7,652
Views
147
CrossRef citations to date
0
Altmetric
Review-Invited

Antimicrobial bacteriophage-derived proteins and therapeutic applications

&
Article: e1062590 | Received 28 Apr 2015, Accepted 11 Jun 2015, Published online: 12 Aug 2015

References

  • Michael CA, Dominey-Howes D, Labbate M. The antimicrobial resistance crisis: causes, consequences, and management. Front Public Health 2014; 2:145; PMID:25279369; http://dx.doi.org/10.3389/fpubh.2014.00145
  • Cassir N, Rolain JM, Brouqui P. A new strategy to fight antimicrobial resistance: the revival of old antibiotics. Front Microbiol 2014; 5:551; PMID:25368610; http://dx.doi.org/10.3389/fmicb.2014.00551
  • Kutter E, De Vos D, Gvasalia G, Alavidze Z, Gogokhia L, Kuhl S, Abedon ST. Phage therapy in clinical practice: treatment of human infections. Curr Pharm Biotechnol 2010; 11:69-86; PMID:20214609; http://dx.doi.org/10.2174/138920110790725401
  • Chanishvili N. Phage therapy–history from Twort and d'Herelle through Soviet experience to current approaches. Adv Virus Res 2012; 83:3-40; PMID:22748807
  • Chan BK, Abedon ST, Loc-Carrillo C. Phage cocktails and the future of phage therapy. Future Microbiol 2013; 8:769-83; PMID:23701332; http://dx.doi.org/10.2217/fmb.13.47
  • Bragg R, van der Westhuizen W, Lee JY, Coetsee E, Boucher C. Bacteriophages as potential treatment option for antibiotic resistant bacteria. Adv Exp Med Biol 2014; 807:97-110; PMID:24619620
  • Hyman P, Abedon ST. Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 2010; 70:217-48; PMID:20359459
  • Bikard D, Euler CW, Jiang W, Nussenzweig PM, Goldberg GW, Duportet X, Fischetti VA, Marraffini LA. Exploiting CRISPR-Cas nucleases to produce sequence-specific antimicrobials. Nat Biotechnol 2014; 32:1146-50; PMID:25282355; http://dx.doi.org/10.1038/nbt.3043
  • Brown-Jaque M, Calero-Caceres W, Muniesa M. Transfer of antibiotic-resistance genes via phage-related mobile elements. Plasmid 2015; 79:1-7; PMID:25597519; http://dx.doi.org/10.1016/j.plasmid.2015.01.001
  • Schmelcher M, Donovan DM, Loessner MJ. Bacteriophage endolysins as novel antimicrobials. Future Microbiol 2012; 7:1147-71; PMID:23030422; http://dx.doi.org/10.2217/fmb.12.97
  • Oliveira H, Melo LD, Santos SB, Nobrega FL, Ferreira EC, Cerca N, Azeredo J, Kluskens LD. Molecular aspects and comparative genomics of bacteriophage endolysins. J Virol 2013; 87:4558-70; PMID:23408602; http://dx.doi.org/10.1128/JVI.03277-12
  • Roach DR, Sjaarda DR, Castle AJ, Svircev AM. Host exopolysaccharide quantity and composition impact Erwinia amylovora bacteriophage pathogenesis. Appl Environ Microbiol 2013; 79:3249-56; PMID:23503310; http://dx.doi.org/10.1128/AEM.00067-13
  • Rodriguez-Rubio L, Martinez B, Donovan DM, Rodriguez A, Garcia P. Bacteriophage virion-associated peptidoglycan hydrolases: potential new enzybiotics. Crit Rev Microbiol 2013; 39:427-34; PMID:22991936; http://dx.doi.org/10.3109/1040841X.2012.723675
  • Yan J, Mao J, Xie J. Bacteriophage polysaccharide depolymerases and biomedical applications. BioDrugs 2014; 28:265-74; PMID:24352884; http://dx.doi.org/10.1007/s40259-013-0081-y
  • Young R. Phage lysis: do we have the hole story yet? Curr Opin Microbiol 2013; 16:790-7; PMID:24113139; http://dx.doi.org/10.1016/j.mib.2013.08.008
  • Young R. Phage lysis: three steps, three choices, one outcome. J Microbiol 2014; 52:243-58; PMID:24585055; http://dx.doi.org/10.1007/s12275-014-4087-z
  • Rajaure M, Berry J, Kongari R, Cahill J, Young R. Membrane fusion during phage lysis. Proc Natl Acad Sci U S A 2015; 112:5497-502; PMID:25870259; http://dx.doi.org/10.1073/pnas.1420588112
  • Schleifer KH, Kandler O. Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 1972; 36:407-77; PMID:4568761
  • Pritchard DG, Dong S, Kirk MC, Cartee RT, Baker JR. LambdaSa1 and LambdaSa2 prophage lysins of Streptococcus agalactiae. Appl Environ Microbiol 2007; 73:7150-4; PMID:17905888; http://dx.doi.org/10.1128/AEM.01783-07
  • Lai MJ, Lin NT, Hu A, Soo PC, Chen LK, Chen LH, Chang KC. Antibacterial activity of Acinetobacter baumannii phage varphiAB2 endolysin (LysAB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 2011; 90:529-39; PMID:21264466; http://dx.doi.org/10.1007/s00253-011-3104-y
  • Walmagh M, Briers Y, dos Santos SB, Azeredo J, Lavigne R. Characterization of modular bacteriophage endolysins from Myoviridae phages OBP, 201phi2-1 and PVP-SE1. PLoS One 2012; 7:e36991; PMID:22615864; http://dx.doi.org/10.1371/journal.pone.0036991
  • Walmagh M, Boczkowska B, Grymonprez B, Briers Y, Drulis-Kawa Z, Lavigne R. Characterization of five novel endolysins from Gram-negative infecting bacteriophages. Appl Microbiol Biotechnol 2013; 97:4369-75; PMID:22832988; http://dx.doi.org/10.1007/s00253-012-4294-7
  • Lood R, Winer BY, Pelzek AJ, Diez-Martinez R, Thandar M, Euler CW, Schuch R, Fischetti VA. Novel phage lysin capable of killing the multidrug-resistant Gram-negative bacterium Acinetobacter baumannii in a mouse bacteremia model. Antimicrob Agents Chemother 2015; 59:1983-91; PMID:25605353; http://dx.doi.org/10.1128/AAC.04641-14
  • Donovan DM, Foster-Frey J, Dong S, Rousseau GM, Moineau S, Pritchard DG. The cell lysis activity of the Streptococcus agalactiae bacteriophage B30 endolysin relies on the cysteine, histidine-dependent amidohydrolase/peptidase domain. Appl Environ Microbiol 2006; 72:5108-12; PMID:16820517; http://dx.doi.org/10.1128/AEM.03065-05
  • Becker SC, Foster-Frey J, Stodola AJ, Anacker D, Donovan DM. Differentially conserved staphylococcal SH3b_5 cell wall binding domains confer increased staphylolytic and streptolytic activity to a streptococcal prophage endolysin domain. Gene 2009; 443:32-41; PMID:19422893; http://dx.doi.org/10.1016/j.gene.2009.04.023
  • Navarre WW, Ton-That H, Faull KF, Schneewind O. Multiple enzymatic activities of the murein hydrolase from staphylococcal phage phi11. Identification of a D-alanyl-glycine endopeptidase activity. J Biol Chem 1999; 274:15847-56; PMID:10336488; http://dx.doi.org/10.1074/jbc.274.22.15847
  • Pritchard DG, Dong S, Baker JR, Engler JA. The bifunctional peptidoglycan lysin of Streptococcus agalactiae bacteriophage B30. Microbiology 2004; 150:2079-87; PMID:15256551; http://dx.doi.org/10.1099/mic.0.27063-0
  • Donovan DM, Lardeo M, Foster-Frey J. Lysis of staphylococcal mastitis pathogens by bacteriophage phi11 endolysin. FEMS Microbiol Lett 2006; 265:133-9; PMID:17054440; http://dx.doi.org/10.1111/j.1574-6968.2006.00483.x
  • Sass P, Bierbaum G. Lytic activity of recombinant bacteriophage phi11 and phi12 endolysins on whole cells and biofilms of Staphylococcus aureus. Appl Environ Microbiol 2007; 73:347-52; PMID:17085695; http://dx.doi.org/10.1128/AEM.01616-06
  • Becker SC, Dong S, Baker JR, Foster-Frey J, Pritchard DG, Donovan DM. LysK CHAP endopeptidase domain is required for lysis of live staphylococcal cells. FEMS Microbiol Lett 2009; 294:52-60; PMID:19493008; http://dx.doi.org/10.1111/j.1574-6968.2009.01541.x
  • Horgan M, O'Flynn G, Garry J, Cooney J, Coffey A, Fitzgerald GF, Ross RP, McAuliffe O. Phage lysin LysK can be truncated to its CHAP domain and retain lytic activity against live antibiotic-resistant staphylococci. Appl Environ Microbiol 2009; 75:872-4; PMID:19047377; http://dx.doi.org/10.1128/AEM.01831-08
  • Donovan DM, Foster-Frey J. LambdaSa2 prophage endolysin requires Cpl-7-binding domains and amidase-5 domain for antimicrobial lysis of streptococci. FEMS Microbiol Lett 2008; 287:22-33; PMID:18673393; http://dx.doi.org/10.1111/j.1574-6968.2008.01287.x
  • Porter CJ, Schuch R, Pelzek AJ, Buckle AM, McGowan S, Wilce MC, Rossjohn J, Russell R, Nelson D, Fischetti VA, et al. The 1.6 A crystal structure of the catalytic domain of PlyB, a bacteriophage lysin active against Bacillus anthracis. J Mol Biol 2007; 366:540-50; PMID:17182056; http://dx.doi.org/10.1016/j.jmb.2006.11.056
  • Kretzer JW, Lehmann R, Schmelcher M, Banz M, Kim KP, Korn C, Loessner MJ. Use of high-affinity cell wall-binding domains of bacteriophage endolysins for immobilization and separation of bacterial cells. Appl Environ Microbiol 2007; 73:1992-2000; PMID:17277212; http://dx.doi.org/10.1128/AEM.02402-06
  • Eugster MR, Haug MC, Huwiler SG, Loessner MJ. The cell wall binding domain of Listeria bacteriophage endolysin PlyP35 recognizes terminal GlcNAc residues in cell wall teichoic acid. Mol Microbiol 2011; 81:1419-32; PMID:21790805; http://dx.doi.org/10.1111/j.1365-2958.2011.07774.x
  • Loessner MJ, Kramer K, Ebel F, Scherer S. C-terminal domains of Listeria monocytogenes bacteriophage murein hydrolases determine specific recognition and high-affinity binding to bacterial cell wall carbohydrates. Mol Microbiol 2002; 44:335-49; PMID:11972774; http://dx.doi.org/10.1046/j.1365-2958.2002.02889.x
  • Eugster MR, Loessner MJ. Wall teichoic acids restrict access of bacteriophage endolysin Ply118, Ply511, and PlyP40 cell wall binding domains to the Listeria monocytogenes peptidoglycan. J Bacteriol 2012; 194:6498-506; PMID:23002226; http://dx.doi.org/10.1128/JB.00808-12
  • Nelson D, Schuch R, Chahales P, Zhu S, Fischetti VA. PlyC: a multimeric bacteriophage lysin. Proc Natl Acad Sci U S A 2006; 103:10765-70; PMID:16818874; http://dx.doi.org/10.1073/pnas.0604521103
  • Yoong P, Schuch R, Nelson D, Fischetti VA. Identification of a broadly active phage lytic enzyme with lethal activity against antibiotic-resistant Enterococcus faecalis and Enterococcus faecium. J Bacteriol 2004; 186:4808-12; PMID:15231813; http://dx.doi.org/10.1128/JB.186.14.4808-4812.2004
  • Yang H, Wang DB, Dong Q, Zhang Z, Cui Z, Deng J, Yu J, Zhang XE, Wei H. Existence of separate domains in lysin PlyG for recognizing Bacillus anthracis spores and vegetative cells. Antimicrob Agents Chemother 2012; 56:5031-9; PMID:22802245; http://dx.doi.org/10.1128/AAC.00891-12
  • Fenton M, Casey PG, Hill C, Gahan CG, Ross RP, McAuliffe O, O'Mahony J, Maher F, Coffey A. The truncated phage lysin CHAP(k) eliminates Staphylococcus aureus in the nares of mice. Bioeng Bugs 2010; 1:404-7; PMID:21468207; http://dx.doi.org/10.4161/bbug.1.6.13422
  • McGowan S, Buckle AM, Mitchell MS, Hoopes JT, Gallagher DT, Heselpoth RD, Shen Y, Reboul CF, Law RH, Fischetti VA, et al. X-ray crystal structure of the streptococcal specific phage lysin PlyC. Proc Natl Acad Sci U S A 2012; 109:12752-7; PMID:22807482; http://dx.doi.org/10.1073/pnas.1208424109
  • Mao J, Schmelcher M, Harty WJ, Foster-Frey J, Donovan DM. Chimeric Ply187 endolysin kills Staphylococcus aureus more effectively than the parental enzyme. FEMS Microbiol Lett 2013; 342:30-6; PMID:23413880; http://dx.doi.org/10.1111/1574-6968.12104
  • Yang H, Yu J, Wei H. Engineered bacteriophage lysins as novel anti-infectives. Front Microbiol 2014; 5:542; PMID:25360133
  • Schmelcher M, Tchang VS, Loessner MJ. Domain shuffling and module engineering of Listeria phage endolysins for enhanced lytic activity and binding affinity. Microb Biotechnol 2011; 4:651-62; PMID:21535426; http://dx.doi.org/10.1111/j.1751-7915.2011.00263.x
  • Low LY, Yang C, Perego M, Osterman A, Liddington RC. Structure and lytic activity of a Bacillus anthracis prophage endolysin. J Biol Chem 2005; 280:35433-9; PMID:16103125; http://dx.doi.org/10.1074/jbc.M502723200
  • Loessner MJ, Gaeng S, Scherer S. Evidence for a holin-like protein gene fully embedded out of frame in the endolysin gene of Staphylococcus aureus bacteriophage 187. J Bacteriol 1999; 181:4452-60; PMID:10419939
  • Mayer MJ, Garefalaki V, Spoerl R, Narbad A, Meijers R. Structure-based modification of a Clostridium difficile-targeting endolysin affects activity and host range. J Bacteriol 2011; 193:5477-86; PMID:21803993; http://dx.doi.org/10.1128/JB.00439-11
  • Patzer SI, Albrecht R, Braun V, Zeth K. Structural and mechanistic studies of pesticin, a bacterial homolog of phage lysozymes. J Biol Chem 2012; 287:23381-96; PMID:22593569; http://dx.doi.org/10.1074/jbc.M112.362913
  • Lukacik P, Barnard TJ, Buchanan SK. Using a bacteriocin structure to engineer a phage lysin that targets Yersinia pestis. Biochem Soc Trans 2012; 40:1503-6; PMID:23176506; http://dx.doi.org/10.1042/BST20120209
  • Briers Y, Walmagh M, Grymonprez B, Biebl M, Pirnay JP, Defraine V, Michiels J, Cenens W, Aertsen A, Miller S, et al. Art-175 is a highly efficient antibacterial against multidrug-resistant strains and persisters of Pseudomonas aeruginosa. Antimicrob Agents Chemother 2014; 58:3774-84; PMID:24752267; http://dx.doi.org/10.1128/AAC.02668-14
  • Briers Y, Walmagh M, Van Puyenbroeck V, Cornelissen A, Cenens W, Aertsen A, Oliveira H, Azeredo J, Verween G, Pirnay JP, et al. Engineered endolysin-based “Artilysins” to combat multidrug-resistant Gram-negative pathogens. MBio 2014; 5:e01379-14; PMID:24987094; http://dx.doi.org/10.1128/mBio.01379-14
  • Dawson RM, Liu CQ. Analogues of peptide SMAP-29 with comparable antimicrobial potency and reduced cytotoxicity. Int J Antimicrob Agents 2011; 37:432-7; PMID:21377841; http://dx.doi.org/10.1016/j.ijantimicag.2011.01.007
  • Hebert A, Sayasith K, Senechal S, Dubreuil P, Lagace J. Demonstration of intracellular Staphylococcus aureus in bovine mastitis alveolar cells and macrophages isolated from naturally infected cow milk. FEMS Microbiol Lett 2000; 193:57-62; PMID:11094279; http://dx.doi.org/10.1016/S0378-1097(00)00455-9
  • Torchilin VP. Cell penetrating peptide-modified pharmaceutical nanocarriers for intracellular drug and gene delivery. Biopolymers 2008; 90:604-10; PMID:18381624; http://dx.doi.org/10.1002/bip.20989
  • Borysowski J, Gorski A. Fusion to cell-penetrating peptides will enable lytic enzymes to kill intracellular bacteria. Med Hypotheses 2010; 74:164-6; PMID:19656633; http://dx.doi.org/10.1016/j.mehy.2009.07.006
  • Freimer EH, Krause RM, Mc CM. Studies of L forms and protoplasts of group A streptococci. I. Isolation, growth, and bacteriologic characteristics. J Exp Med 1959; 110:853-74; PMID:13824817; http://dx.doi.org/10.1084/jem.110.6.853
  • Cheng Q, Nelson D, Zhu S, Fischetti VA. Removal of group B streptococci colonizing the vagina and oropharynx of mice with a bacteriophage lytic enzyme. Antimicrob Agents Chemother 2005; 49:111-7; PMID:15616283; http://dx.doi.org/10.1128/AAC.49.1.111-117.2005
  • Djurkovic S, Loeffler JM, Fischetti VA. Synergistic killing of Streptococcus pneumoniae with the bacteriophage lytic enzyme Cpl-1 and penicillin or gentamicin depends on the level of penicillin resistance. Antimicrob Agents Chemother 2005; 49:1225-8; PMID:15728935; http://dx.doi.org/10.1128/AAC.49.3.1225-1228.2005
  • Lood R, Raz A, Molina H, Euler CW, Fischetti VA. A highly active and negatively charged Streptococcus pyogenes lysin with a rare D-alanyl-L-alanine endopeptidase activity protects mice against streptococcal bacteremia. Antimicrob Agents Chemother 2014; 58:3073-84; PMID:24637688; http://dx.doi.org/10.1128/AAC.00115-14
  • Nelson D, Loomis L, Fischetti VA. Prevention and elimination of upper respiratory colonization of mice by group A streptococci by using a bacteriophage lytic enzyme. Proc Natl Acad Sci U S A 2001; 98:4107-12; PMID:11259652; http://dx.doi.org/10.1073/pnas.061038398
  • Gilmer DB, Schmitz JE, Euler CW, Fischetti VA. Novel bacteriophage lysin with broad lytic activity protects against mixed infection by Streptococcus pyogenes and methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2013; 57:2743-50; PMID:23571534; http://dx.doi.org/10.1128/AAC.02526-12
  • Baker JR, Liu C, Dong S, Pritchard DG. Endopeptidase and glycosidase activities of the bacteriophage B30 lysin. Appl Environ Microbiol 2006; 72:6825-8; PMID:17021237; http://dx.doi.org/10.1128/AEM.00829-06
  • Celia LK, Nelson D, Kerr DE. Characterization of a bacteriophage lysin (Ply700) from Streptococcus uberis. Vet Microbiol 2008; 130:107-17; PMID:18242012; http://dx.doi.org/10.1016/j.vetmic.2007.12.004
  • Loeffler JM, Nelson D, Fischetti VA. Rapid killing of Streptococcus pneumoniae with a bacteriophage cell wall hydrolase. Science 2001; 294:2170-2; PMID:11739958; http://dx.doi.org/10.1126/science.1066869
  • Cheng Q, Fischetti VA. Mutagenesis of a bacteriophage lytic enzyme PlyGBS significantly increases its antibacterial activity against group B streptococci. Appl Microbiol Biotechnol 2007; 74:1284-91; PMID:17186236; http://dx.doi.org/10.1007/s00253-006-0771-1
  • Oechslin F, Daraspe J, Giddey M, Moreillon P, Resch G. In vitro characterization of PlySK1249, a novel phage lysin, and assessment of its antibacterial activity in a mouse model of Streptococcus agalactiae bacteremia. Antimicrob Agents Chemother 2013; 57:6276-83; PMID:24100496; http://dx.doi.org/10.1128/AAC.01701-13
  • Loeffler JM, Djurkovic S, Fischetti VA. Phage lytic enzyme Cpl-1 as a novel antimicrobial for pneumococcal bacteremia. Infect Immun 2003; 71:6199-204; PMID:14573637; http://dx.doi.org/10.1128/IAI.71.11.6199-6204.2003
  • Doehn JM, Fischer K, Reppe K, Gutbier B, Tschernig T, Hocke AC, Fischetti VA, Loffler J, Suttorp N, Hippenstiel S, et al. Delivery of the endolysin Cpl-1 by inhalation rescues mice with fatal pneumococcal pneumonia. J Antimicrob Chemother 2013; 68:2111-7; PMID:23633685; http://dx.doi.org/10.1093/jac/dkt131
  • Jado I, Lopez R, Garcia E, Fenoll A, Casal J, Garcia P. Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 2003; 52:967-73; PMID:14613958; http://dx.doi.org/10.1093/jac/dkg485
  • Entenza JM, Loeffler JM, Grandgirard D, Fischetti VA, Moreillon P. Therapeutic effects of bacteriophage Cpl-1 lysin against Streptococcus pneumoniae endocarditis in rats. Antimicrob Agents Chemother 2005; 49:4789-92; PMID:16251333; http://dx.doi.org/10.1128/AAC.49.11.4789-4792.2005
  • Grandgirard D, Loeffler JM, Fischetti VA, Leib SL. Phage lytic enzyme Cpl-1 for antibacterial therapy in experimental pneumococcal meningitis. J Infect Dis 2008; 197:1519-22; PMID:18471063; http://dx.doi.org/10.1086/587942
  • Diez-Martinez R, de Paz HD, Bustamante N, Garcia E, Menendez M, Garcia P. Improving the lethal effect of cpl-7, a pneumococcal phage lysozyme with broad bactericidal activity, by inverting the net charge of its cell wall-binding module. Antimicrob Agents Chemother 2013; 57:5355-65; PMID:23959317; http://dx.doi.org/10.1128/AAC.01372-13
  • Diez-Martinez R, De Paz HD, Garcia-Fernandez E, Bustamante N, Euler CW, Fischetti VA, Menendez M, Garcia P. A novel chimeric phage lysin with high in vitro and in vivo bactericidal activity against Streptococcus pneumoniae. J Antimicrob Chemother 2015; 70:1763-73; PMID:25733585
  • Witzenrath M, Schmeck B, Doehn JM, Tschernig T, Zahlten J, Loeffler JM, Zemlin M, Muller H, Gutbier B, Schutte H, et al. Systemic use of the endolysin Cpl-1 rescues mice with fatal pneumococcal pneumonia. Crit Care Med 2009; 37:642-9; PMID:19114881; http://dx.doi.org/10.1097/CCM.0b013e31819586a6
  • Rashel M, Uchiyama J, Ujihara T, Uehara Y, Kuramoto S, Sugihara S, Yagyu K, Muraoka A, Sugai M, Hiramatsu K, et al. Efficient elimination of multidrug-resistant Staphylococcus aureus by cloned lysin derived from bacteriophage phi MR11. J Infect Dis 2007; 196:1237-47; PMID:17955443; http://dx.doi.org/10.1086/521305
  • Daniel A, Euler C, Collin M, Chahales P, Gorelick KJ, Fischetti VA. Synergism between a novel chimeric lysin and oxacillin protects against infection by methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 2010; 54:1603-12; PMID:20086153; http://dx.doi.org/10.1128/AAC.01625-09
  • Pastagia M, Euler C, Chahales P, Fuentes-Duculan J, Krueger JG, Fischetti VA. A novel chimeric lysin shows superiority to mupirocin for skin decolonization of methicillin-resistant and -sensitive Staphylococcus aureus strains. Antimicrob Agents Chemother 2011; 55:738-44; PMID:21098252; http://dx.doi.org/10.1128/AAC.00890-10
  • Gu J, Xu W, Lei L, Huang J, Feng X, Sun C, Du C, Zuo J, Li Y, Du T, et al. LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal methicillin-resistant Staphylococcus aureus infection. J Clin Microbiol 2011; 49:111-7; PMID:21048011; http://dx.doi.org/10.1128/JCM.01144-10
  • Gu J, Lu R, Liu X, Han W, Lei L, Gao Y, Zhao H, Li Y, Diao Y. LysGH15B, the SH3b domain of staphylococcal phage endolysin LysGH15, retains high affinity to staphylococci. Curr Microbiol 2011; 63:538-42; PMID:21947237; http://dx.doi.org/10.1007/s00284-011-0018-y
  • O'Flaherty S, Coffey A, Meaney W, Fitzgerald GF, Ross RP. The recombinant phage lysin LysK has a broad spectrum of lytic activity against clinically relevant staphylococci, including methicillin-resistant Staphylococcus aureus. J Bacteriol 2005; 187:7161-4; PMID:16199588; http://dx.doi.org/10.1128/JB.187.20.7161-7164.2005
  • Schmelcher M, Shen Y, Nelson DC, Eugster MR, Eichenseher F, Hanke DC, Loessner MJ, Dong S, Pritchard DG, Lee JC, et al. Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. J Antimicrob Chemother 2015; 70:1453-65; PMID:25630640; http://dx.doi.org/10.1093/jac/dku552
  • Singh PK, Donovan DM, Kumar A. Intravitreal injection of the chimeric phage endolysin Ply187 protects mice from Staphylococcus aureus endophthalmitis. Antimicrob Agents Chemother 2014; 58:4621-9; PMID:24890598; http://dx.doi.org/10.1128/AAC.00126-14
  • Jun SY, Jung GM, Son JS, Yoon SJ, Choi YJ, Kang SH. Comparison of the antibacterial properties of phage endolysins SAL-1 and LysK. Antimicrob Agents Chemother 2011; 55:1764-7; PMID:21263051; http://dx.doi.org/10.1128/AAC.01097-10
  • Jun SY, Jung GM, Yoon SJ, Oh MD, Choi YJ, Lee WJ, Kong JC, Seol JG, Kang SH. Antibacterial properties of a pre-formulated recombinant phage endolysin, SAL-1. Int J Antimicrob Agents 2013; 41:156-61; PMID:23276502; http://dx.doi.org/10.1016/j.ijantimicag.2012.10.011
  • Jun SY, Jung GM, Yoon SJ, Choi YJ, Koh WS, Moon KS, Kang SH. Preclinical safety evaluation of intravenously administered SAL200 containing the recombinant phage endolysin SAL-1 as a pharmaceutical ingredient. Antimicrob Agents Chemother 2014; 58:2084-8; PMID:24449776; http://dx.doi.org/10.1128/AAC.02232-13
  • Holers VM. Complement and its receptors: new insights into human disease. Annu Rev Immunol 2014; 32:433-59; PMID:24499275; http://dx.doi.org/10.1146/annurev-immunol-032713-120154
  • Schuch R, Nelson D, Fischetti VA. A bacteriolytic agent that detects and kills Bacillus anthracis. Nature 2002; 418:884-9; PMID:12192412; http://dx.doi.org/10.1038/nature01026
  • Yoong P, Schuch R, Nelson D, Fischetti VA. PlyPH, a bacteriolytic enzyme with a broad pH range of activity and lytic action against Bacillus anthracis. J Bacteriol 2006; 188:2711-4; PMID:16547060; http://dx.doi.org/10.1128/JB.188.7.2711-2714.2006
  • Morita M, Tanji Y, Orito Y, Mizoguchi K, Soejima A, Unno H. Functional analysis of antibacterial activity of Bacillus amyloliquefaciens phage endolysin against Gram-negative bacteria. FEBS Lett 2001; 500:56-9; PMID:11434926; http://dx.doi.org/10.1016/S0014-5793(01)02587-X
  • Briers Y, Walmagh M, Lavigne R. Use of bacteriophage endolysin EL188 and outer membrane permeabilizers against Pseudomonas aeruginosa. J Appl Microbiol 2011; 110:778-85; PMID:21241420; http://dx.doi.org/10.1111/j.1365-2672.2010.04931.x
  • Nakimbugwe D, Masschalck B, Deckers D, Callewaert L, Aertsen A, Michiels CW. Cell wall substrate specificity of six different lysozymes and lysozyme inhibitory activity of bacterial extracts. FEMS Microbiol Lett 2006; 259:41-6; PMID:16684100; http://dx.doi.org/10.1111/j.1574-6968.2006.00240.x
  • Lim JA, Shin H, Heu S, Ryu S. Exogenous lytic activity of SPN9CC endolysin against Gram-negative bacteria. J Microbiol Biotechnol 2014; 24:803-11; PMID:24690638
  • Morita M, Tanji Y, Mizoguchi K, Soejima A, Orito Y, Unno H. Antibacterial activity of Bacillus amyloliquefaciens phage endolysin without holin conjugation. J Biosci Bioeng 2001; 91:469-73; PMID:16233024; http://dx.doi.org/10.1016/S1389-1723(01)80275-9
  • Orito Y, Morita M, Hori K, Unno H, Tanji Y. Bacillus amyloliquefaciens phage endolysin can enhance permeability of Pseudomonas aeruginosa outer membrane and induce cell lysis. Appl Microbiol Biotechnol 2004; 65:105-9; PMID:14714151; http://dx.doi.org/10.1007/s00253-003-1522-1
  • Saussereau E, Debarbieux L. Bacteriophages in the experimental treatment of Pseudomonas aeruginosa infections in mice. Adv Virus Res 2012; 83:123-41; PMID:22748810
  • Fischetti VA. Bacteriophage lytic enzymes: novel anti-infectives. Trends Microbiol 2005; 13:491-6; PMID:16125935; http://dx.doi.org/10.1016/j.tim.2005.08.007
  • Pastagia M, Schuch R, Fischetti VA, Huang DB. Lysins: the arrival of pathogen-directed anti-infectives. J Med Microbiol 2013; 62:1506-16; PMID:23813275; http://dx.doi.org/10.1099/jmm.0.061028-0
  • Kusuma C, Jadanova A, Chanturiya T, Kokai-Kun JF. Lysostaphin-resistant variants of Staphylococcus aureus demonstrate reduced fitness in vitro and in vivo. Antimicrob Agents Chemother 2007; 51:475-82; PMID:17101683; http://dx.doi.org/10.1128/AAC.00786-06
  • Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 2014; 12:465-78; PMID:24861036; http://dx.doi.org/10.1038/nrmicro3270
  • Keary R, McAuliffe O, Ross RP, Hill C, O'Mahony J, Coffey A. Genome analysis of the staphylococcal temperate phage DW2 and functional studies on the endolysin and tail hydrolase. Bacteriophage 2014; 4:e28451; PMID:25105056; http://dx.doi.org/10.4161/bact.28451
  • Rodriguez L, Martinez B, Zhou Y, Rodriguez A, Donovan DM, Garcia P. Lytic activity of the virion-associated peptidoglycan hydrolase HydH5 of Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88. BMC Microbiol 2011; 11:138; PMID:21682850; http://dx.doi.org/10.1186/1471-2180-11-138
  • Takac M, Blasi U. Phage P68 virion-associated protein 17 displays activity against clinical isolates of Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:2934-40; PMID:15980371; http://dx.doi.org/10.1128/AAC.49.7.2934-2940.2005
  • Rodriguez-Rubio L, Martinez B, Rodriguez A, Donovan DM, Garcia P. Enhanced staphylolytic activity of the Staphylococcus aureus bacteriophage vB_SauS-phiIPLA88 HydH5 virion-associated peptidoglycan hydrolase: fusions, deletions, and synergy with LysH5. Appl Environ Microbiol 2012; 78:2241-8; PMID:22267667; http://dx.doi.org/10.1128/AEM.07621-11
  • Paul VD, Rajagopalan SS, Sundarrajan S, George SE, Asrani JY, Pillai R, Chikkamadaiah R, Durgaiah M, Sriram B, Padmanabhan S. A novel bacteriophage Tail-Associated Muralytic Enzyme (TAME) from Phage K and its development into a potent antistaphylococcal protein. BMC Microbiol 2011; 11:226; PMID:21985151; http://dx.doi.org/10.1186/1471-2180-11-226
  • Vipra AA, Desai SN, Roy P, Patil R, Raj JM, Narasimhaswamy N, Paul VD, Chikkamadaiah R, Sriram B. Antistaphylococcal activity of bacteriophage derived chimeric protein P128. BMC Microbiol 2012; 12:41; PMID:22439788; http://dx.doi.org/10.1186/1471-2180-12-41
  • Bartell PF, Orr TE. Origin of polysaccharide depolymerase associated with bacteriophage infection. J Virol 1969; 3:290-6; PMID:4976560
  • Bartell PF, Orr TE, Lam GK. Polysaccharide depolymerase associated with bacteriophage infection. J Bacteriol 1966; 92:56-62; PMID:4957437
  • Scholl D, Adhya S, Merril C. Escherichia coli K1's capsule is a barrier to bacteriophage T7. Appl Environ Microbiol 2005; 71:4872-4; PMID:16085886; http://dx.doi.org/10.1128/AEM.71.8.4872-4874.2005
  • Nwodo UU, Green E, Okoh AI. Bacterial exopolysaccharides: functionality and prospects. Int J Mol Sci 2012; 13:14002-15; PMID:23203046; http://dx.doi.org/10.3390/ijms131114002
  • Kumar AS, Mody K, Jha B. Bacterial exopolysaccharides–a perception. J Basic Microbiol 2007; 47:103-17; PMID:17440912; http://dx.doi.org/10.1002/jobm.200610203
  • Looijesteijn PJ, Trapet L, de Vries E, Abee T, Hugenholtz J. Physiological function of exopolysaccharides produced by Lactococcus lactis. Int J Food Microbiol 2001; 64:71-80; PMID:11252513; http://dx.doi.org/10.1016/S0168-1605(00)00437-2
  • Mushtaq N, Redpath MB, Luzio JP, Taylor PW. Treatment of experimental Escherichia coli infection with recombinant bacteriophage-derived capsule depolymerase. J Antimicrob Chemother 2005; 56:160-5; PMID:15914489; http://dx.doi.org/10.1093/jac/dki177
  • Sutherland IW. Polysaccharases for microbial exopolysaccharides. Carbohydrate Polymers 1999; 38:319-28; http://dx.doi.org/10.1016/S0144-8617(98)00114-3
  • Casjens SR, Thuman-Commike PA. Evolution of mosaically related tailed bacteriophage genomes seen through the lens of phage P22 virion assembly. Virology 2011; 411:393-415; PMID:21310457; http://dx.doi.org/10.1016/j.virol.2010.12.046
  • Waseh S, Hanifi-Moghaddam P, Coleman R, Masotti M, Ryan S, Foss M, MacKenzie R, Henry M, Szymanski CM, Tanha J. Orally administered P22 phage tailspike protein reduces salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS One 2010; 5:e13904; PMID:21124920; http://dx.doi.org/10.1371/journal.pone.0013904
  • Glonti T, Chanishvili N, Taylor PW. Bacteriophage-derived enzyme that depolymerizes the alginic acid capsule associated with cystic fibrosis isolates of Pseudomonas aeruginosa. J Appl Microbiol 2010; 108:695-702; PMID:19709344; http://dx.doi.org/10.1111/j.1365-2672.2009.04469.x
  • Dubos R, Avery OT. Decomposition of the capsular polysaccharide of pneumococcus type III by a bacterial enzyme. J Exp Med 1931; 54:51-71; PMID:19869902; http://dx.doi.org/10.1084/jem.54.1.51
  • Goodner K, Dubos R. Studies on the quantitative action of a specific enzyme in type III pneumococcus dermal infection in rabbits. J Exp Med 1932; 56:521-30; PMID:19870083; http://dx.doi.org/10.1084/jem.56.4.521
  • Goodner K, Dubos R, Avery OT. The action of a specific enzyme upon the dermal infection of tabbits with type III pneumococcus. J Exp Med 1932; 55:393-404; PMID:19869998; http://dx.doi.org/10.1084/jem.55.3.393
  • Francis T, Terrell EE, Dubos R, Avery OT. Experimental type III pneumococcus pneumonia in monkeys: Treatment with an enzyme which decomposes the specific capsular polysaccharide of pneumococcus type III. J Exp Med 1934; 59:641-67; PMID:19870270; http://dx.doi.org/10.1084/jem.59.5.641
  • Zelmer A, Martin MJ, Gundogdu O, Birchenough G, Lever R, Wren BW, Luzio JP, Taylor PW. Administration of capsule-selective endosialidase E minimizes upregulation of organ gene expression induced by experimental systemic infection with Escherichia coli K1. Microbiology 2010; 156:2205-15; PMID:20395269; http://dx.doi.org/10.1099/mic.0.036145-0
  • Kim WS, Salm H, Geider K. Expression of bacteriophage phiEa1h lysozyme in Escherichia coli and its activity in growth inhibition of Erwinia amylovora. Microbiology 2004; 150:2707-14; PMID:15289567; http://dx.doi.org/10.1099/mic.0.27224-0
  • Malnoy M, Faize M, Venisse JS, Geider K, Chevreau E. Expression of viral EPS-depolymerase reduces fire blight susceptibility in transgenic pear. Plant Cell Rep 2005; 23:632-8; PMID:15375629; http://dx.doi.org/10.1007/s00299-004-0855-2
  • Roach DR, Khatibi PA, Bischoff KM, Hughes SR, Donovan DM. Bacteriophage-encoded lytic enzymes control growth of contaminating Lactobacillus found in fuel ethanol fermentations. Biotechnol Biofuels 2013; 6:20; PMID:23390890; http://dx.doi.org/10.1186/1754-6834-6-20
  • Bansal S, Harjai K, Chhibber S. Depolymerase improves gentamicin efficacy during Klebsiella pneumoniae induced murine infection. BMC Infect Dis 2014; 14:456; PMID:25149315; http://dx.doi.org/10.1186/1471-2334-14-456
  • Hughes KA, Sutherland IW, Jones MV. Biofilm susceptibility to bacteriophage attack: the role of phage-borne polysaccharide depolymerase. Microbiology 1998; 144 (Pt 11):3039-47; PMID:9846739; http://dx.doi.org/10.1099/00221287-144-11-3039
  • Bales PM, Renke EM, May SL, Shen Y, Nelson DC. Purification and characterization of biofilm-associated EPS exopolysaccharides from ESKAPE organisms and other pathogens. PLoS One 2013; 8:e67950; PMID:23805330; http://dx.doi.org/10.1371/journal.pone.0067950
  • Pang T, Fleming TC, Pogliano K, Young R. Visualization of pinholin lesions in vivo. Proc Natl Acad Sci U S A 2013; 110:E2054-63; PMID:23671069; http://dx.doi.org/10.1073/pnas.1222283110
  • Young R. Bacteriophage holins: deadly diversity. J Mol Microbiol Biotechnol 2002; 4:21-36; PMID:11763969
  • Rajesh T, Anthony T, Saranya S, Pushpam PL, Gunasekaran P. Functional characterization of a new holin-like antibacterial protein coding gene tmp1 from goat skin surface metagenome. Appl Microbiol Biotechnol 2011; 89:1061-73; PMID:20927512; http://dx.doi.org/10.1007/s00253-010-2907-6
  • Rodas PI, Trombert AN, Mora GC. A holin remnant protein encoded by STY1365 is involved in envelope stability of Salmonella enterica serovar Typhi. FEMS Microbiol Lett 2011; 321:58-66; PMID:21592194; http://dx.doi.org/10.1111/j.1574-6968.2011.02310.x
  • Wang Y, Sun JH, Lu CP. Purified recombinant phage lysin LySMP: an extensive spectrum of lytic activity for swine streptococci. Curr Microbiol 2009; 58:609-15; PMID:19267155; http://dx.doi.org/10.1007/s00284-009-9379-x
  • Shi Y, Li N, Yan Y, Wang H, Li Y, Lu C, Sun J. Combined antibacterial activity of phage lytic proteins holin and lysin from Streptococcus suis bacteriophage SMP. Curr Microbiol 2012; 65:28-34; PMID:22526567; http://dx.doi.org/10.1007/s00284-012-0119-2
  • Saier MH, Jr., Reddy BL. Holins in bacteria, eukaryotes, and archaea: multifunctional xenologues with potential biotechnological and biomedical applications. J Bacteriol 2015; 197:7-17; PMID:25157079; http://dx.doi.org/10.1128/JB.02046-14
  • Schmelcher M, Powell AM, Becker SC, Camp MJ, Donovan DM. Chimeric phage lysins act synergistically with lysostaphin to kill mastitis-causing Staphylococcus aureus in murine mammary glands. Appl Environ Microbiol 2012; 78:2297-305; PMID:22286996; http://dx.doi.org/10.1128/AEM.07050-11
  • Fenton M, Ross P, McAuliffe O, O'Mahony J, Coffey A. Recombinant bacteriophage lysins as antibacterials. Bioeng Bugs 2010; 1:9-16; PMID:21327123; http://dx.doi.org/10.4161/bbug.1.1.9818
  • Gu J, Zuo J, Lei L, Zhao H, Sun C, Feng X, Du C, Li X, Yang Y, Han W. LysGH15 reduces the inflammation caused by lethal methicillin-resistant Staphylococcus aureus infection in mice. Bioeng Bugs 2011; 2:96-9; PMID:21636996; http://dx.doi.org/10.4161/bbug.2.2.14883
  • McCullers JA, Karlstrom A, Iverson AR, Loeffler JM, Fischetti VA. Novel strategy to prevent otitis media caused by colonizing Streptococcus pneumoniae. PLoS Pathog 2007; 3:e28; PMID:17381239; http://dx.doi.org/10.1371/journal.ppat.0030028
  • Loeffler JM, Fischetti VA. Synergistic lethal effect of a combination of phage lytic enzymes with different activities on penicillin-sensitive and -resistant Streptococcus pneumoniae strains. Antimicrob Agents Chemother 2003; 47:375-7; PMID:12499217; http://dx.doi.org/10.1128/AAC.47.1.375-377.2003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.