1,803
Views
9
CrossRef citations to date
0
Altmetric
Methods and Technologies

An optimized TALEN application for mutagenesis and screening in Drosophila melanogaster

, , &
Article: e1023423 | Received 05 Mar 2014, Accepted 21 Feb 2015, Published online: 05 May 2015

References

  • Beumer K, Bhattacharyya G, Bibikova M, Trautman JK, Carroll D. Efficient gene targeting in Drosophila with zinc-finger nucleases. Genetics 2006; 172:2391-403; PMID:16452139; http://dx.doi.org/10.1534/genetics.105.052829
  • Beumer KJ, Trautman JK, Mukherjee K, Carroll D. Donor DNA Utilization during Gene Targeting with Zinc-finger Nucleases. G3 (Bethesda) 2013; 3:657-64; PMID:23550125; http://dx.doi.org/10.1534/g3.112.005439
  • Liu J, Li C, Yu Z, Huang P, Wu H, Wei C, Zhu N, Shen Y, Chen Y, Zhang B, et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics 2012; 39:209-15; PMID:22624882; http://dx.doi.org/10.1016/j.jgg.2012.04.003
  • Kondo T, Sakuma T, Wada H, Akimoto-Kato A, Yamamoto T, Hayashi S. TALEN-induced gene knock out in Drosophila. Dev Growth Differ 2014; 56:86-91; PMID:24172335; http://dx.doi.org/10.1111/dgd.12097
  • Beumer KJ, Trautman JK, Christian M, Dahlem TJ, Lake CM, Hawley RS, Grunwald DJ, Voytas DF, Carroll D. Comparing zinc finger nucleases and transcription activator-like effector nucleases for gene targeting in Drosophila. G3 (Bethesda) 2013; 3:1717-25; PMID:23979928; http://dx.doi.org/full_text
  • Baena-Lopez LA, Alexandre C, Mitchell A, Pasakarnis L, Vincent JP. Accelerated homologous recombination and subsequent genome modification in Drosophila. Development 2013; 140:4818-25; PMID:24154526; http://dx.doi.org/10.1242/dev.100933
  • Bassett AR, Tibbit C, Ponting CP, Liu JL. Highly efficient targeted mutagenesis of Drosophila with the CRISPR/Cas9 system. Cell Rep 2013; 4:220-8; PMID:23827738; http://dx.doi.org/10.1016/j.celrep.2013.06.020
  • Gratz SJ, Cummings AM, Nguyen JN, Hamm DC, Donohue LK, Harrison MM, Wildonger J, O'Connor-Giles KM. Genome engineering of Drosophila with the CRISPR RNA-guided Cas9 nuclease. Genetics 2013; 194:1029-35; PMID:23709638; http://dx.doi.org/10.1534/genetics.113.152710
  • Yu Z, Ren M, Wang Z, Zhang B, Rong YS, Jiao R, Gao G. Highly efficient genome modifications mediated by CRISPR/Cas9 in Drosophila. Genetics 2013; 195:289-91; PMID:23833182; http://dx.doi.org/10.1534/genetics.113.153825
  • Sebo ZL, Lee HB, Peng Y, Guo Y. A simplified and efficient germline-specific CRISPR/Cas9 system for Drosophila genomic engineering. Fly (Austin) 2013; 8:52-7; PMID:24141137
  • Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O'Connor-Giles KM. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in drosophila. Genetics 2014; 196:961-71; PMID:24478335
  • Kondo S, Ueda R.. Highly improved gene targeting by germline-specific Cas9 expression in Drosophila. Genetics. 2013 Nov; 195(3):715-21. doi: 10.1534/genetics.113.156737. Epub 2013
  • Campbell JM, Hartjes KA, Nelson TJ, Xu X, Ekker SC. New and TALENted genome engineering toolbox. Circ Res 2013; 113:571-87; PMID:23948583; http://dx.doi.org/10.1161/CIRCRESAHA.113.301765
  • Blackburn PR, Campbell JM, Clark KJ, Ekker SC. The CRISPR system–keeping zebrafish gene targeting fresh. Zebrafish 2013; 10:116-8; PMID:23536990; http://dx.doi.org/10.1089/zeb.2013.9999
  • Gaj T, Gersbach CA, Barbas CF, 3rd. ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 2013; 31:397-405; PMID:23664777; http://dx.doi.org/10.1016/j.tibtech.2013.04.004
  • Boch J, Scholze H, Schornack S, Landgraf A, Hahn S, Kay S, Lahaye T, Nickstadt A, Bonas U. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 2009; 326:1509-12; PMID:19933107; http://dx.doi.org/10.1126/science.1178811
  • Moscou MJ, Bogdanove AJ. A simple cipher governs DNA recognition by TAL effectors. Science 2009; 326:1501; PMID:19933106; http://dx.doi.org/10.1126/science.1178817
  • Ma AC, Lee HB, Clark KJ, Ekker SC. High efficiency In Vivo genome engineering with a simplified 15-RVD GoldyTALEN design. PLoS One 2013; 8:e65259; PMID:23734242; http://dx.doi.org/10.1371/journal.pone.0065259
  • Streubel J, Blucher C, Landgraf A, Boch J. TAL effector RVD specificities and efficiencies. Nat Biotechnol 2012; 30:593-5; PMID:22781676; http://dx.doi.org/10.1038/nbt.2304
  • Christian M, Cermak T, Doyle EL, Schmidt C, Zhang F, Hummel A, Bogdanove AJ, Voytas DF. Targeting DNA double-strand breaks with TAL effector nucleases. Genetics 2010; 186:757-61; PMID:20660643; http://dx.doi.org/10.1534/genetics.110.120717
  • Miller JC, Tan S, Qiao G, Barlow KA, Wang J, Xia DF, Meng X, Paschon DE, Leung E, Hinkley SJ, et al. A TALE nuclease architecture for efficient genome editing. Nat Biotechnol 2011; 29:143-8; PMID:21179091; http://dx.doi.org/10.1038/nbt.1755
  • Li T, Huang S, Jiang WZ, Wright D, Spalding MH, Weeks DP, Yang B. TAL nucleases (TALNs): hybrid proteins composed of TAL effectors and FokI DNA-cleavage domain. Nucleic Acids Res 2011; 39:359-72; PMID:20699274; http://dx.doi.org/10.1093/nar/gkq704
  • Kim YG, Cha J, Chandrasegaran S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc Natl Acad Sci U S A 1996; 93:1156-60; PMID:8577732; http://dx.doi.org/10.1073/pnas.93.3.1156
  • Smith J, Bibikova M, Whitby FG, Reddy AR, Chandrasegaran S, Carroll D. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res 2000; 28:3361-9; PMID:10954606; http://dx.doi.org/10.1093/nar/28.17.3361
  • Bibikova M, Carroll D, Segal DJ, Trautman JK, Smith J, Kim YG, Chandrasegaran S. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol Cell Biol 2001; 21:289-97; PMID:11113203; http://dx.doi.org/10.1128/MCB.21.1.289-297.2001
  • Huang P, Xiao A, Zhou M, Zhu Z, Lin S, Zhang B. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol 2011; 29:699-700; PMID:21822242; http://dx.doi.org/10.1038/nbt.1939
  • Bedell VM, Wang Y, Campbell JM, Poshusta TL, Starker CG, Krug RG2nd, Tan W, Penheiter SG, Ma AC, Leung AY, et al. In vivo genome editing using a high-efficiency TALEN system. Nature 2012; 491:114-8; PMID:23000899; http://dx.doi.org/10.1038/nature11537
  • Zu Y, Tong X, Wang Z, Liu D, Pan R, Li Z, Hu Y, Luo Z, Huang P, Wu Q, et al. TALEN-mediated precise genome modification by homologous recombination in zebrafish. Nat Methods 2013; 10:329-31; PMID:23435258; http://dx.doi.org/10.1038/nmeth.2374
  • Choi SM, Kim Y, Shim JS, Park JT, Wang RH, Leach SD, Liu JO, Deng C, Ye Z, Jang YY. Efficient drug screening and gene correction for treating liver disease using patient-specific stem cells. Hepatology 2013; 57:2458-68; PMID:23325555; http://dx.doi.org/10.1002/hep.26237
  • Sander JD, Cade L, Khayter C, Reyon D, Peterson RT, Joung JK, Yeh JR. Targeted gene disruption in somatic zebrafish cells using engineered TALENs. Nat Biotechnol 2011; 29:697-8; PMID:21822241; http://dx.doi.org/10.1038/nbt.1934
  • Cade L, Reyon D, Hwang WY, Tsai SQ, Patel S, Khayter C, Joung JK, Sander JD, Peterson RT, Yeh JR. Highly efficient generation of heritable zebrafish gene mutations using homo- and heterodimeric TALENs. Nucleic Acids Res 2012; 40:8001-10; PMID:22684503; http://dx.doi.org/10.1093/nar/gks518
  • Ewart GD, Cannell D, Cox GB, Howells AJ. Mutational analysis of the traffic ATPase (ABC) transporters involved in uptake of eye pigment precursors in Drosophila melanogaster. Implications for structure-function relationships. J Biol Chem 1994; 269:10370-7; PMID:8144619
  • Qiu P, Shandilya H, D'Alessio JM, O'Connor K, Durocher J, Gerard GF. Mutation detection using Surveyor nuclease. Biotechniques 2004; 36:702-7; PMID:15088388
  • Guschin DY, Waite AJ, Katibah GE, Miller JC, Holmes MC, Rebar EJ. A rapid and general assay for monitoring endogenous gene modification. Methods Mol Biol 2010; 649:247-56; PMID:20680839; http://dx.doi.org/10.1007/978-1-60761-753-2_15
  • Goodarzi AA, Jeggo PA. The repair and signaling responses to DNA double-strand breaks. Adv Genet 2013; 82:1-45; PMID:23721719; http://dx.doi.org/10.1016/B978-0-12-407676-1.00001-9
  • Chapman JR, Taylor MR, Boulton SJ. Playing the end game: DNA double-strand break repair pathway choice. Mol Cell 2012; 47:497-510; PMID:22920291; http://dx.doi.org/10.1016/j.molcel.2012.07.029
  • Pastink A, Eeken JC, Lohman PH. Genomic integrity and the repair of double-strand DNA breaks. Mutat Res 2001; 480-481:37-50; PMID:11506797
  • Karran P. DNA double strand break repair in mammalian cells. Curr Opin Genet Dev 2000; 10:144-50; PMID:10753787; http://dx.doi.org/10.1016/S0959-437X(00)00069-1
  • Gorski MM, Eeken JC, de Jong AW, Klink I, Loos M, Romeijn RJ, van Veen BL, Mullenders LH, Ferro W, Pastink A. The Drosophila melanogaster DNA Ligase IV gene plays a crucial role in the repair of radiation-induced DNA double-strand breaks and acts synergistically with Rad54. Genetics 2003; 165:1929-41; PMID:14704177
  • McVey M, Radut D, Sekelsky JJ. End-joining repair of double-strand breaks in Drosophila melanogaster is largely DNA ligase IV independent. Genetics 2004; 168:2067-76; PMID:15611176; http://dx.doi.org/10.1534/genetics.104.033902
  • Wei DS, Rong YS. A genetic screen for DNA double-strand break repair mutations in Drosophila. Genetics 2007; 177:63-77; PMID:17660539; http://dx.doi.org/10.1534/genetics.107.077693
  • Johnson-Schlitz DM, Flores C, Engels WR. Multiple-pathway analysis of double-strand break repair mutations in Drosophila. PLoS Genet 2007; 3:e50; PMID:17432935; http://dx.doi.org/10.1371/journal.pgen.0030050
  • Beumer KJ, Trautman JK, Bozas A, Liu JL, Rutter J, Gall JG, Carroll D. Efficient gene targeting in Drosophila by direct embryo injection with zinc-finger nucleases. Proc Natl Acad Sci U S A 2008; 105:19821-6; PMID:19064913; http://dx.doi.org/10.1073/pnas.0810475105
  • Bozas A, Beumer KJ, Trautman JK, Carroll D. Genetic analysis of zinc-finger nuclease-induced gene targeting in Drosophila. Genetics 2009; 182:641-51; PMID:19380480; http://dx.doi.org/10.1534/genetics.109.101329
  • Hsu PD, Lander ES, Zhang F. Development and applications of CRISPR-Cas9 for genome engineering. Cell 2014; 157:1262-78; PMID:24906146; http://dx.doi.org/10.1016/j.cell.2014.05.010
  • Port F, Chen HM, Lee T, Bullock SL. Optimized CRISPR/Cas tools for efficient germline and somatic genome engineering in Drosophila. Proc Natl Acad Sci U S A 2014; 111:E2967-76; PMID:25002478; http://dx.doi.org/10.1073/pnas.1405500111
  • Dahlem TJ, Hoshijima K, Jurynec MJ, Gunther D, Starker CG, Locke AS, Weis AM, Voytas DF, Grunwald DJ. Simple methods for generating and detecting locus-specific mutations induced with TALENs in the zebrafish genome. PLoS Genet 2012; 8:e1002861; PMID:22916025; http://dx.doi.org/10.1371/journal.pgen.1002861
  • Reyon D, Tsai SQ, Khayter C, Foden JA, Sander JD, Joung JK. FLASH assembly of TALENs for high-throughput genome editing. Nat Biotechnol 2012; 30:460-5; PMID:22484455; http://dx.doi.org/10.1038/nbt.2170
  • Kim HJ, Lee HJ, Kim H, Cho SW, Kim JS. Targeted genome editing in human cells with zinc finger nucleases constructed via modular assembly. Genome Res 2009; 19:1279-88; PMID:19470664; http://dx.doi.org/10.1101/gr.089417.108
  • Hisano Y, Ota S, Arakawa K, Muraki M, Kono N, Oshita K, Sakuma T, Tomita M, Yamamoto T, Okada Y, et al. Quantitative assay for TALEN activity at endogenous genomic loci. Biol Open 2013; 2:363-7; PMID:23616919; http://dx.doi.org/10.1242/bio.20133871
  • Miller JC, Holmes MC, Wang J, Guschin DY, Lee YL, Rupniewski I, Beausejour CM, Waite AJ, Wang NS, Kim KA, et al. An improved zinc-finger nuclease architecture for highly specific genome editing. Nat Biotechnol 2007; 25:778-85; PMID:17603475; http://dx.doi.org/10.1038/nbt1319
  • Carmon A, Guertin MJ, Grushko O, Marshall B, MacIntyre R. A molecular analysis of mutations at the complex dumpy locus in Drosophila melanogaster. PLoS One 2010; 5:e12319; PMID:20811586; http://dx.doi.org/10.1371/journal.pone.0012319
  • Watanabe T, Ochiai H, Sakuma T, Horch HW, Hamaguchi N, Nakamura T, Bando T, Ohuchi H, Yamamoto T, Noji S, et al. Non-transgenic genome modifications in a hemimetabolous insect using zinc-finger and TAL effector nucleases. Nat Commun 2012; 3:1017; PMID:22910363; http://dx.doi.org/10.1038/ncomms2020
  • Cermak T, Doyle EL, Christian M, Wang L, Zhang Y, Schmidt C, Baller JA, Somia NV, Bogdanove AJ, Voytas DF. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res 2011; 39:e82; PMID:21493687; http://dx.doi.org/10.1093/nar/gkr218
  • Ansai S, Sakuma T, Yamamoto T, Ariga H, Uemura N, Takahashi R, Kinoshita M. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. Genetics 2013; 193:739-49; PMID:23288935; http://dx.doi.org/10.1534/genetics.112.147645
  • Sung YH, Baek IJ, Kim DH, Jeon J, Lee J, Lee K, Jeong D, Kim JS, Lee HW. Knockout mice created by TALEN-mediated gene targeting. Nat Biotechnol 2013; 31:23-4; PMID:23302927; http://dx.doi.org/10.1038/nbt.2477
  • Romeijn RJ, Gorski MM, van Schie MA, Noordermeer JN, Mullenders LH, Ferro W, Pastink A. Lig4 and rad54 are required for repair of DNA double-strand breaks induced by P-element excision in Drosophila. Genetics 2005; 169:795-806; PMID:15545651; http://dx.doi.org/10.1534/genetics.104.033464
  • White TB, Lambowitz AM. The retrohoming of linear group II intron RNAs in Drosophila melanogaster occurs by both DNA ligase 4-dependent and -independent mechanisms. PLoS Genet 2012; 8:e1002534; PMID:22359518; http://dx.doi.org/10.1371/journal.pgen.1002534
  • Frit P, Barboule N, Yuan Y, Gomez D, Calsou P. Alternative end-joining pathway(s): bricolage at DNA breaks. DNA Repair (Amst) 2014; 17:81-97; PMID:24613763; http://dx.doi.org/10.1016/j.dnarep.2014.02.007
  • Alvarez-Quilon A, Serrano-Benitez A, Lieberman JA, Quintero C, Sanchez-Gutierrez D, Escudero LM, Cortes-Ledesma F. ATM specifically mediates repair of double-strand breaks with blocked DNA ends. Nat Commun 2014; 5:3347; PMID:24572510; http://dx.doi.org/10.1038/ncomms4347
  • Neff KL, Argue DP, Ma AC, Lee HB, Clark KJ, Ekker SC. Mojo Hand, a TALEN design tool for genome editing applications. BMC Bioinformatics 2013; 14:1; PMID:23323762; http://dx.doi.org/10.1186/1471-2105-14-1
  • Peng Y, Clark KJ, Campbell JM, Panetta MR, Guo Y, Ekker SC. Making designer mutants in model organisms. Development 2014; 141:4042-54; PMID:25336735; http://dx.doi.org/10.1242/dev.102186