL, Tojo M, Gundem G, Pipinikas CP, Zamora J, Raine K, Menzies A, et al. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 2014; 345(6196):1251343; PMID:25082706; http://dx.doi.org/10.1126/science.1251343
  • Upton K, Gerhardt DJ, Jesuadian JS, Richardson SR, Sánchez-Luque FJ, Bodea GO, Ewing AD, Salvador-Palomeque C, van der Knaap MS, Brennan PM, Vanderver A, et al. Ubiquitous l1 mosaicism in hippocampal neurons. Cell 2015; 161(2):228-39; PMID:25860606; http://dx.doi.org/10.1016/j.cell.2015.03.026
  • Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O'Shea KS, Moran JV, Cullen BR. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. Proc Natl Acad Sci USA 2006; 103(23):8780-5; PMID:16728505; http://dx.doi.org/10.1073/pnas.0603313103
  • Stenglein MD, Harris RS. APOBEC3B and APOBEC3F inhibit L1 retrotransposition by a DNA deamination-independent mechanism. J Biol Chem 2006; 281(25):16837-41; PMID:16648136; http://dx.doi.org/10.1074/jbc.M602367200
  • Muckenfuss H, Hamdorf M, Held U, Perkovic M, Löwer J, Cichutek K, Flory E, Schumann GG, Münk C. APOBEC3 proteins inhibit human LINE-1 retrotransposition. J Biol Chem 2006; 281(31):22161-72; PMID:16735504; http://dx.doi.org/10.1074/jbc.M601716200
  • Koito A, Ikeda T. Intrinsic immunity against retrotransposons by APOBEC cytidine deaminases. Front Microbiol 2013; 4:28; PMID:23431045
  • Meister G. Argonaute proteins: functional insights and emerging roles. Nat Rev Genet 2013; 14(7):447-59; PMID:23732335; http://dx.doi.org/10.1038/nrg3462
  • Cook PR, Jones CE, Furano AV. Phosphorylation of ORF1p is required for L1 retrotransposition. Proc Natl Acad Sci U S A 2015; 112(14):4298-303; PMID:25831499; http://dx.doi.org/10.1073/pnas.1416869112
  • Ubersax JA, Ferrell, Jr. JE. Mechanisms of specificity in protein phosphorylation. Nat Rev Mol Cell Biol 2007; 8(7):530-41; PMID:17585314; http://dx.doi.org/10.1038/nrm2203
  • Lu KP, Liou YC, Zhou XZ. Pinning down proline-directed phosphorylation signaling. Trends Cell Biol 2002; 12(4):164-72; PMID:11978535; http://dx.doi.org/10.1016/S0962-8924(02)02253-5
  • Liou YC, Zhou XZ, Lu KP. Prolyl isomerase Pin1 as a molecular switch to determine the fate of phosphoproteins. Trends Biochem Sci 2011; 36(10):501-14; PMID:21852138; http://dx.doi.org/10.1016/j.tibs.2011.07.001
  • Litchfield DW, Shilton BH, Brandl CJ, Gyenis L. Pin1: Intimate involvement with the regulatory protein kinase networks in the global phosphorylation landscape. Biochim Biophys Acta 2015; 1850(10):2077-86; PMID:25766872; http://dx.doi.org/10.1016/j.bbagen.2015.02.018
  • Nishi H, Shaytan A, Panchenko AR. Physicochemical mechanisms of protein regulation by phosphorylation. Frontiers in Genetics 2014; 5:270; PMID:25147561; http://dx.doi.org/10.3389/fgene.2014.00270
  • Lu PJ, Zhou XZ, Liou YC, Noel JP, Lu KP. Critical role of WW domain phosphorylation in regulating phosphoserine binding activity and Pin1 function. J Biol Chem 2002; 277(4):2381-4; PMID:11723108; http://dx.doi.org/10.1074/jbc.C100228200
  • Lu PJ, Zhou XZ, Shen M, Lu KP. Function of WW domains as phosphoserine- or phosphothreonine-binding modules. Science 1999; 283(5406):1325-8; PMID:10037602; http://dx.doi.org/10.1126/science.283.5406.1325
  • Cargnello M, Roux PP. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases. Microbiol Mol Biol Rev 2011; 75(1):50-83; PMID:21372320; http://dx.doi.org/10.1128/MMBR.00031-10
  • Koivomagi M, Valk E, Venta R, Iofik A, Lepiku M, Morgan DO, Loog M. Dynamics of Cdk1 substrate specificity during the cell cycle. Mol Cell 2011; 42(5):610-23; PMID:21658602; http://dx.doi.org/10.1016/j.molcel.2011.05.016
  • Trelogan SA, Martin SL. Tightly regulated, developmentally specific expression of the first open reading frame from LINE-1 during mouse embryogenesis. Proc Natl Acad Sci USA 1995; 92(5):1520-4; PMID:7878012; http://dx.doi.org/10.1073/pnas.92.5.1520
  • Kano H, Godoy I, Courtney C, Vetter MR, Gerton GL, Ostertag EM, Kazazian HH Jr. L1 retrotransposition occurs mainly in embryogenesis and creates somatic mosaicism. Genes & Development 2009; 23(11):1303-12; PMID:19487571; http://dx.doi.org/10.1101/gad.1803909
  • Iakoucheva LM, Brown CJ, Lawson JD, Obradović Z, Dunker AK. Intrinsic disorder in cell-signaling and cancer-associated proteins. J Mol Biol 2002; 323(3):573-84; PMID:12381310; http://dx.doi.org/10.1016/S0022-2836(02)00969-5
  • Dunker AK, Brown CJ, Lawson JD, Iakoucheva LM, Obradović Z. Intrinsic disorder and protein function. Biochemistry 2002; 41(21):6573-82; PMID:12022860; http://dx.doi.org/10.1021/bi012159+
  • Radivojac P, Obradovic Z, Smith DK, Zhu G, Vucetic S, Brown CJ, Lawson JD, Dunker AK. Protein flexibility and intrinsic disorder. Protein Sci 2004; 13(1):71-80; PMID:14691223; http://dx.doi.org/10.1110/ps.03128904
  • Iakoucheva LM, Radivojac P, Brown CJ, O'Connor TR, Sikes JG, Obradovic Z, Dunker AK. The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 2004; 32(3):1037-49; PMID:14960716; http://dx.doi.org/10.1093/nar/gkh253
  • Radivojac P, Iakoucheva LM, Oldfield CJ, Obradovic Z, Uversky VN, Dunker AK. Intrinsic disorder and functional proteomics. Biophys J 2007; 92(5):1439-56; PMID:17158572; http://dx.doi.org/10.1529/biophysj.106.094045
  • Lobanov MY, Shoemaker BA, Garbuzynskiy SO, Fong JH, Panchenko AR, Galzitskaya OV. ComSin: database of protein structures in bound (complex) and unbound (single) states in relation to their intrinsic disorder. Nucleic Acids Res 2010; 38(Database issue):D283-7; PMID:19906708; http://dx.doi.org/10.1093/nar/gkp963
  • Fong JH, Panchenko AR. Intrinsic disorder and protein multibinding in domain, terminal, and linker regions. Mol Biosyst 2010; 6(10):1821-8; PMID:20544079; http://dx.doi.org/10.1039/c005144f
  • Buchan DW, Minneci F, Nugent TC, Bryson K, Jones DT. Scalable web services for the PSIPRED Protein Analysis Workbench. Nucleic Acids Res 2013; 41(Web Server issue):W349-57; PMID:23748958; http://dx.doi.org/10.1093/nar/gkt381
  • Mandell DJ, Chorny I, Groban ES, Wong SE, Levine E, Rapp CS, Jacobson MP. Strengths of hydrogen bonds involving phosphorylated amino acid side chains. J Am Chem Soc 2007; 129(4):820-7; PMID:17243818; http://dx.doi.org/10.1021/ja063019w
  • Goodier JL, Cheung LE, Kazazian, Jr. HH. Mapping the LINE1 ORF1 protein interactome reveals associated inhibitors of human retrotransposition. Nucleic Acids Res 2013; 41(15):7401-19; PMID:23749060; http://dx.doi.org/10.1093/nar/gkt512
  • Moldovan J, Moran J, Malik H. The zinc-finger antiviral protein ZAP inhibits LINE and alu retrotransposition. PLOS Genetics 2015; 11(5):e1005121; PMID:25951186; http://dx.doi.org/10.1371/journal.pgen.1005121
  • Goodier J, Pereira GC, Cheung LE, Rose RJ, Kazazian HH Jr. The broad-spectrum antiviral protein ZAP restricts human retrotransposition. PLOS Genetics 2015; 11(5):e1005252; PMID:26001115; http://dx.doi.org/10.1371/journal.pgen.1005252

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.