2,279
Views
25
CrossRef citations to date
0
Altmetric
Review

Diacylglycerol kinases in membrane trafficking

, &
Article: e1078431 | Received 04 Jun 2015, Accepted 24 Jul 2015, Published online: 11 Sep 2015

References

  • Badola P, Sanders CR, 2nd, Escherichia coli diacylglycerol kinase is an evolutionarily optimized membrane enzyme and catalyzes direct phosphoryl transfer. J Biol Chem 1997; 272(39):24176-82; PMID:9305868; http://dx.doi.org/10.1074/jbc.272.39.24176
  • Gomez-Merino FC, Brearley CA, Ornatowska M, Abdel-Haliem ME, Zanor MI, Mueller-Roeber B, et al. AtDGK2, a novel diacylglycerol kinase from Arabidopsis thaliana, phosphorylates 1-stearoyl-2-arachidonoyl-sn-glycerol and 1,2-dioleoyl-sn-glycerol and exhibits cold-inducible gene expression. J Biol Chem 2004; 279(9):8230-41; PMID:14665624; http://dx.doi.org/10.1074/jbc.M312187200
  • Harden N, Yap SF, Chiam MA, Lim L, et al. A Drosophila gene encoding a protein with similarity to diacylglycerol kinase is expressed in specific neurons. Biochem J 1993; 289(Pt 2):439-44; PMID:8380995
  • Jose AM, Koelle MR. Domains, amino acid residues, and new isoforms of Caenorhabditis elegans diacylglycerol kinase 1 (DGK-1) important for terminating diacylglycerol signaling in vivo. J Biol Chem 2005; 280(4):2730-6; PMID:15563467; http://dx.doi.org/10.1074/jbc.M409460200
  • Arisz SA, Munnik T. Diacylglycerol kinase, in Lipid signaling in plants. 2010, Springer. 107-114.
  • Topham MK, Prescott SM. Mammalian diacylglycerol kinases, a family of lipid kinases with signaling functions. J Biol Chem 1999; 274(17):11447-50; PMID:10206945; http://dx.doi.org/10.1074/jbc.274.17.11447
  • Masai I, Hosoya T, Kojima S, Hotta Y, et al. Molecular cloning of a Drosophila diacylglycerol kinase gene that is expressed in the nervous system and muscle. Proc Natl Acad Sci U S A 1992; 89(13):6030-4; PMID:1321433; http://dx.doi.org/10.1073/pnas.89.13.6030
  • Arisz SA, Testerink C, Munnik T. Plant PA signaling via diacylglycerol kinase. Biochim Biophys Acta 2009; 1791(9):869-75; PMID:19394438; http://dx.doi.org/10.1016/j.bbalip.2009.04.006
  • Han GS, O'Hara L, Siniossoglou S, Carman GM, et al. Characterization of the yeast DGK1-encoded CTP-dependent diacylglycerol kinase. J Biol Chem 2008; 283(29):20443-53; PMID:18458076; http://dx.doi.org/10.1074/jbc.M802866200
  • Sakane F, Imai S, Kai M, Wada I, Kanoh H, et al. Molecular cloning of a novel diacylglycerol kinase isozyme with a pleckstrin homology domain and a C-terminal tail similar to those of the EPH family of protein-tyrosine kinases. J Biol Chem 1996; 271(14):8394-401; PMID:8626538; http://dx.doi.org/10.1074/jbc.271.14.8394
  • Klauck TM, Xu X, Mousseau B, Jaken S, et al. Cloning and characterization of a glucocorticoid-induced diacylglycerol kinase. J Biol Chem 1996; 271(33):19781-8; PMID:8702685; http://dx.doi.org/10.1074/jbc.271.33.19781
  • Goto K, Kondo H. Molecular cloning and expression of a 90-kDa diacylglycerol kinase that predominantly localizes in neurons. Proc Natl Acad Sci U S A 1993; 90(16):7598-602; PMID:7689223; http://dx.doi.org/10.1073/pnas.90.16.7598
  • Kai M, Sakane F, Imai S, Wada I, Kanoh H, et al. Molecular cloning of a diacylglycerol kinase isozyme predominantly expressed in human retina with a truncated and inactive enzyme expression in most other human cells. J Biol Chem 1994; 269(28):18492-8; PMID:8034597
  • Tang W, Bunting M, Zimmerman GA, McIntyre TM, Prescott SM et al. Molecular cloning of a novel human diacylglycerol kinase highly selective for arachidonate-containing substrates. J Biol Chem 1996; 271(17):10237-41; PMID:8626589; http://dx.doi.org/10.1074/jbc.271.17.10230
  • Bunting M, Tang W, Zimmerman GA, McIntyre TM, Prescott SM et al. Molecular cloning and characterization of a novel human diacylglycerol kinase zeta. J Biol Chem 1996; 271(17):10230-6; PMID:8626588; http://dx.doi.org/10.1074/jbc.271.17.10237
  • Ding L, Traer E, McIntyre TM, Zimmerman GA, Prescott SM et al. The cloning and characterization of a novel human diacylglycerol kinase, DGKiota. J Biol Chem 1998; 273(49):32746-52; PMID:9830018; http://dx.doi.org/10.1074/jbc.273.49.32746
  • Houssa B, Schaap D, van der Wal J, Goto K, Kondo H, Yamakawa A, Shibata M, Takenawa T, van Blitterswijk WJ et al. Cloning of a novel human diacylglycerol kinase (DGKtheta) containing three cysteine-rich domains, a proline-rich region, and a pleckstrin homology domain with an overlapping Ras-associating domain. J Biol Chem 1997; 272(16):10422-8; PMID:9099683; http://dx.doi.org/10.1074/jbc.272.16.10422
  • Sakane F, Yamada K, Kanoh H, Yokoyama C, Tanabe T et al. Porcine diacylglycerol kinase sequence has zinc finger and E-F hand motifs. Nature 1990; 344(6264):345-8; PMID:2156169; http://dx.doi.org/10.1038/344345a0
  • Imai S, Kai M, Yasuda S, Kanoh H, Sakane F et al. Identification and characterization of a novel human type II diacylglycerol kinase, DGK kappa. J Biol Chem 2005; 280(48):39870-81; PMID:16210324; http://dx.doi.org/10.1074/jbc.M500669200
  • Hurley JH, Newton AC, Parker PJ, Blumberg PM, Nishizuka Y et al. Taxonomy and function of C1 protein kinase C homology domains. Protein Sci 1997; 6(2):477-80; PMID:9041654; http://dx.doi.org/10.1002/pro.5560060228
  • Yamada K, Sakane F, Matsushima N, Kanoh H et al. EF-hand motifs of α, β and gamma isoforms of diacylglycerol kinase bind calcium with different affinities and conformational changes. Biochem J 1997; 321(Pt 1):59-64; PMID:9003401
  • Sanjuan MA, Jones DR, Izquierdo M, Mérida I et al. Role of diacylglycerol kinase α in the attenuation of receptor signaling. J Cell Biol 2001; 153(1):207-20; PMID:11285286; http://dx.doi.org/10.1083/jcb.153.1.207
  • Nagaya H, Wada I, Jia YJ, Kanoh H et al. Diacylglycerol kinase delta suppresses ER-to-Golgi traffic via its SAM and PH domains. Mol Biol Cell 2002; 13(1):302-16; PMID:11809841; http://dx.doi.org/10.1091/mbc.01-05-0255
  • Shulga YV, Topham MK, Epand RM. Substrate specificity of diacylglycerol kinase-epsilon and the phosphatidylinositol cycle. FEBS Lett 2011; 585(24):4025-8; PMID:22108654; http://dx.doi.org/10.1016/j.febslet.2011.11.016
  • Jennings W, Doshi S, D'Souza K, Epand RM et al. Molecular properties of diacylglycerol kinase-epsilon in relation to function. Chem Phys Lipids 2015; PMID:26134136
  • Topham MK, Bunting M, Zimmerman GA, McIntyre TM, Blackshear PJ, Prescott SM et al. Protein kinase C regulates the nuclear localization of diacylglycerol kinase-zeta. Nature 1998; 394(6694):697-700; PMID:9716136; http://dx.doi.org/10.1038/29337
  • Hogan A, Shepherd L, Chabot J, Quenneville S, Prescott SM, Topham MK, Gee SH et al. Interaction of gamma 1-syntrophin with diacylglycerol kinase-zeta. Regulation of nuclear localization by PDZ interactions. J Biol Chem 2001; 276(28):26526-33; PMID:11352924; http://dx.doi.org/10.1074/jbc.M104156200
  • Shirai Y, Kouzuki T, Kakefuda K, Moriguchi S, Oyagi A, Horie K, Morita SY, Shimazawa M, Fukunaga K, Takeda J et al. Essential role of neuron-enriched diacylglycerol kinase (DGK), DGKbeta in neurite spine formation, contributing to cognitive function. PLoS One 2010; 5(7):e11602; PMID:20657643; http://dx.doi.org/10.1371/journal.pone.0011602
  • Sakai H, Sakane F. Recent progress on type II diacylglycerol kinases: the physiological functions of diacylglycerol kinase delta, eta and kappa and their involvement in disease. J Biochem 2012; 152(5):397-406; PMID:22984004; http://dx.doi.org/10.1093/jb/mvs104
  • Chibalin AV, Leng Y, Vieira E, Krook A, Björnholm M, Long YC, Kotova O, Zhong Z, Sakane F, Steiler T et al. Downregulation of diacylglycerol kinase delta contributes to hyperglycemia-induced insulin resistance. Cell 2008; 132(3):375-86; PMID:18267070; http://dx.doi.org/10.1016/j.cell.2007.12.035
  • Goto K, Kondo H. A 104-kDa diacylglycerol kinase containing ankyrin-like repeats localizes in the cell nucleus. Proc Natl Acad Sci U S A 1996; 93(20):11196-201; PMID:8855332; http://dx.doi.org/; http://dx.doi.org/10.1073/pnas.93.20.11196
  • Zha Y, Marks R, Ho AW, Peterson AC, Janardhan S, Brown I, Praveen K, Stang S, Stone JC, Gajewski TF et al. T cell anergy is reversed by active Ras and is regulated by diacylglycerol kinase-α. Nat Immunol 2006; 7(11):1166-73; PMID:17028589; http://dx.doi.org/10.1038/ni1394
  • Zhong XP, Hainey EA, Olenchock BA, Jordan MS, Maltzman JS, Nichols KE, Shen H, Koretzky GA et al., Enhanced T cell responses due to diacylglycerol kinase zeta deficiency. Nat Immunol 2003; 4(9):882-90; PMID:12883552; http://dx.doi.org/10.1038/ni958
  • Kakefuda K, Oyagi A, Ishisaka M, Tsuruma K, Shimazawa M, Yokota K, Shirai Y, Horie K, Saito N, Takeda J et al. Diacylglycerol kinase β knockout mice exhibit lithium-sensitive behavioral abnormalities. PLoS One 2010; 5(10):e13447; PMID:20976192; http://dx.doi.org/10.1371/journal.pone.0013447
  • Mukherjee S, Zeitouni S, Cavarsan CF, Shapiro LA et al. Increased seizure susceptibility in mice 30 days after fluid percussion injury. Front Neurol 2013; 4:28; PMID:23519723; http://dx.doi.org/10.3389/fneur.2013.00028
  • Rodriguez de Turco EB, Tang W, Topham MK, Sakane F, Marcheselli VL, Chen C, Taketomi A, Prescott SM, Bazan NG et al. Diacylglycerol kinase epsilon regulates seizure susceptibility and long-term potentiation through arachidonoyl- inositol lipid signaling. Proc Natl Acad Sci U S A 2001; 98(8):4740-5; PMID:11287665; http://dx.doi.org/10.1073/pnas.081536298
  • Besterman JM, Pollenz RS, Booker EL Jr, Cuatrecasas P et al. Diacylglycerol-induced translocation of diacylglycerol kinase: use of affinity-purified enzyme in a reconstitution system. Proc Natl Acad Sci U S A 1986; 83(24):9378-82; PMID:3025839; http://dx.doi.org/10.1073/pnas.83.24.9378
  • Cipres A, Carrasco S, Merino E, Díaz E, Krishna UM, Falck JR, Martínez AC, Mérida I et al. Regulation of diacylglycerol kinase α by phosphoinositide 3-kinase lipid products. J Biol Chem 2003; 278(37):35629-35; PMID:12832407; http://dx.doi.org/10.1074/jbc.M305635200
  • Cutrupi S, Baldanzi G, Gramaglia D, Maffè A, Schaap D, Giraudo E, van Blitterswijk W, Bussolino F, Comoglio PM, Graziani A et al. Src-mediated activation of α-diacylglycerol kinase is required for hepatocyte growth factor-induced cell motility. EMBO J 2000; 19(17):4614-22; PMID:10970854; http://dx.doi.org/10.1093/emboj/19.17.4614
  • Yamaguchi Y, Shirai Y, Matsubara T, Sanse K, Kuriyama M, Oshiro N, Yoshino K, Yonezawa K, Ono Y, Saito N et al. Phosphorylation and upregulation of diacylglycerol kinase gamma via its interaction with protein kinase C gamma. J Biol Chem 2006; 281(42):31627-37; PMID:16905533; http://dx.doi.org/10.1074/jbc.M606992200
  • Flores I, Casaseca T, Martinez A C, Kanoh H, Merida I et al. Phosphatidic acid generation through interleukin 2 (IL-2)-induced α-diacylglycerol kinase activation is an essential step in IL-2-mediated lymphocyte proliferation. J Biol Chem 1996; 271(17):10334-40; PMID:8626603; http://dx.doi.org/10.1074/jbc.271.17.10334
  • Schaap D, van der Wal J, van Blitterswijk WJ, van der Bend RL, Ploegh HL et al. Diacylglycerol kinase is phosphorylated in vivo upon stimulation of the epidermal growth factor receptor and serine/threonine kinases, including protein kinase C-epsilon. Biochem J 1993; 289(Pt 3):875-81; PMID:7679574
  • Chianale F, Rainero E, Cianflone C, Bettio V, Pighini A, Porporato PE, Filigheddu N, Serini G, Sinigaglia F, Baldanzi G et al. Diacylglycerol kinase α mediates HGF-induced Rac activation and membrane ruffling by regulating atypical PKC and RhoGDI. Proc Natl Acad Sci U S A 2010; 107(9): 4182-7; PMID:20160093; http://dx.doi.org/10.1073/pnas.0908326107
  • Maeda Y, Beznoussenko GV, Van Lint J, Mironov AA, Malhotra V et al. Recruitment of protein kinase D to the trans-Golgi network via the first cysteine-rich domain. EMBO J 2001; 20(21):5982-90; PMID:11689438; http://dx.doi.org/10.1093/emboj/20.21.5982
  • Diaz Anel AM, Malhotra V. PKCeta is required for beta1gamma2/beta3gamma2- and PKD-mediated transport to the cell surface and the organization of the Golgi apparatus. J Cell Biol 2005; 169(1):83-91; PMID:15824133; http://dx.doi.org/10.1083/jcb.200412089
  • Simon JP, Ivanov IE, Adesnik M, Sabatini DD et al. The production of post-Golgi vesicles requires a protein kinase C-like molecule, but not its phosphorylating activity. J Cell Biol 1996; 135(2):355-70; PMID:8896594; http://dx.doi.org/10.1083/jcb.135.2.355
  • Vicinanza M, D'Angelo G, Di Campli A, De Matteis MA et al. Function and dysfunction of the PtdIns system in membrane trafficking. EMBO J 2008; 27(19):2457-70; PMID:18784754; http://dx.doi.org/10.1038/emboj.2008.169
  • Clapham DE. Calcium signaling. Cell 2007; 131(6):1047-58; PMID:18083096; http://dx.doi.org/10.1016/j.cell.2007.11.028
  • Kooijman EE, Chupin V, de Kruijff B, Burger KN et al. Modulation of membrane curvature by phosphatidic acid and lysophosphatidic acid. Traffic 2003; 4(3):162-74; PMID:12656989; http://dx.doi.org/10.1034/j.1600-0854.2003.00086.x
  • Rainero E, Caswell PT, Muller PA, Grindlay J, McCaffrey MW, Zhang Q, Wakelam MJ, Vousden KH, Graziani A, Norman JC et al. Diacylglycerol kinase α controls RCP-dependent integrin trafficking to promote invasive migration. J Cell Biol 2012; 196(2):277-95; PMID:22270919; http://dx.doi.org/10.1083/jcb.201109112
  • Giridharan SS, Cai B, Vitale N, Naslavsky N, Caplan S et al. Cooperation of MICAL-L1, syndapin2, and phosphatidic acid in tubular recycling endosome biogenesis. Mol Biol Cell 2013; 24(11):1776-90, S1-15; PMID:23596323; http://dx.doi.org/10.1091/mbc.E13-01-0026
  • Rincon E, Santos T, Avila-Flores A, Albar JP, Lalioti V, Lei C, Hong W, Mérida I et al. Proteomics identification of sorting nexin 27 as a diacylglycerol kinase zeta-associated protein: new diacylglycerol kinase roles in endocytic recycling. Mol Cell Proteomics 2007; 6(6):1073-87; PMID:17351151; http://dx.doi.org/10.1074/mcp.M700047-MCP200
  • Mayorga LS, Tomes CN, Belmonte SA. Acrosomal exocytosis, a special type of regulated secretion. IUBMB Life 2007; 59(4-5):286-92; PMID:17505967; http://dx.doi.org/10.1080/15216540701222872
  • Roldan ER, Harrison RA. The role of diacylglycerol in the exocytosis of the sperm acrosome. Studies using diacylglycerol lipase and diacylglycerol kinase inhibitors and exogenous diacylglycerols. Biochem J 1992; 281(Pt 3):767-73; PMID:1311174
  • Lopez CI, Pelletán LE, Suhaiman L, De Blas GA, Vitale N, Mayorga LS, Belmonte SA et al. Diacylglycerol stimulates acrosomal exocytosis by feeding into a PKC- and PLD1-dependent positive loop that continuously supplies phosphatidylinositol 4,5-bisphosphate. Biochim Biophys Acta 2012; 1821(9):1186-99; PMID:; PMID:22609963; http://dx.doi.org/10.1016/j.bbalip.2012.05.001
  • Huang CC, Yang DM, Lin CC, Kao LS et al. Involvement of Rab3A in vesicle priming during exocytosis: interaction with Munc13-1 and Munc18-1. Traffic 2011; 12(10):1356-70; PMID:21689256; http://dx.doi.org/10.1111/j.1600-0854.2011.01237.x
  • Burger KN. Greasing membrane fusion and fission machineries. Traffic 2000; 1(8):605-13; PMID:11208148; http://dx.doi.org/10.1034/j.1600-0854.2000.010804.x
  • Holden NJ, Savage CO, Young SP, Wakelam MJ, Harper L, Williams JM et al. A dual role for diacylglycerol kinase generated phosphatidic acid in autoantibody-induced neutrophil exocytosis. Mol Med 2011; 17(11-12):1242-52; PMID:21833457; http://dx.doi.org/10.2119/molmed.2011.00028
  • Siddiqui RA, English D. Phosphatidic acid binding to human neutrophils: effects on tyrosine kinase-regulated intracellular Ca2+ mobilization. Cell Signal 1996; 8(5):349-54; PMID:8911683; http://dx.doi.org/10.1016/0898-6568(96)00072-1
  • Dickey A, Faller R. Examining the contributions of lipid shape and headgroup charge on bilayer behavior. Biophys J 2008; 95(6):2636-46; PMID:18515396; http://dx.doi.org/10.1529/biophysj.107.128074
  • Williams JM, Pettitt TR, Powell W, Grove J, Savage CO, Wakelam MJ et al. Antineutrophil cytoplasm antibody-stimulated neutrophil adhesion depends on diacylglycerol kinase-catalyzed phosphatidic acid formation. J Am Soc Nephrol 2007; 18(4):1112-20; PMID:17360949; http://dx.doi.org/10.1681/ASN.2006090973
  • Hanson PI, Cashikar A. Multivesicular body morphogenesis. Annu Rev Cell Dev Biol 2012; 28:337-62; PMID:22831642; http://dx.doi.org/10.1146/annurev-cellbio-092910-154152
  • Alonso R, Rodríguez MC, Pindado J, Merino E, Mérida I, Izquierdo M et al. Diacylglycerol kinase α regulates the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. J Biol Chem 2005; 280(31):28439-50; PMID:15870081 http://dx.doi.org/10.1074/jbc.M501112200
  • Quann EJ, Merino E, Furuta T, Huse M et al. Localized diacylglycerol drives the polarization of the microtubule-organizing center in T cells. Nat Immunol 2009; 10(6):627-35; PMID:19430478; http://dx.doi.org/10.1038/ni.1734
  • Izquierdo M, Ruiz-Ruiz MC, Lopez-Rivas A. Stimulation of phosphatidylinositol turnover is a key event for Fas-dependent, activation-induced apoptosis in human T lymphocytes. J Immunol 1996; 157(1):21-8; PMID:8683117
  • Alonso R, Mazzeo C, Mérida I, Izquierdo M et al. A new role of diacylglycerol kinase α on the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. Biochimie 2007; 89(2):213-21; PMID:16989932; http://dx.doi.org/10.1016/j.biochi.2006.07.018
  • Bossi G, Griffiths GM. Degranulation plays an essential part in regulating cell surface expression of Fas ligand in T cells and natural killer cells. Nat Med 1999; 5(1):90-6; PMID:9883845; http://dx.doi.org/10.1038/4779
  • Jiang Y, Sakane F, Kanoh H, Walsh JP et al. Selectivity of the diacylglycerol kinase inhibitor 3-[2-(4-[bis-(4-fluorophenyl)methylene]-1-piperidinyl)ethyl]-2, 3-dihydro-2-thioxo-4(1H)quinazolinone (R59949) among diacylglycerol kinase subtypes. Biochem Pharmacol 2000; 59(7):763-72; PMID:10718334; http://dx.doi.org/10.1016/S0006-2952(99)00395-0
  • Alonso R, Mazzeo C, Rodriguez MC, Marsh M, Fraile-Ramos A, Calvo V, Avila-Flores A, Merida I, Izquierdo M et al. Diacylglycerol kinase α regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes. Cell Death Differ 2011; 18(7):1161-73; PMID:21252909; http://dx.doi.org/10.1038/cdd.2010.184
  • Bard F, Malhotra V. The formation of TGN-to-plasma-membrane transport carriers. Annu Rev Cell Dev Biol 2006; 22:439-55; PMID:16824007; http://dx.doi.org/10.1146/annurev.cellbio.21.012704.133126
  • De Matteis MA, Santini G, Kahn RA, Di Tullio G, Luini A et al. Receptor and protein kinase C-mediated regulation of ARF binding to the Golgi complex. Nature 1993; 364(6440):818-21; PMID:7689177; http://dx.doi.org/10.1038/364818a0
  • Benjamin JJ, Poon PP, Lewis SM, Auger A, Wong TA, Singer RA, Johnston GC et al. The yeast Arf GTPase-activating protein Age1 is regulated by phospholipase D for post-Golgi vesicular transport. J Biol Chem 2011; 286(7):5187-96; PMID:21135091; http://dx.doi.org/10.1074/jbc.M110.185108
  • Poon PP, Nothwehr SF, Singer RA, Johnston GC et al. The Gcs1 and Age2 ArfGAP proteins provide overlapping essential function for transport from the yeast trans-Golgi network. J Cell Biol 2001; 155(7):1239-50; PMID:11756474; http://dx.doi.org/10.1083/jcb.200108075
  • Baron CL, Malhotra V. Role of diacylglycerol in PKD recruitment to the TGN and protein transport to the plasma membrane. Science 2002; 295(5553):325-8; PMID:11729268; http://dx.doi.org/10.1126/science.1066759
  • Shemesh T, Luini A, Malhotra V, Burger KN, Kozlov MM et al. Prefission constriction of Golgi tubular carriers driven by local lipid metabolism: a theoretical model. Biophys J 2003; 85(6):3813-27; PMID:14645071; http://dx.doi.org/10.1016/S0006-3495(03)74796-1
  • McMaster CR. Lipid metabolism and vesicle trafficking: more than just greasing the transport machinery. Biochem Cell Biol 2001; 79(6):681-92; PMID:11800009; http://dx.doi.org/10.1139/o01-139
  • Roth MG. Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol 1999; 9(5):174-9; PMID:10322451; http://dx.doi.org/10.1016/S0962-8924(99)01535-4
  • Huijbregts RP, Topalof L, Bankaitis VA. Lipid metabolism and regulation of membrane trafficking. Traffic 2000; 1(3):195-202; PMID:11208102; http://dx.doi.org/10.1034/j.1600-0854.2000.010301.x
  • Shirai Y, Segawa S, Kuriyama M, Goto K, Sakai N, Saito N et al. Subtype-specific translocation of diacylglycerol kinase α and gamma and its correlation with protein kinase C. J Biol Chem 2000; 275(32):24760-6; PMID:10827086; http://dx.doi.org/10.1074/jbc.M003151200
  • McGee TP, Skinner HB, Whitters EA, Henry SA, Bankaitis VA et al. A phosphatidylinositol transfer protein controls the phosphatidylcholine content of yeast Golgi membranes. J Cell Biol 1994; 124(3):273-87; PMID:8294512; http://dx.doi.org/10.1083/jcb.124.3.273
  • Sreenivas A, Patton-Vogt JL, Bruno V, Griac P, Henry SA et al. A role for phospholipase D (Pld1p) in growth, secretion, and regulation of membrane lipid synthesis in yeast. J Biol Chem 1998; 273(27):16635-8; PMID:9642212; http://dx.doi.org/10.1074/jbc.273.27.16635
  • Mousley CJ, Tyeryar KR, Vincent-Pope P, Bankaitis VA et al. The Sec14-superfamily and the regulatory interface between phospholipid metabolism and membrane trafficking. Biochim Biophys Acta 2007; 1771(6):727-36; PMID:17512778; http://dx.doi.org/10.1016/j.bbalip.2007.04.002
  • Kearns BG, McGee TP, Mayinger P, Gedvilaite A, Phillips SE, Kagiwada S, Bankaitis VA et al. Essential role for diacylglycerol in protein transport from the yeast Golgi complex. Nature 1997; 387(6628):101-5; PMID:9139830; http://dx.doi.org/10.1038/387101a0
  • Johansen J, Ramanathan V, Beh CT. Vesicle trafficking from a lipid perspective: Lipid regulation of exocytosis in Saccharomyces cerevisiae. Cell Logist 2012; 2(3):151-160; PMID:23181198; http://dx.doi.org/10.4161/cl.20490
  • Sarri E, Sicart A, Lázaro-Diéguez F, Egea G et al. Phospholipid synthesis participates in the regulation of diacylglycerol required for membrane trafficking at the Golgi complex. J Biol Chem 2011; 286(32):28632-43; PMID:21700701; http://dx.doi.org/10.1074/jbc.M111.267534
  • Siddhanta A, Shields D. Secretory vesicle budding from the trans-Golgi network is mediated by phosphatidic acid levels. J Biol Chem 1998; 273(29):17995-8; PMID:9660750; http://dx.doi.org/10.1074/jbc.273.29.17995
  • Asp L, Kartberg F, Fernandez-Rodriguez J, Smedh M, Elsner M, Laporte F, Bárcena M, Jansen KA, Valentijn JA, Koster AJ et al. Early stages of Golgi vesicle and tubule formation require diacylglycerol. Mol Biol Cell 2009; 20(3):780-90; PMID:19037109; http://dx.doi.org/10.1091/mbc.E08-03-0256
  • Gutierrez-Martinez E, Fernández-Ulibarri I, Lázaro-Diéguez F, Johannes L, Pyne S, Sarri E, Egea G et al. Lipid phosphate phosphatase 3 participates in transport carrier formation and protein trafficking in the early secretory pathway. J Cell Sci 2013; 126(Pt 12):2641-55; PMID:23591818; http://dx.doi.org/10.1242/jcs.117705
  • Fernandez-Ulibarri I, Vilella M, Lázaro-Diéguez F, Sarri E, Martínez SE, Jiménez N, Claro E, Mérida I, Burger KN, Egea G et al. Diacylglycerol is required for the formation of COPI vesicles in the Golgi-to-ER transport pathway. Mol Biol Cell 2007; 18(9):3250-63; PMID:17567948; http://dx.doi.org/10.1091/mbc.E07-04-0334
  • Weigert R, Silletta MG, Span∫ S, Turacchio G, Cericola C, Colanzi A, Senatore S, Mancini R, Polishchuk EV, Salmona M et al. CtBP/BARS induces fission of Golgi membranes by acylating lysophosphatidic acid. Nature 1999; 402(6760):429-33; PMID:10586885; http://dx.doi.org/10.1038/46587
  • Schmidt A, Wolde M, Thiele C, Fest W, Kratzin H, Podtelejnikov AV, Witke W, Huttner WB, Söling HD et al. Endophilin I mediates synaptic vesicle formation by transfer of arachidonate to lysophosphatidic acid. Nature 1999; 401(6749):133-41; PMID:10490020; http://dx.doi.org/10.1038/43613
  • Chen YG, Siddhanta A, Austin CD, Hammond SM, Sung TC, Frohman MA, Morris AJ, Shields D et al. Phospholipase D stimulates release of nascent secretory vesicles from the trans-Golgi network. J Cell Biol 1997; 138(3): 495-504; PMID:9245781; http://dx.doi.org/10.1083/jcb.138.3.495
  • Ktistakis NT, Brown HA, Waters MG, Sternweis PC, Roth MG et al. Evidence that phospholipase D mediates ADP ribosylation factor-dependent formation of Golgi coated vesicles. J Cell Biol 1996; 134(2):295-306; PMID:8707816; http://dx.doi.org/10.1083/jcb.134.2.295
  • Bossard C, Bresson D, Polishchuk RS, Malhotra V et al. Dimeric PKD regulates membrane fission to form transport carriers at the TGN. J Cell Biol 2007; 179(6):1123-31; PMID:18086912; http://dx.doi.org/10.1083/jcb.200703166
  • Betz A, Ashery U, Rickmann M, Augustin I, Neher E, Südhof TC, Rettig J, Brose N et al. Munc13-1 is a presynaptic phorbol ester receptor that enhances neurotransmitter release. Neuron 1998; 21(1):123-36; PMID:9697857; http://dx.doi.org/10.1016/S0896-6273(00)80520-6
  • Yang J, Seo J, Nair R, Han S, Jang S, Kim K, Han K, Paik SK, Choi J, Lee S, et al. DGKiota regulates presynaptic release during mGluR-dependent LTD. EMBO J 2011; 30(1):165-80; PMID:21119615; http://dx.doi.org/10.1038/emboj.2010.286
  • Miller KG, Emerson MD, Rand JB. Goalpha and diacylglycerol kinase negatively regulate the Gqalpha pathway in C. elegans. Neuron 1999; 24(2):323-33; PMID:10571227; http://dx.doi.org/10.1016/S0896-6273(00)80847-8
  • Crotty T, Cai J, Sakane F, Taketomi A, Prescott SM, Topham MK et al. Diacylglycerol kinase delta regulates protein kinase C and epidermal growth factor receptor signaling. Proc Natl Acad Sci U S A 2006; 103(42):15485-90; PMID:17021016; http://dx.doi.org/10.1073/pnas.0604104103
  • Luo B, Prescott SM, Topham MK. Association of diacylglycerol kinase zeta with protein kinase C α: spatial regulation of diacylglycerol signaling. J Cell Biol 2003; 160(6):929-37; PMID:12629049; http://dx.doi.org/10.1083/jcb.200208120
  • Topham MK, Prescott SM. Diacylglycerol kinase zeta regulates Ras activation by a novel mechanism. J Cell Biol 2001; 152(6):1135-43; PMID:11257115; http://dx.doi.org/10.1083/jcb.152.6.1135
  • Merida I, Avila-Flores A, Merino E. Diacylglycerol kinases: at the hub of cell signalling. Biochem J 2008; 409(1):1-18; PMID:18062770; http://dx.doi.org/10.1042/BJ20071040
  • Ohno S, Nishizuka Y. Protein kinase C isotypes and their specific functions: prologue. J Biochem 2002; 132(4):509-11; PMID:12359062; http://dx.doi.org/10.1093/oxfordjournals.jbchem.a003249
  • Cai J, Crotty TM, Reichert E, Carraway KL 3rd, Stafforini DM, Topham MK et al. Diacylglycerol kinase delta and protein kinase C(α) modulate epidermal growth factor receptor abundance and degradation through ubiquitin-specific protease 8. J Biol Chem 2010; 285(10):6952-9; PMID:20064931; http://dx.doi.org/; http://dx.doi.org/10.1074/jbc.M109.055731
  • Becker KP, Hannun YA. cPKC-Dependent sequestration of membrane-recycling components in a subset of recycling endosomes. J Biol Chem 2003; 278(52):52747-54; PMID:14527960; http://dx.doi.org/10.1074/jbc.M305228200
  • Idkowiak-Baldys J, Becker KP, Kitatani K, Hannun YA et al. Dynamic sequestration of the recycling compartment by classical protein kinase C. J Biol Chem 2006; 281(31):22321-31; PMID:16751194; http://dx.doi.org/10.1074/jbc.M512540200
  • Caswell PT, Chan M, Lindsay AJ, McCaffrey MW, Boettiger D, Norman JC et al. Rab-coupling protein coordinates recycling of alpha5beta1 integrin and EGFR1 to promote cell migration in 3D microenvironments. J Cell Biol 2008; 183(1):143-55; PMID:18838556; http://dx.doi.org/10.1083/jcb.200804140
  • Xie S, Naslavsky N, Caplan S. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex Class I recycling. J Biol Chem 2014; 289(46):31914-26; PMID:25248744; http://dx.doi.org/10.1074/jbc.M114.594291
  • Carlton J, Bujny M, Rutherford A, Cullen P et al. Sorting nexins—unifying trends and new perspectives. Traffic 2005; 6(2):75-82; PMID:15634208; http://dx.doi.org/10.1111/j.1600-0854.2005.00260.x
  • Worby CA, Dixon JE. Sorting out the cellular functions of sorting nexins. Nat Rev Mol Cell Biol 2002; 3(12):919-31; PMID:12461558; http://dx.doi.org/10.1038/nrm974
  • Burger KN, Demel RA, Schmid SL, de Kruijff B et al. Dynamin is membrane-active: lipid insertion is induced by phosphoinositides and phosphatidic acid. Biochemistry 2000; 39(40):12485-93; PMID:11015230; http://dx.doi.org/10.1021/bi000971r
  • Takei K, Haucke V, Slepnev V, Farsad K, Salazar M, Chen H, De Camilli P et al. Generation of coated intermediates of clathrin-mediated endocytosis on protein-free liposomes. Cell 1998; 94(1):131-41; PMID:9674434; http://dx.doi.org/10.1016/S0092-8674(00)81228-3
  • Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B, Krausz E, Zerial M et al. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 2005; 436(7047):78-86; PMID:15889048; http://dx.doi.org/10.1038/nature03571
  • Antonescu CN, Danuser G, Schmid SL. Phosphatidic acid plays a regulatory role in clathrin-mediated endocytosis. Mol Biol Cell 2010; 21(16):2944-52; PMID:20573978; http://dx.doi.org/10.1091/mbc.E10-05-0421
  • Kawasaki T, Kobayashi T, Ueyama T, Shirai Y, Saito N et al. Regulation of clathrin-dependent endocytosis by diacylglycerol kinase delta: importance of kinase activity and binding to AP2alpha. Biochem J 2008; 409(2):471-9; PMID:17880279; http://dx.doi.org/10.1042/BJ20070755
  • Subramanya S, Mensa-Wilmot K. Diacylglycerol-stimulated endocytosis of transferrin in trypanosomatids is dependent on tyrosine kinase activity. PLoS One 2010; 5(1):e8538; PMID:20049089; http://dx.doi.org/10.1371/journal.pone.0008538
  • Lennartz MR. Phospholipases and phagocytosis: the role of phospholipid-derived second messengers in phagocytosis. Int J Biochem Cell Biol 1999; 31(3-4):415-30; PMID:10224668; http://dx.doi.org/10.1016/S1357-2725(98)00108-3
  • Fallman M, Lew DP, Stendahl O, Andersson T et al. Receptor-mediated phagocytosis in human neutrophils is associated with increased formation of inositol phosphates and diacylglycerol. Elevation in cytosolic free calcium and formation of inositol phosphates can be dissociated from accumulation of diacylglycerol. J Clin Invest 1989; 84(3):886-91; PMID:2527254; http://dx.doi.org/10.1172/JCI114249
  • Schlam D, Bohdanowicz M, Chatgilialoglu A, Steinberg BE, Ueyama T, Du G, Grinstein S, Fairn GD et al. Diacylglycerol kinases terminate diacylglycerol signaling during the respiratory burst leading to heterogeneous phagosomal NADPH oxidase activation. J Biol Chem 2013; 288(32):23090-104; PMID:23814057; http://dx.doi.org/10.1074/jbc.M113.457606
  • Ueyama T, Lennartz MR, Noda Y, Kobayashi T, Shirai Y, Rikitake K, Yamasaki T, Hayashi S, Sakai N, Seguchi H et al. Superoxide production at phagosomal cup/phagosome through β I protein kinase C during Fc gamma R-mediated phagocytosis in microglia. J Immunol 2004; 173(7):4582-9; PMID:15383592; http://dx.doi.org/10.4049/jimmunol.173.7.4582
  • Bohdanowicz M, Schlam D, Hermansson M, Rizzuti D, Fairn GD, Ueyama T, Somerharju P, Du G, Grinstein S et al. Phosphatidic acid is required for the constitutive ruffling and macropinocytosis of phagocytes. Mol Biol Cell 2013; 24(11):1700-12, S1-7; PMID:23576545; http://dx.doi.org/10.1091/mbc.E12-11-0789
  • Corrotte M, Chasserot-Golaz S, Huang P, Du G, Ktistakis NT, Frohman MA, Vitale N, Bader MF, Grant NJ et al. Dynamics and function of phospholipase D and phosphatidic acid during phagocytosis. Traffic 2006; 7(3):365-77; PMID:16497229; http://dx.doi.org/10.1111/j.1600-0854.2006.00389.x
  • Okada M, Hozumi Y, Iwazaki K, Misaki K, Yanagida M, Araki Y, Watanabe T, Yagisawa H, Topham MK, Kaibuchi K et al. DGKzeta is involved in LPS-activated phagocytosis through IQGAP1/Rac1 pathway. Biochem Biophys Res Commun 2012; 420(2):479-84; PMID:22450320; http://dx.doi.org/10.1016/j.bbrc.2012.03.057
  • Abramovici H, Gee SH. Morphological changes and spatial regulation of diacylglycerol kinase-zeta, syntrophins, and Rac1 during myoblast fusion. Cell Motil Cytoskeleton 2007; 64(7):549-67; PMID:17410543; http://dx.doi.org/10.1002/cm.20204

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.