1,091
Views
46
CrossRef citations to date
0
Altmetric
Reviews

Waste minimization and recovery of valuable metals from spent lithium-ion batteries – a review

&
Pages 101-115 | Received 10 Apr 2013, Accepted 29 Sep 2013, Published online: 07 Nov 2013

References

  • Ebensperger A, Maxwell P, Moscoso C. The lithium industry: its recent evolution and future prospects. Resour Policy. 2005;30:218–231. doi: 10.1016/j.resourpol.2005.09.001
  • Nakajima K, Nishi Y, Osaka T, Datta M, editor. Advanced li–ion batteries, energy storage systems for electronics. Singapore: Gordon and Breach Science Publishers; 2000.
  • Vreeke MS, Mah DT, Doyle CM. Report on the electrolytic industries for the year 1997. J Electrochem Soc. 1998;145:3668–3696. doi: 10.1149/1.1838858
  • Jeong SK, Minoru I, Yasutoshi I, Takeshi A, Zempachi O. Interfacial reactions between graphite electrodes and propylene carbonate-based solutions: electrolyte-concentration dependence of electrochemical lithium intercalation reaction. J Power Sources. 2008;175:540–546. doi: 10.1016/j.jpowsour.2007.08.065
  • Nelson RF. Power requirements for batteries for hybrid electric vehicles. J Power Sources. 2000;91:2–26. doi: 10.1016/S0378-7753(00)00483-3
  • Jandova J, Vu H, Dvorak P. Treatment of sulphate leach liquors to recover cobalt from waste dusts generated by the glass industry. Hydrometallurgy. 2005;77:67–73. doi: 10.1016/j.hydromet.2004.10.010
  • Ehrlich GM. Handbook of batteries. New York (NY): McGraw Hill Companies; 2004.
  • Armand M, Tarascon JM. Building better batteries. Nature. 2008;451:652–657. doi: 10.1038/451652a
  • Kang B, Ceder G. Battery materials for ultrafast charging and discharging. Nature. 2009;458:190–193. doi: 10.1038/nature07853
  • Tarascon JM, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–367. doi: 10.1038/35104644
  • Conner M, EDN NETWORK. PHEV on sale now at your local BYD auto dealer (in China) [Internet]; 2009 [updated 2012 Jul 17]. Available from: http://www.edn.com/blog/1470000147/post/1670038767.html
  • Endo M, Kim C, Nishimura K, Fujino T, Miyashita K. Recent development of carbon materials for lithium ion batteries. Carbon. 2000;38:183–197. doi: 10.1016/S0008-6223(99)00141-4
  • Fu H. Implementations of electric vehicle system based on solar energy in Singapore assessment of lithium ion batteries for automobiles [ME dissertation]. Cambridge: Massachusetts Institute of Technology; 2009.
  • Lee CK, Rhee KI. Reductive leaching of cathodic active materials from Li ion battery waste. Hydrometallurgy. 2003;68:5–10. doi: 10.1016/S0304-386X(02)00167-6
  • Castillo S, Ansart F, Laberty-Robert C, Portal J. Advances in the recovering of spent lithium battery compounds. J Power Sources. 2002;112:247–254. doi: 10.1016/S0378-7753(02)00361-0
  • Alfonso JC, Busnardo RG, Busnardo NG. Global symposium on recycling, waste treatment and clean technology. In: Gaballah I, Mishra B, Solozobal R, Tanaka M, editors. Proceedings of REWAS; 2004 vol. III. Warrendale (PA): TMS; 2004. p. 2783–2785.
  • Lee CK, Rhee KI. Preparation of LiCoO2 from spent lithium-ion batteries. J Power Sources. 2002;109:17–21. doi: 10.1016/S0378-7753(02)00037-X
  • Dewulfa J, Vorsta GV, Denturcka K, Langenhovea HV, Ghyootb W, Tytgatb J, Vandeputteb K. Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings resources. Conserv Recycling. 2010;54: 229–234. doi: 10.1016/j.resconrec.2009.08.004
  • Viswanathan VV, Choi D, Wang D, Xu W, Towne S, Williford RE, Zhang JG, Liu J, Yang Z. Effect of entropy change of lithium intercalation in cathodes and anodes on Li-ion battery thermal management. J Power Sources. 2010;195:3720–3729. doi: 10.1016/j.jpowsour.2009.11.103
  • Spotnitz R, Franklin J. Abuse behavior of high-power, lithium-ion cells. J Power Sources. 2003;113:81–100. doi: 10.1016/S0378-7753(02)00488-3
  • EC Directive 91/157/EEC: Council Directive of 18 March 1991 on batteries and accumulators containing certain dangerous substances (91/157/EEC).
  • Freitas MBJG, Garica E. Electrochemical recycling of cobalt from cathodes of spent lithium-ion batteries. J Power Sources. 2007;171:953–959. doi: 10.1016/j.jpowsour.2007.07.002
  • Ten'orio JAS, Oliveira DC, Chaves AP. Carbon–zinc batteries treatment by ore processing methods. In: Ibrahim G, John PH, Rodolfo S, editors. Proceedings of the global symposium on recycling waste treatment and clean technology (REWAS’99); vol. II. Warrendale (PA): TMS; 1999. p. 1153–1160.
  • Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy. 1998;47:259–271. doi: 10.1016/S0304-386X(97)00050-9
  • Frenay J, Feron S. Domestic battery recycling in western Europe. In: Van Linden JHL, Stewart L Jr, Sahai Y, editors. Proceedings of the second international symposium on recycling of metals and engineered materials. Berlin: TMS; 1990, p. 639–648.
  • Kim DS, Sohn DS, Lee KS, Hani JH, Lee YI. Simultaneous separation and renovation of lithium cobalt oxide from the cathode of spent lithium ion rechargeable batteries. J Power Sources. 2004;132:145–149. doi: 10.1016/j.jpowsour.2003.09.046
  • Shin SM, Kim NH, Sohn JS, Yang DH, Kim YH. Development of metal recovery processes from Li-ion battery waste. Hydrometallurgy. 2005;79:172–181. doi: 10.1016/j.hydromet.2005.06.004
  • Tanii T, Tsuzuki S, Honmura S, Kamimura T, Sasaki K, Yabuki M, Nishida K. Method of crushing cell. US patent 6, 524, 737. 2003. 2003 Fed 25.
  • Contestabile M, Panero S, Scrosati B. A laboratory scale lithium-ion battery recycling process. J Power Sources. 2001;92:65–69. doi: 10.1016/S0378-7753(00)00523-1
  • Nan J, Han D, Zuo X. Recovery of metal values from spent lithium-ion batteries with chemical deposition and solvent extraction. J Power Sources. 2005;152:278–284. doi: 10.1016/j.jpowsour.2005.03.134
  • Zhang P, Yokoyama T, Itabashi O, Suzuki TM, Inoue K. Hydrometallurgical process for recovery of metal values from spent lithium-ion secondary batteries. Hydrometallurgy. 1998;47:259–271. doi: 10.1016/S0304-386X(97)00050-9
  • Müller T, Friedrich B. Development of a recycling process for nickel-metal hydride batteries. J Power Sources. 2006;158:1498–1509. doi: 10.1016/j.jpowsour.2005.10.046
  • Ruffino B, Zanetti MC, Marini P. A mechanical pre-treatment process for the valorization of useful fractions from spent batteries. Resour Conservat Recycl. 2011;55:309–315. doi: 10.1016/j.resconrec.2010.10.002
  • Granata G, Pagnanelli F, Moscardini E, Takacova Z, Havlikb T, Toro L. Simultaneous recycling of nickel metal hydride, lithium ion and primary lithium batteries: accomplishment of European Guidelines by optimizing mechanical pre-treatment and solvent extraction operations. J Power Sources. 2012;212:205–211. doi: 10.1016/j.jpowsour.2012.04.016
  • Lin JR, Fan C, Chang IL, Shiu JY. Clean process of recovering metals from waste lithium ion batteries. US patent 65 514,311. 2003 Feb 4.
  • Tanaka Y, Zhang Q, Saito F. Synthesis of spinel Li4Mn5O12 with an aid of mechanochemical treatment. Powder Technol. 2003;132:74–80. doi: 10.1016/S0032-5910(03)00009-3
  • Zhang FQ, Lu J, Saito F, Nagata C, Ito Y. Room temperature acid extraction of Co from LiCo0.2Ni0.8O2 scrap by a mehanochemical treatment. Adv Pow Tech. 2000;11: 353–359. doi: 10.1163/156855200750172222
  • Saeki S, Lee J, Zhang QW, Saito F. Co-grinding LiCoO2 with PVC and water leaching of metal chlorides formed in ground product. Int J Miner Process. 2004;74(special issue supplement):S373–S378. doi: 10.1016/j.minpro.2004.08.002
  • Li L, Gea J, Wua F, Chen R, Chen S, Wua B. Recovery of cobalt and lithium from spent lithium ion batteries using organic citric acid as leachant. J Hazard Mater. 2010;176:288–293. doi: 10.1016/j.jhazmat.2009.11.026
  • Wang YG, Wang YR, Hosono EJ, Wang KX, Zhou HS. The design of a LiFePO4/carbon nanocomposite with a core–shell structure and its synthesis by an in situ polymerization restriction method. Angew Chem Int Ed. 2008;47:7461–7465. doi: 10.1002/anie.200802539
  • Wang RC, Lin YC, Wu SH. A novel recovery process of metal values from the cathode active materials of the lithium-ion secondary batteries. Hydrometallurgy. 2009;99:194–201. doi: 10.1016/j.hydromet.2009.08.005
  • Mantuano DP, Dorella G, Elias RCA, Mansur MB. Analysis of a hydrometallurgical route to recover base metals from spent rechargeable batteries by liquid-liquid extraction with cyanex 272. J Power Sources. 2006;159:1510–1518. doi: 10.1016/j.jpowsour.2005.12.056
  • Dorella G, Mansur MB. A study of the separation of cobalt from spent Li-ion battery residues. J Power Sources. 2007;170:210–215. doi: 10.1016/j.jpowsour.2007.04.025
  • Li L, Ge J, Chen R, Wua F, Chen S, Zhang X. Environmental friendly leaching reagent for cobalt and lithium recovery from spent lithium-ion batteries. Waste Manage. 2010;30:2615–2621. doi: 10.1016/j.wasman.2010.08.008
  • Li L, Chen R, Sun F, Wu F, Liu J. Preparation of LiCoO2 films from spent lithium-ion batteries by a combined recycling process. Hydrometallurgy. 2011;108:220–225. doi: 10.1016/j.hydromet.2011.04.013
  • Li L, Lu J, Ren Y, Zhang XX, Chen RJ, Wu F, Amine K. Ascorbic-acid-assisted recovery of cobalt and lithium from spent Li-ion batteries. J Power Sources. 2012;218:21–27. doi: 10.1016/j.jpowsour.2012.06.068
  • Granata G, Moscardini E, Pagnanelli F, Trabucco F, Toro L. Product recovery from Li-ion battery wastes coming from an industrial pre-treatment plant: lab scale tests and process simulations. J Power Sources. 2012;206:393–401. doi: 10.1016/j.jpowsour.2012.01.115
  • Guang ZS, Zhi HEW, Ming LG, Xu Z, Jun ZX, Wen HJ. Recovery of Co and Li from spent lithium-ion batteries by combination method of acid leaching and chemical precipitation. Trans Nonferrous Met Soc China. 2012;22:2274–2281. doi: 10.1016/S1003-6326(11)61460-X
  • Swain B, Jeong J, Lee JC, Lee GH, Sohna JS. Hydrometallurgical process for recovery of cobalt from waste cathodic active material generated during manufacturing of lithium ion batteries. J Power Sources. 2007;167:536–544. doi: 10.1016/j.jpowsour.2007.02.046
  • Li J, Zhao R, He X, Liu H. Preparation of LiCoO2 cathode materials from spent lithium–ion batteries. Ionics. 2009;15:111–113.
  • Sakultung S, Pruksathorn K, Hunsom M. Simultaneous recovery of valuable metals from spent mobile phone battery by an acid leaching process. Korean J Chem Eng. 2007;24:272–277. doi: 10.1007/s11814-007-5040-1
  • Shin SM, Kim NH, Sohn JS, Yang DH, Kim YH. Development of a metal recovery process from Li-ion battery wastes. Hydrometallurgy. 2005;79:172–181. doi: 10.1016/j.hydromet.2005.06.004
  • Brandl H, Faramarzi MA. Microbe-metal-interactions for the biotechnological treatment of metal-containing solid waste. China Particuology. 2006;4:93–97. doi: 10.1016/S1672-2515(07)60244-9
  • Rohwerder T, Gehrke T, Kinzler K, Sahd W. Bioleaching review part A: progess in bioleaching: fundamentals and mechanism of bacterial metal sulfide oxidation. Bioleach Appl Microbiol Biotechnol. 2003;63:239–248. doi: 10.1007/s00253-003-1448-7
  • Cerruti C, Curutchet G, Donati E. Bio-dissolution of spent nickel-cadmium batteries using Thiobacillus ferrooxidans. J Biotechnol. 1998;62:209–219. doi: 10.1016/S0168-1656(98)00065-0
  • Verstraete W. Environmental biotechnology for sustainability. J Biotechnol. 2002;94:93–100. doi: 10.1016/S0168-1656(01)00421-7
  • Rossi G. Biohydrometallurgy. Hamburg: McGraw-Hill Book; 1990.
  • Moore JN, Luoma SN. Hazardous wastes from large scale metal extraction: a case study. Environ Sci Tech. 1990;24:1278–1285. doi: 10.1021/es00079a001
  • Mishra D, Kim DJ, Ralph DE, Ahn JG, Rhee YH. Bioleaching of metals from spent lithium ion secondary batteries using Acidithiobacillus ferrooxidans. Waste Manage. 2008;28:333–338. doi: 10.1016/j.wasman.2007.01.010
  • Tsurut T. Removal and recovery of lithium using various microorganisms. J Biosci Bioeng. 2005;100: 562–566. doi: 10.1263/jbb.100.562
  • Xin B, Zhang D, Zhang X, Xia Y, Wu F, Chen S, Li L. Bioleaching mechanism of Co and Li from spent lithium-ion battery by the mixed culture of acidophilic sulfur-oxidizing and iron-oxidizing bacteria. Bioresour Technol. 2009;100:6163–6139. doi: 10.1016/j.biortech.2009.06.086
  • Lupi C, Pasquali M, DellEra A. Nickel and cobalt recycling from lithium-ion batteries by electrochemical processes. Waste Manage. 2005;25:215–220. doi: 10.1016/j.wasman.2004.12.012
  • Dorella G, Mansur MS. A study of separation of cobalt from spent lithium battery residues. J Power Sources. 2007;170:210–215. doi: 10.1016/j.jpowsour.2007.04.025
  • Garcia EM, Santosb JS, Pereirab EC, Freitas MBJG. Electrodeposition of cobalt from spent Li-ion battery cathodes by the electrochemistry quartz crystal microbalance technique. J Power Sources. 2008;185:549–553. doi: 10.1016/j.jpowsour.2008.07.011
  • Armyanov S. Crystallographic structure and magnetic properties of electrodeposited cobalt and cobalt alloys. Electrochim Acta. 2000;45:3323–3335. doi: 10.1016/S0013-4686(00)00408-4
  • Matsusshima F, Trivinho-Strixino F, Pereira EC. Investigation of cobalt deposition using the electrochemical quartz crystal microbalance. Electrochim Acta. 2006;51:1960–1966. doi: 10.1016/j.electacta.2005.07.003
  • Georgi-Maschler T, Friedrich B, Weyhe R, Heegn H, Rutz M. Development of a recycling process for Li-ion batteries. J Power Sources. 2012;207:173–182. doi: 10.1016/j.jpowsour.2012.01.152
  • Zhou X, He WZ, Li GM, Zhang XJ, Huang JW, Zhu SG. Recycling of electrode materials from spent lithium-ion batteries. 978, 4244-4713. Bioinformatics and biomedical engineering (iCBBE), 2010 4th international conference on bioengineering, 2010 June 18–20, Chengdu.
  • Swain B, Jeong J, Lee JC, Lee GH. Development of process flow sheet for recovery of high pure cobalt from sulfate leach liquor of LIB industry waste: a mathematical model correlation to predict optimum operational conditions. Sep Purif Technol. 2008;63:360–369. doi: 10.1016/j.seppur.2008.05.022
  • Bossche PVD. The current legislative development in the EU waste policy: challenge or opportunities for metal industry. Cobalt Development Institute; 2006. Available from: http://www.thecdi.com/cdi/images/news pdf/Cobalt News January 2006.pdf.
  • Sarangi K, Reddy BR, Das RP. Extraction studies of cobalt (II) and nickel (II) from chloride solutions using Na-Cyanex 272: separation of Co(II)/Ni(II) by the sodium salts of D2EHPA, PC88A and Cyanex 272 and their mixtures. Hydrometallurgy. 1999;52:253–265. doi: 10.1016/S0304-386X(99)00025-0
  • Ritcey GM, Ashbrook AW. Solvent extraction principles and applications to process metallurgy part-1. Amsterdam: Elsevier Science; 1979.
  • Cleveland WS. Robust locally weighted regression and smoothing scatterplots. J Am Stat Assoc. 1979;74: 829–836. doi: 10.1080/01621459.1979.10481038
  • Cleveland WS, Devlin SJ. Locally weighted regression: an approach to regression analysis by local fitting. J Am Stat Assoc. 1998;83:596–610. doi: 10.1080/01621459.1988.10478639
  • Swain B, Jeong J, Lee JC, Lee GH. Separation of cobalt and lithium from mixed sulfate solution using Na-cyanex 272. Hydrometallurgy. 2006;84:130–138. doi: 10.1016/j.hydromet.2006.03.061
  • Lee CK, Yang DH. Recovery of valuable metals from spent Lithium ion batteries, Hwahak Kongop. J Power Sources. 2001;12:890–895.
  • Sohn JS, Yang DH, Shin SH, Kim NH, Sohn HT. Recovery of cobalt in sulfuric acid leaching solution using oxalic acid. In: Rhee KI, Oh JK, editors. Proceedings of the international symposium on green technology for resources and material recycling; 2004 Nov 24–27; Seoul; p. 316–320.
  • Zhang Q, Saito F. Non-thermal process for extracting rare earths from bastnaesite by means of mechanochemical treatment. Hydrometallurgy. 1998;47:231–241. doi: 10.1016/S0304-386X(97)00048-0
  • Ren Y, Armstrong AR, Jiao F, Bruce PG. Influence of size on the rate of mesoporous electrodes for lithium batteries. J Am Stat Assoc. 2010;132:996–1004.
  • Amine K, Belharouak I, Chen ZH, Tran T, Yumoto H, Ota N, Myung ST, Sun YK. Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater. 2010;22:3052–3057. doi: 10.1002/adma.201000441
  • Lee KT, Cho J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today. 2010;6:28–41. doi: 10.1016/j.nantod.2010.11.002
  • Martha SK, Grinblat J, Haik O, Zinigrad E, Drezen T, Miners JH, Exnar I, Kay A, Markovsky B, Aurbach D. LiMn0.8Fe0.2PO4: an advanced cathode material for rechargeable lithium batteries. Angew Chem Int Ed. 2009;48:8559–8563. doi: 10.1002/anie.200903587
  • Chung SY, Bloking JT, Chiang YM. Electronically conductive phospho-olivines as lithium storage electrodes. Nat Mater. 2002;1:123–128. doi: 10.1038/nmat732
  • Ellis B, Kan WH, Makahnouk WRM, Nazar LF. Synthesis of nanocrystals and morphology control of hydrothermally prepared LiFePO4. J Mater Chem. 2007;17:3248–3254. doi: 10.1039/b705443m
  • Yang SF, Zavalij PY, Whittingham MS. Hydrothermal synthesis of lithium iron phosphate cathodes. Electrochem Commun. 2001;3:505–508. doi: 10.1016/S1388-2481(01)00200-4
  • Jiao F, Shaju KM, Bruce PG. Synthesis of nanowire and mesoporous low-temperature LiCoO2 by a post-templating reaction. Angew Chem Int Ed. 2005;44:6550–6553. doi: 10.1002/anie.200501663
  • Yu Y, Gu L, Wang CL, Dhanabalan A, Van Aken PA, Maier J. Encapsulation of Sn@carbon nanoparticles in bamboo-like hollow carbon nanofibres as an anode material in lithium based batteries. Angew Chem Int Ed. 2009;48:6485–6489. doi: 10.1002/anie.200901723
  • Zhu SM, Zhou HS, Miyoshi T, Hibino M, Honma I, Ichihara M. Self-assembly of the mesoporous electrode material Li3Fe2(PO4)3 using a cationic surfactant as the template. Adv Mater. 2012;16:2012–2017. doi: 10.1002/adma.200400207
  • Fouad OA, Farghaly FI, Bahgat M. A novel approach for synthesis of nanocrystalline γ-LiAlO2 from spent lithium-ion batteries. J Anal Appl Pyrolysis. 2006;78:65–69. doi: 10.1016/j.jaap.2006.04.002
  • Cotton FA, Wilkinson G, Murillo CA, Bochmann M. Advanced inorganic chemistry. New York (NY): Wiley; 1999.
  • Turner CW, Clatworthy BC, Gin AH. The preparation of lithium aluminate by the hydrolysis of lithium and aluminium alkoxides. International Symposium on Fabrication and Properties of Lithium Ceramics, AECL-9614. Adv Ceram. 1998;25:141–148.
  • Valenzuela MA, Jimenez-Becerril J, Bosch P, Bullbulian S, Lara VH. Sol-gel synthesis of lithium aluminate. J Am Ceram Soc. 1996;79:455–460. doi: 10.1111/j.1151-2916.1996.tb08144.x
  • Kwon SW, Park SB. Effect of precursors on the preparation of lithium aluminate. J Nucl Mater. 1997;246:131–138. doi: 10.1016/S0022-3115(97)00148-7
  • Dwivedi RK, Gowda G. Phase transitions in alumina gels containing lithium oxide. J Mater Sci Lett. 1986;5: 606–610. doi: 10.1007/BF01731524
  • Mayer T, Kreyenberg D, Wind J, Braun F. Feasibility study of 2020 target costs for PEM fuel cells and lithium-ion batteries: a two-factor experience curve approach. Int J Hydrogen Energy. 2012;37:1443–14474. doi: 10.1016/j.ijhydene.2012.07.022
  • Delucchi MA, Lipman TE. An analysis of the retail and lifecycle cost of battery-powered electric vehicles. Transp Res D. 2001;6:371–404. doi: 10.1016/S1361-9209(00)00031-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.