200
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Modelling aspects of carbon dioxide capture technologies using porous contactors: a review

, , , , , & show all
Pages 15-29 | Received 17 Oct 2012, Accepted 23 Apr 2014, Published online: 22 May 2014

References

  • IEA. World energy outlook. Paris: International Energy Agency; 2010.
  • UNEP. Introduction to Climate Change, United Nations Environment Programme, 2005. [cited 2012 July 12]. Available from: http://www.grida.no/climate/vital/06.htm
  • Freund P. Making deep reductions in CO2 emissions from coal-fired power plant using capture and storage of CO2. Proc Inst Mech Eng A: J Power Eng. 2003;217:1–8. doi: 10.1243/095765003321148628
  • Wang M, Lawal A, Stephenson P, Sidders J, Ramshaw C. Post-combustion CO2 capture with chemical absorption: a state-of-the-art review. Chem Eng Res Des. 2010;89:1609–1624. doi: 10.1016/j.cherd.2010.11.005
  • Gabelman A, Hwang ST. Hollow fiber membrane contactors. J Membr Sci. 1999;159:61–106. doi: 10.1016/S0376-7388(99)00040-X
  • Prusty BK. Sorption of methane and CO2 for enhanced coalbed methane recovery and carbon dioxide sequestration. J Nat Gas Chem. 2008;17:29–38. doi: 10.1016/S1003-9953(08)60022-5
  • Knauss KG, Johnson JW, Steefel CI. Evaluation of the impact of CO2, co-contaminant gas, aqueous fluid and reservoir rock interactions on the geologic sequestration of CO2. Chem Geol. 2005;217:339–350. doi: 10.1016/j.chemgeo.2004.12.017
  • Chowdhury FA, Okabe H, Shimizu S, Onoda M, Fujioka Y. Development of novel tertiary amine absorbents for CO2 capture. Energy Procedia. 2009;1:1241–1248. doi: 10.1016/j.egypro.2009.01.163
  • Edali M, Aboudheir A, Idem R. Kinetics of carbon dioxide absorption into mixed aqueous solutions of MDEA and MEA using laminar jet apparatus and numerically solved absorption-rate/kinetic model. COSMOL Conference Proceedings; 2007 October 4–6; Boston, MA.
  • Chakravarty T, Phuken UK. Reaction of acid gases with mixture of amines. Chem Eng Prog. 1985;40:32–36.
  • Mahmoudkhani M, Keith DW. Low-energy sodium hydroxide recovery for CO2 capture from atmospheric air—thermodynamic analysis. Int J Greenhouse Gas Control. 2009;3:376–384. doi: 10.1016/j.ijggc.2009.02.003
  • Baciocchi R, Storti G, Mazzotti M. Process design and energy requirement for the capture of carbon dioxide from air. Chem Eng Prog. 2006;45:1047–1058. doi: 10.1016/j.cep.2006.03.015
  • Scholes CA, Kentish SE, Stevens GW. Carbon dioxide separation through polymeric membrane systems for flue gas applications. Recent Patents on Chem Eng. 2008;1:52–66. doi: 10.2174/2211334710801010052
  • Aboudheir A, Tontiwachwuthikul P, Idem R. Rigorous model for predicting the behavior of CO2 absorption into AMP in packed-bed absorption columns. Ind Eng Chem Res. 2006;45:2553–2557. doi: 10.1021/ie050570d
  • Perry RH, Green DW, Maloney JO. Perry's chemical engineering handbook. 7th ed. New York: McGraw-Hill; 1997.
  • Yeh JT, Pennline HW. Study of CO2 absorption and desorption in a packed column. Third Annual Conference on Carbon Capture and Sequestration – Proceedings; 2004 May 3–6; Alexandria, VA.
  • Pandya JD. Adiabatic gas absorption and stripping with chemical reaction in packed towers. Chem Eng Commun. 1983;19:343–361. doi: 10.1080/00986448308956351
  • Aroonwilas A, Tontiwachwuthikul P. Mechanistic model for prediction of structured packing mass transfer performance in CO2 absorption with chemical reactions. Chem Eng Sci. 2000;55:3651–3663. doi: 10.1016/S0009-2509(00)00035-X
  • Treybal RE. Mass transfer operations. 3rd ed. New York: McGraw-Hill; 1980.
  • Higbie R. Rate of absorption of a gas into a still liquid during short periods of exposure. Trans AIChE. 1935;31:365–389.
  • Bravo JL, Rocha JA, Fair JR. Mass transfer in gauze packings. Hydrocarbon Process. 1985;64(1):91–95.
  • Aroonwilas A, Chakma A, Tontiwachwuthikul P, Veawab A. Mathematical modelling of mass-transfer and hydrodynamics in CO2 absorbers packed with structured packings. Chem Eng Sci. 2003;58:4037–4053. doi: 10.1016/S0009-2509(03)00315-4
  • Austgen DM, Rochelle GT, Peng X, Chen C. Model of vapor–liquid equilibria for aqueous acid gas-alkanolamine systems using the electrolyte-NRTL equation. Ind Eng Chem Res. 1989;28:1060–1073. doi: 10.1021/ie00091a028
  • Lawal A, Wang M, Stephenson P, Yeung H. Dynamic modelling of CO2 absorption for post combustion capture in coal-fired power plants. Fuel. 2009;88:2455–2462. doi: 10.1016/j.fuel.2008.11.009
  • Astarita G, Savage DW, Bistro A. Gas treating with chemical solvents. New York: John Wiley & Sons; 1983.
  • Tan C-S, Chen J-E. Absorption of carbon dioxide with piperazine and its mixtures in a rotating packed bed. Sep Puri Technol. 2006;49:174–180. doi: 10.1016/j.seppur.2005.10.001
  • Cheng H-H, Shen J-F, Tan C-S. CO2 capture from hot stove gas in steel making process. Int J Greenhouse Gas Control. 2010;4:525–531. doi: 10.1016/j.ijggc.2009.12.006
  • Ramshaw C, Mallinson RH. Mass transfer process. US patent 4. 283, 255. 1981.
  • Munjal S, Dudukovic MP, Ramachandran P. Mass transfer in rotating packed beds-I. Development of gas–liquid and liquid–solid mass-transfer correlations. Chem Eng Sci. 1989;44:2245–2256. doi: 10.1016/0009-2509(89)85159-0
  • Yi F, Zoua H-K, Chua G-W, Shaoa L, Chena J-F. Modeling and experimental studies on absorption of CO2 by Benfield solution in rotating packed bed. Chem Eng J. 2009;145: 377–384. doi: 10.1016/j.cej.2008.08.004
  • Lin C, Liu W, Tan C. Removal of carbon dioxide by absorption in a rotating packed bed. Ind Eng Chem Res. 2003;42:2381–2386. doi: 10.1021/ie020669+
  • Jassim MS, Rochelle G, Eimer D, Ramshaw C. Carbon dioxide absorption and desorption in aqueous monoethanolamine solutions in a rotating packed bed. Ind Eng Chem Res. 2007;46:2823–2833. doi: 10.1021/ie051104r
  • Munjal S, Dudukovic MP, Ramachandran P. Mass transfer in rotating packed beds-II. Experimental results and comparison with theory and gravity flow. Chem Eng Sci. 1989;44:2257–2268. doi: 10.1016/0009-2509(89)85160-7
  • Fowler R, Gendes KF, Nyguard HF. Commercial scale demonstration of Higee for CO2/H2O removal. 21st Annual Offshore Technology Conference; 1989 May 1–4; Houston, TX.
  • Aroonwilas A, Tontiwachwuthikul P. High-efficiency structured packing for CO2 separation using 2-amino-2-methyl-1-propanol (AMP). Sep Purif Technol. 1997;12:67–79. doi: 10.1016/S1383-5866(97)00037-3
  • Tung TH, Mah RSH. Modeling liquid mass transfer in Higee separation process. Chem Eng Commun. 1985;39:147–153. doi: 10.1080/00986448508911667
  • Onda K, Takeuchi H, Okumoto Y. Mass transfer coefficient between gas and liquid phases in packed columns. J Chem Eng Jpn. 1968;1:56–62. doi: 10.1252/jcej.1.56
  • Burns JR, Jamil JN, Ramshaw C. Process intensification operating characteristics of rotating packed beds—determination of liquid hold-up for a high-voidage structured packing. Chem Eng Sci. 2000;55:2401–2415. doi: 10.1016/S0009-2509(99)00520-5
  • Guo F, Zheng C, Guo K, Feng YD, Gardner NC. Hydrodynamics and mass transfer in cross flow rotating packed bed. Chem Eng Sci. 1997;52:3853–3859. doi: 10.1016/S0009-2509(97)00229-7
  • Lin C-C, Chen B-C. Characteristics of cross-flow rotating packed beds. J Ind Eng Chem. 2008;14:322–327. doi: 10.1016/j.jiec.2008.01.004
  • Lin C-C, Chen B-C, Chen Y-S, Hsu S-K. Feasibility of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams. Sep Puri Technol. 2008;62: 507–512. doi: 10.1016/j.seppur.2008.02.019
  • Cheng H-H, Shen J-F, Tan C-S. CO2 capture from hot stove gas in steel making process. Int J Greenhouse Gas Control. 2010;4:525–531. doi: 10.1016/j.ijggc.2009.12.006
  • Lin C-C, Chen B-C. Carbon dioxide absorption in a cross-flow rotating packed bed. Chem Eng Res Des. 2011;89:1722–1729. doi: 10.1016/j.cherd.2010.11.015
  • Lin C-C, Chen Y-W. Performance of a cross-flow rotating packed bed in removing carbon dioxide from gaseous streams by chemical absorption. Int J Greenhouse Gas Control. 2011;5:668–675. doi: 10.1016/j.ijggc.2011.02.002
  • Boucif N, Favre E, Roizard D. CO2 capture in HFMM contactor with typical amine solutions: a numerical analysis. Chem Eng Sci. 2008;63:5375–5385. doi: 10.1016/j.ces.2008.07.015
  • Mansourizadeha A, Ismaila AF, Matsuurab T. Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. J Membr Sci. 2010;353:192–200. doi: 10.1016/j.memsci.2010.02.054
  • Karoor S, Sirkar KK. Gas absorption studies in microporous hollow fiber membrane modules. Ind Eng Chem Res. 1993;32:674–684. doi: 10.1021/ie00016a014
  • Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM. Microporous hollow fibre membrane modules as gas–liquid contactors. Part 1. Physical mass transfer processes: a specific application: mass transfer in highly viscous liquids. J Membr Sci. 1993;78:197–216. doi: 10.1016/0376-7388(93)80001-E
  • Kreulen H, Smolders CA, Versteeg GF, van Swaaij WPM. Microporous hollow fibre membrane modules as gas–liquid contactors. Part 2. Mass transfer with chemical reaction. J Membr Sci. 1993;78:217–238. doi: 10.1016/0376-7388(93)80002-F
  • Rangwala HA. Absorption of carbon dioxide into aqueous solutions using hollow fiber membrane contactors. J Membr Sci. 1996;112:229–240. doi: 10.1016/0376-7388(95)00293-6
  • Wang R, Li DF, Liang DT. Modelling of CO2 capture by three typical amine solutions in hollow fiber membrane contactors. Chem Eng Process. 2004;43:849–856. doi: 10.1016/S0255-2701(03)00105-3
  • Wang R, Zhang HY, Feron PHM, Liang DT. Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep Puri Technol. 2005;46: 33–40. doi: 10.1016/j.seppur.2005.04.007
  • Atchariyawut S, Jiraratananon R, Wang R. Separation of CO2 from CH4 by using gas–liquid membrane contacting process. J Membr Sci. 2007;304:163–172. doi: 10.1016/j.memsci.2007.07.030
  • Qi Z, Cussler EL. Microporous hollow fibers for gas absorption. I. Mass transfer in the liquid. J Membr Sci. 1985;23:321–332. doi: 10.1016/S0376-7388(00)83149-X
  • Qi Z, Cussler EL. Microporous hollow fibers for gas absorption. II. Mass transfer across the membrane. J Membr Sci. 1985;23:333–345. doi: 10.1016/S0376-7388(00)83150-6
  • Yang MC, Cussler EL. Designing hollow fiber contactors. AIChE J. 1986;32:1910–1916. doi: 10.1002/aic.690321117
  • Atchariyawuta S, Jiraratananona R, Wang R. Mass transfer study and modeling of gas–liquid membrane contacting process by multistage cascade model for CO2 absorption. Sep Puri Technol. 2008;63:15–22. doi: 10.1016/j.seppur.2008.03.005
  • Prasad R, Sirkar KK. Dispersion-free solvent extraction with microporous hollow-fiber modules. AIChE J. 1988;34: 177–188. doi: 10.1002/aic.690340202
  • Wickramasinghe SR, Semmens MJ, Cussler EL. Mass transfer in various hollow fiber geometries. J Membr Sci. 1992;69:235–250. doi: 10.1016/0376-7388(92)80042-I
  • Mavroudi M, Kaldis SP, Sakellaropoulos GP. A study of mass transfer resistance in membrane gas–liquid contacting processes. J Membr Sci. 2006;272:103–115. doi: 10.1016/j.memsci.2005.07.025
  • Moradi S. Modeling and simulation of CO2 absorption in film membrane for laminar flow conditions. World Appl Sci J. 2010;9:848–854.
  • Al-Marzouqi M, El-Naasa M, Marzouk S, Abdullatif N. Modeling of chemical absorption of CO2 in membrane contactors. Sep Puri Technol. 2008;62:499–506. doi: 10.1016/j.seppur.2008.02.009
  • Happel J. Viscous flow relative to arrays of cylinders. AIChE J. 1959;5:174–177. doi: 10.1002/aic.690050211
  • Eslami S, Mousavi SM, Danesh S, Banazadeh H. Modeling and simulation of CO2 removal from power plant flue gas by PG solution in a hollow fiber membrane contactor. Adv Eng Software. 2011;42:612–620. doi: 10.1016/j.advengsoft.2011.05.002
  • Zhou Q, Chan CW, Tontiwachwuthikul P, Idem R, Gelowitz D. A statistical analysis of the carbon dioxide capture process. Int J Greenhouse Gas Control. 2009;3: 535–544. doi: 10.1016/j.ijggc.2009.02.007
  • Field A. Discovering statistics using SPSS for windows. London: SAGE Publication Ltd.; 2000.
  • Zhou Q, Chan CW, Tontiwachwuthikul P. An application of neuro-fuzzy technology for analysis of the CO2 capture process. Fuzzy Sets Syst. 2010;161:2597–2611. doi: 10.1016/j.fss.2010.04.016
  • Kwong CF, Chuah TC, Lee SW. Adaptive network fuzzy inference system (ANFIS) handoff algorithm. Int J Network Mobile Technol. 2010;1:54–59.
  • Babazadeh Y, Mousavi SM, Akbarzadeh MR. Multidimensional dynamic modeling of milk ultrafiltration using neuro-fuzzy method and a hybrid physical model. Int J Chem Eng. 2008;5:3–22.
  • Jang JSR. ANFIS: adaptive network based fuzzy inference system. IEEE T Syst Man Cyb. 1993;23: 665–685. doi: 10.1109/21.256541
  • Zhou Q, Wu Y, Chan CW, Tontiwachwuthikul P. Modeling of the carbon dioxide capture process system using machine intelligence approaches. Eng Appl Artif Intell. 2011;24: 673–685. doi: 10.1016/j.engappai.2011.01.003
  • Sen D, Sarkar S, Bhattacharjee S, Bandopadhya S, Ghosh S, Bhattacharjee C. Simulation of the effect of various operating parameters for the effective separation of carbon dioxide into an aqueous caustic soda solution in a packed bed using lattice Boltzmann simulation. Ind Eng Chem Res. 2013;52(4):1731–1742.
  • Zehner P, Benfer R. Modelling fluid dynamics in multiphase reactors. Chem Eng Sci. 1996;51:1735–1744. doi: 10.1016/0009-2509(96)00032-2
  • Yu YS, Li Y, Lu HF, Yan LW, Zhang ZX. Performance improvement for chemical absorption of CO2 by global field synergy optimization. Int J Greenhouse Gas Control. 2011;5:649–658. doi: 10.1016/j.ijggc.2011.03.008
  • Tontiwachwuthikul P, Meisen A, Lim CJ. CO2 absorption by NaOH, monoethanolamine and 2-amino-2methyl-1-propanol solutions in a packed column. Chem Eng Sci. 1992;47(2):381–390. doi: 10.1016/0009-2509(92)80028-B

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.