635
Views
45
CrossRef citations to date
0
Altmetric
Reviews

Microbial lipid production from renewable and waste materials for second-generation biodiesel feedstock

, , , &
Pages 1-16 | Received 24 Aug 2014, Accepted 08 Feb 2015, Published online: 11 Mar 2015

References

  • Meng X, Yang J, Xu X, Zhang L, Nie Q, Xian M. Biodiesel production from oleaginous microorganisms. Renew Energy. 2009;34:1–5. doi: 10.1016/j.renene.2008.04.014
  • Blaschek HP, Ezeji TC, Scheffran J. Biofuels from agricultural wastes and byproducts. Ames (IA): Wiley-Blackwell; 2010.
  • Campbell CJ. The Rimini protocol an oil depletion protocol: heading off economic chaos and political conflict during the second half of the age of oil. Energy Policy. 2006;34:1319–1325. doi: 10.1016/j.enpol.2006.02.005
  • Antoni D, Zverlov VV, Schwarz WH. Biofuels from microbes. Appl Microbiol Biotechnol. 2007;77:23–35. doi: 10.1007/s00253-007-1163-x
  • Liang Y. Producing liquid transportation fuels from heterotrophic microalgae. Appl Energy. 2013;104:860–868. doi: 10.1016/j.apenergy.2012.10.067
  • Batan L, Quinn J, Willson B, Bradley T. Net energy and greenhouse gas emission evaluation of biodiesel derived from microalgae. Environ Sci Technol. 2010;44:7975–7980. doi: 10.1021/es102052y
  • Schenk PM, Thomas-Hall SR, Stephens E, Marx UC, Mussgnug JH, Posten C, Kruse O, Hankamer B. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 2008;1:20–43. doi: 10.1007/s12155-008-9008-8
  • Achten WM, Vandenbempt P, Almeida J, Mathijs E, Muys B. Life cycle assessment of a palm oil system with simultaneous production of biodiesel and cooking oil in Cameroon. Environ Sci Technol. 2010;44:4809–4815. doi: 10.1021/es100067p
  • Semwal S, Arora AK, Badoni RP, Tuli DK. Biodiesel production using heterogeneous catalysts. Bioresour Technol. 2011;102:2151–2161. doi: 10.1016/j.biortech.2010.10.080
  • Atsumi S, Hanai T, Liao JC. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature. 2008;451:86–89. doi: 10.1038/nature06450
  • Basha SA, Gopal KR, Jebaraj S. A review on biodiesel production, combustion, emissions and performance. Renew Sustain Energy Rev. 2009;13:1628–1634. doi: 10.1016/j.rser.2008.09.031
  • Cheng J. Biomass to renewable energy processes. Boca Raton (FL): CRC Press/Taylor & Francis; 2010.
  • Biswas WK, Barton L, Carter D. Biodiesel production in a semiarid environment: a life cycle assessment approach. Environ Sci Technol. 2011;45:3069–3074. doi: 10.1021/es1031807
  • Fang T, Lin YC, Foong TM, Lee CF. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion. Environ Sci Technol. 2008;42:8865–8870. doi: 10.1021/es8001635
  • Fedosov SN, Brask J, Xu X. Analysis of biodiesel conversion using thin layer chromatography and nonlinear calibration curves. J Chromatogr A. 2011;1218:2785–2792. doi: 10.1016/j.chroma.2011.01.067
  • Pfromm PH, Amanor-Boadu V, Nelson R. Sustainability of algae derived biodiesel: a mass balance approach. Bioresour Technol. 2011;102:1185–1193. doi: 10.1016/j.biortech.2010.09.050
  • Peralta-Yahya PP, Keasling JD. Advanced biofuel production in microbes. Biotechnol J. 2010;5:147–162. doi: 10.1002/biot.200900220
  • Rojo F. Biofuels from microbes: a comprehensive view. Microb Biotechnol. 2008;1:208–210. doi: 10.1111/j.1751-7915.2008.00024.x
  • Shi S, Valle-Rodriguez JO, Siewers V, Nielsen J. Prospects for microbial biodiesel production. Biotechnol J. 2011;6:277–285. doi: 10.1002/biot.201000117
  • Stephanopoulos G. Challenges in engineering microbes for biofuels production. Science. 2007;315:801–804. doi: 10.1126/science.1139612
  • Wackett LP. Engineering microbes to produce biofuels. Curr Opin Biotechnol. 2011;22:388–893. doi: 10.1016/j.copbio.2010.10.010
  • Wackett LP. Microbial-based motor fuels: science and technology. Microb Biotechnol. 2008;1:211–225. doi: 10.1111/j.1751-7915.2007.00020.x
  • Rude MA, Schirmer A. New microbial fuels: a biotech perspective. Curr Opin Microbiol. 2009;12:274–281. doi: 10.1016/j.mib.2009.04.004
  • Azocar L, Ciudad G, Heipieper HJ, Navia R. Biotechnological processes for biodiesel production using alternative oils. Appl Microbiol Biotechnol. 2010;88:621–636. doi: 10.1007/s00253-010-2804-z
  • Sims REH, Mabee W, Saddler JN, Taylor M. An overview of second generation biofuel technologies. Bioresour Technol. 2010;101:1570–1580. doi: 10.1016/j.biortech.2009.11.046
  • Abdulla R, Chan ES, Ravindra P. Biodiesel production from Jatropha curcas: a critical review. Crit Rev Biotechnol. 2011;31:53–64. doi: 10.3109/07388551.2010.487185
  • Zou L, Atkinson S. Characterising vehicle emissions from the burning of biodiesel made from vegetable oil. Environ Technol. 2003;24:1253–1260. doi: 10.1080/09593330309385667
  • Kohler BA. Biodiesel fuels reexamined. Hauppauge (NY): Nova Science; 2011.
  • Boey PL, Maniam GP, Hamid SA. Biodiesel production via transesterification of palm olein using waste mud crab (Scylla serrata) shell as a heterogeneous catalyst. Bioresour Technol. 2009;100:6362–6368. doi: 10.1016/j.biortech.2009.07.036
  • Da Rós PCM, Silva GAM, Mendes AA, Santos JC, de Castro HF. Evaluation of the catalytic properties of Burkholderia cepacia lipase immobilized on non-commercial matrices to be used in biodiesel synthesis from different feedstocks. Bioresour Technol. 2010;101:5508–5516. doi: 10.1016/j.biortech.2010.02.061
  • Kumar I, Ramalakshmi MA, Sivakumar U, Santhanakrishnan P, Zhan XM. Single cell oil production from Mortierella sp for generation of biodiesel feedstock – a feasibility study. Afr J Microbiol Res. 2011;5:4105–4111.
  • Du W, Li Q, Liu DH. Perspectives of microbial oils for biodiesel production. Appl Microbiol Biotechnol. 2008;80:749–756. doi: 10.1007/s00253-008-1625-9
  • Economou Ch N, Aggelis G, Pavlou S, Vayenas DV. Single cell oil production from rice hulls hydrolysate. Bioresour Technol. 2011;102:9737–9742. doi: 10.1016/j.biortech.2011.08.025
  • Economou Ch N, Makri A, Aggelis G, Pavlou S, Vayenas DV. Semi-solid state fermentation of sweet sorghum for the biotechnological production of single cell oil. Bioresour Technol. 2010;101:1385–1388. doi: 10.1016/j.biortech.2009.09.028
  • Economou CN, Aggelis G, Pavlou S, Vayenas DV. Modeling of single-cell oil production under nitrogen-limited and substrate inhibition conditions. Biotechnol Bioeng. 2011;108:1049–1055. doi: 10.1002/bit.23026
  • Vamvakaki AN, Kandarakis I, Kaminarides S, Komaitis M, Papanikolaou S. Cheese whey as a renewable substrate for microbial lipid and biomass production by Zygomycetes. Eng Life Sci. 2010;10:348–360. doi: 10.1002/elsc.201000063
  • Peng X, Chen H. Single cell oil production in solid-state fermentation by Microsphaeropsis sp. from steam-exploded wheat straw mixed with wheat bran. Bioresour Technol. 2008;99:3885–3889. doi: 10.1016/j.biortech.2007.08.015
  • Angerbauer C, Siebenhofer M, Mittelbach M, Guebitz GM. Conversion of sewage sludge into lipids by Lipomyces starkeyi for biodiesel production. Bioresour Technol. 2008;99:3051–3056. doi: 10.1016/j.biortech.2007.06.045
  • Ratledge C. Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie. 2004;86:807–815. doi: 10.1016/j.biochi.2004.09.017
  • Holdsworth JE, Ratledge C. Triacylglycerol synthesis in the oleaginous yeast Candida curvata D. Lipids. 1991;26:111–118. doi: 10.1007/BF02544004
  • Beopoulos A, Cescut J, Haddouche R, Uribelarrea JL, Molina-Jouve C, Nicaud JM. Yarrowia lipolytica as a model for bio-oil production. Prog Lipid Res. 2009;48:375–387. doi: 10.1016/j.plipres.2009.08.005
  • Wu S, Hu C, Jin G, Zhao X, Zhao ZK. Phosphate-limitation mediated lipid production by Rhodosporidium toruloides. Bioresour Technol. 2010;101:6124–6129. doi: 10.1016/j.biortech.2010.02.111
  • Wu S, Zhao X, Shen H, Wang Q, Zhao ZK. Microbial lipid production by Rhodosporidium toruloides under sulfate-limited conditions. Bioresour Technol. 2011;102:1803–1807. doi: 10.1016/j.biortech.2010.09.033
  • Ratledge C. Regulation of lipid accumulation in oleaginous micro-organisms. Biochem Soc Trans. 2002;30:1047–1050. doi: 10.1042/BST0301047
  • Evans CT, Ratledge C. Biochemical activities during lipid accumulation in Candida curvata. Lipids. 1983;18:630–635. doi: 10.1007/BF02534674
  • Evans CT, Ratledge C. A comparison of the oleaginous yeast, Candida curvata, grown on different carbon sources in continuous and batch culture. Lipids. 1983;18:623–629. doi: 10.1007/BF02534673
  • Adams IP, Dack S, Dickinson FM, Midgley M, Ratledge C. ATP: citrate lyase from Aspergillus nidulans. Biochem Soc Trans. 1997;4:S670.
  • Adams IP, Dack S, Dickinson FM, Ratledge C. The distinctiveness of ATP: citrate lyase from Aspergillus nidulans. Biochim Biophys Acta. 2002;1597:36–41. doi: 10.1016/S0167-4838(02)00276-5
  • Kendrick A, Ratledge C. Desaturation of polyunsaturated fatty acids in Mucor circinelloides and the involvement of a novel membrane-bound malic enzyme. Eur J Biochem. 1992;209:667–673. doi: 10.1111/j.1432-1033.1992.tb17334.x
  • Kendrick A, Ratledge C. Lipids of selected molds grown for production of n-3 and n-6 polyunsaturated fatty acids. Lipids. 1992;27:15–20. doi: 10.1007/BF02537052
  • Wynn JP, Kendrick A, Hamid AA, Ratledge C. Malic enzyme: a lipogenic enzyme in fungi. Biochem Soc Trans. 1997;S669.
  • Holdsworth JE, Veenhuis M, Ratledge C. Enzyme activities in oleaginous yeasts accumulating and utilizing exogenous or endogenous lipids. J Gen Microbiol. 1988;134:2907–2915.
  • Wynn JP, Kendrick A, Ratledge C. Sesamol as an inhibitor of growth and lipid metabolism in Mucor circinelloides via its action on malic enzyme. Lipids. 1997;32:605–610. doi: 10.1007/s11745-997-0077-1
  • Zhang Y, Adams IP, Ratledge C. Malic enzyme: the controlling activity for lipid production? Overexpression of malic enzyme in Mucor circinelloides leads to a 2.5-fold increase in lipid accumulation. Microbiology. 2007;153:2013–2025. doi: 10.1099/mic.0.2006/002683-0
  • Li Z, Sun H, Mo X, Li X, Xu B, Tian P. Overexpression of malic enzyme (ME) of Mucor circinelloides improved lipid accumulation in engineered Rhodotorula glutinis. Appl Microbiol Biotechnol. 2012;97:1–10. doi: 10.1111/j.1472-765X.2011.03164.x
  • Li Y, Adams IP, Wynn JP, Ratledge C. Cloning and characterization of a gene encoding a malic enzyme involved in anaerobic growth in Mucor circinelloides. Mycol Res. 2005;109:461–468. doi: 10.1017/S0953756205002480
  • Zhang Y, Ratledge C. Multiple isoforms of malic enzyme in the oleaginous fungus, Mortierella alpina. Mycol Res. 2008;112:725–730. doi: 10.1016/j.mycres.2008.01.003
  • Davis MS, Solbiati J, Cronan JE Jr. Overproduction of acetyl-CoA carboxylase activity increases the rate of fatty acid biosynthesis in Escherichia coli. J Biol Chem. 2000;275:28593–28598. doi: 10.1074/jbc.M004756200
  • Bossa F, Rotilio G, Fasella P, Malmstrom BG. An optical rotatory dispersion vestigation of fungal laccase. Eur J Biochem. 1969;10:395–398. doi: 10.1111/j.1432-1033.1969.tb00703.x
  • Subrahmanyam S, Cronan JE Jr. Overproduction of a functional fatty acid biosynthetic enzyme blocks fatty acid synthesis in Escherichia coli. J Bacteriol. 1998;180:4596–4602.
  • Courchesne NMD, Parisien A, Wang B, Lan CQ. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches. J Biotechnol. 2009;141:31–41. doi: 10.1016/j.jbiotec.2009.02.018
  • Botham PA, Ratledge C. A biochemical explanation for lipid accumulation in Candida 107 and other oleaginous micro-organisms. J Gen Microbiol. 1979;114:361–375. doi: 10.1099/00221287-114-2-361
  • Botham PA, Ratledge C. Metabolic studies related to lipid accumulation in yeast [proceedings]. Biochem Soc Trans. 1978;1:383–385.
  • Ratledge C, Botham PA. Pathways of glucose metabolism in Candida 107, a lipid-accumulating yeast. J Gen Microbio. 1977;102:391–395. doi: 10.1099/00221287-102-2-391
  • Kock JL, Ratledge C. Changes in lipid composition and arachidonic acid turnover during the life cycle of the yeast Dipodascopsis uninucleata. J Gen Microbiol. 1993;139:459–464. doi: 10.1099/00221287-139-3-459
  • Papanikolaou S, Aggelis G. Lipid production by Yarrowia lipolytica growing on industrial glycerol in a single-stage continuous culture. Bioresour Technol. 2002;82:43–49. doi: 10.1016/S0960-8524(01)00149-3
  • Papanikolaou S, Sarantou S, Komaitis M, Aggelis G. Repression of reserve lipid turnover in Cunninghamella echinulata and Mortierella isabellina cultivated in multiple-limited media. J Appl Microbiol. 2004;97:867–875. doi: 10.1111/j.1365-2672.2004.02376.x
  • Huang C, Chen X-f, Xiong L, Chen Xd, Ma Ll, Chen Y. Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnol Adv. 2013;31:129–139. doi: 10.1016/j.biotechadv.2012.08.010
  • Gong Z, Wang Q, Shen H, Hu C, Jin G, Zhao ZK. Co-fermentation of cellobiose and xylose by Lipomyces starkeyi for lipid production. Bioresour Technol. 2012;117:20–24. doi: 10.1016/j.biortech.2012.04.063
  • Ruan Z, Zanotti M, Zhong Y, Liao W, Ducey C, Liu Y. Co-hydrolysis of lignocellulosic biomass for microbial lipid accumulation. Biotechnol Bioeng. 2013;110:1039–1049. doi: 10.1002/bit.24773
  • Chang YH, Chang KS, Hsu CL, Chuang LT, Chen CY, Huang FY, Jang HD. A comparative study on batch and fed-batch cultures of oleaginous yeast Cryptococcus sp. in glucose-based media and corncob hydrolysate for microbial oil production. Fuel. 2013;105:711–717. doi: 10.1016/j.fuel.2012.10.033
  • Venkata Subhash G, Venkata Mohan S. Biodiesel production from isolated oleaginous fungi Aspergillus sp. using corncob waste liquor as a substrate. Bioresour Technol. 2011;102:9286–9290. doi: 10.1016/j.biortech.2011.06.084
  • Huang C, Chen Xf, Xiong L, Yang Xy, Chen Xd, Ma Ll, Chen Y. Microbial oil production from corncob acid hydrolysate by oleaginous yeast Trichosporon coremiiforme. Biomass Bioenergy. 2013;49:273–278. doi: 10.1016/j.biombioe.2012.12.023
  • Zikou E, Chatzifragkou A, Koutinas AA, Papanikolaou S. Evaluating glucose and xylose as cosubstrates for lipid accumulation and γ-linolenic acid biosynthesis of Thamnidium elegans. J Appl Microbiol. 2013;114:1020–1032. doi: 10.1111/jam.12116
  • Lian J, Garcia-Perez M, Chen S. Fermentation of levoglucosan with oleaginous yeasts for lipid production. Bioresour Technol. 2013;133:183–189. doi: 10.1016/j.biortech.2013.01.031
  • Gong Z, Shen H, Wang Q, Yang X, Xie H, Zhao Z. Efficient conversion of biomass into lipids by using the simultaneous saccharification and enhanced lipid production process. Biotechnol Biofuels. 2013;6:36. doi: 10.1186/1754-6834-6-36
  • Zhan J, Lin H, Shen Q, Zhou Q, Zhao Y. Potential utilization of waste sweetpotato vines hydrolysate as a new source for single cell oils production by Trichosporon fermentans. Bioresour Technol. 2013;135:622–629. doi: 10.1016/j.biortech.2012.08.068
  • Zeng J, Zheng Y, Yu X, Yu L, Gao D, Chen S. Lignocellulosic biomass as a carbohydrate source for lipid production by Mortierella isabellina. Bioresour Technol. 2013;128:385–391. doi: 10.1016/j.biortech.2012.10.079
  • Yan D, Lu Y, Chen YF, Wu Q. Waste molasses alone displaces glucose-based medium for microalgal fermentation towards cost-saving biodiesel production. Bioresour Technol. 2011;102:6487–6493. doi: 10.1016/j.biortech.2011.03.036
  • Lu Y, Ding Y, Wu Q. Simultaneous saccharification of cassava starch and fermentation of algae for biodiesel production. J Appl Phycol. 2011;23:115–121. doi: 10.1007/s10811-010-9549-z
  • Gouda MK, Omar SH, Aouad LM. Single cell oil production by Gordonia sp. DG using agro-industrial wastes. World J Microbiol Biotechnol. 2008;24:1703–1711. doi: 10.1007/s11274-008-9664-z
  • Karatay SE, Donmez G. Improving the lipid accumulation properties of the yeast cells for biodiesel production using molasses. Bioresour Technol. 2010;101:7988–7990. doi: 10.1016/j.biortech.2010.05.054
  • Andre A, Diamantopoulou P, Philippoussis A, Sarris D, Komaitis M, Papanikolaou S. Biotechnological conversions of bio-diesel derived waste glycerol into added-value compounds by higher fungi: production of biomass, single cell oil and oxalic acid. Ind Crops Prod. 2010;31:407–416. doi: 10.1016/j.indcrop.2009.12.011
  • Abu OA, Tewe OO, Losel DM, Onifade AA. Changes in lipid, fatty acids and protein composition of sweet potato (Ipomoea batatas) after solid-state fungal fermentation. Bioresour Technol. 2000;72:189–192. doi: 10.1016/S0960-8524(99)90102-5
  • Papanikolaou S, Chevalot I, Komaitis M, Marc I, Aggelis G. Single cell oil production by Yarrowia lipolytica growing on an industrial derivative of animal fat in batch cultures. Appl Microbiol Biotechnol. 2002;58:308–312. doi: 10.1007/s00253-001-0897-0
  • Conti E, Stredansky M, Stredanska S, Zanetti F. [gamma]-Linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Bioresour Technol. 2001;76:283–286. doi: 10.1016/S0960-8524(00)00097-3
  • Easterling ER, French WT, Hernandez R, Licha M. The effect of glycerol as a sole and secondary substrate on the growth and fatty acid composition of Rhodotorula glutinis. Bioresour Technol. 2009;100:356–361. doi: 10.1016/j.biortech.2008.05.030
  • Li M, Liu GL, Chi Z, Chi ZM. Single cell oil production from hydrolysate of cassava starch by marine-derived yeast Rhodotorula mucilaginosa TJY15a. Biomass Bioenergy. 2010;34:101–107. doi: 10.1016/j.biombioe.2009.10.005
  • Zhao CH, Zhang T, Li M, Chi ZM. Single cell oil production from hydrolysates of inulin and extract of tubers of Jerusalem artichoke by Rhodotorula mucilaginosa TJY15a. Process Biochem. 2010;45:1121–1126. doi: 10.1016/j.procbio.2010.04.002
  • Zhao CH, Chi Z, Zhang F, Guo FJ, Li M, Song WB, Chi ZM. Direct conversion of inulin and extract of tubers of Jerusalem artichoke into single cell oil by co-cultures of Rhodotorula mucilaginosa TJY15a and immobilized inulinase-producing yeast cells. Bioresour Technol. 2011;102:6128–6133. doi: 10.1016/j.biortech.2011.02.077
  • Huang C, Zong MH, Wu H, Liu QP. Microbial oil production from rice straw hydrolysate by Trichosporon fermentans. Bioresour Technol. 2009;100:4535–4538. doi: 10.1016/j.biortech.2009.04.022
  • Yu X, Zheng Y, Dorgan KM, Chen S. Oil production by oleaginous yeasts using the hydrolysate from pretreatment of wheat straw with dilute sulfuric acid. Bioresour Technol. 2011;102:6134–6140. doi: 10.1016/j.biortech.2011.02.081
  • Chi Z, Zheng Y, Ma J, Chen S. Oleaginous yeast Cryptococcus curvatus culture with dark fermentation hydrogen production effluent as feedstock for microbial lipid production. Int J Hydrogen Energy. 2011;36:9542–9550. doi: 10.1016/j.ijhydene.2011.04.124
  • Fei Q, Chang HN, Shang L, Choi JD, Kim N, Kang J. The effect of volatile fatty acids as a sole carbon source on lipid accumulation by Cryptococcus albidus for biodiesel production. Bioresour Technol. 2011;102:2695–2701. doi: 10.1016/j.biortech.2010.10.141
  • Zhang G, French WT, Hernandez R, Alley E, Paraschivescu M. Effects of furfural and acetic acid on growth and lipid production from glucose and xylose by Rhodotorula glutinis. Biomass Bioenergy. 2010;35:734–740. doi: 10.1016/j.biombioe.2010.10.009
  • Wu H, Li Y, Chen L, Zong M. Production of microbial oil with high oleic acid content by Trichosporon capitatum. Applied Energy. 2010;88:138–142. doi: 10.1016/j.apenergy.2010.07.028
  • Ethier S, Woisard K, Vaughan D, Wen Z. Continuous culture of the microalgae Schizochytrium limacinum on biodiesel-derived crude glycerol for producing docosahexaenoic acid. Bioresour Technol. 2011;102:88–93. doi: 10.1016/j.biortech.2010.05.021
  • Gao C, Zhai Y, Ding Y, Wu Q. Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Appl Energy. 2010;87:756–761. doi: 10.1016/j.apenergy.2009.09.006
  • Merino S, Cherry J. Progress and challenges in enzyme development for biomass utilization. In: Olsson L, editor. Biofuels. Berlin: Springer; 2007. p. 95–120.
  • Berlin A, Maximenko V, Gilkes N, Saddler J. Optimization of enzyme complexes for lignocellulose hydrolysis. Biotechnol Bioeng. 2007;97:287–296. doi: 10.1002/bit.21238
  • Kumar P, Barrett D, Delwiche M, Stroeve P. Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Ind Eng Chem Res. 2009;48:3713–3729. doi: 10.1021/ie801542g
  • Pandey A, Soccol CR, Mitchell D. New developments in solid state fermentation: I-bioprocesses and products. Process Biochem. 2000;35:1153–1169. doi: 10.1016/S0032-9592(00)00152-7
  • Fakas S, Makri A, Mavromati M, Tselepi M, Aggelis G. Fatty acid composition in lipid fractions lengthwise the mycelium of Mortierella isabellina and lipid production by solid state fermentation. Bioresour Technol. 2009;100:6118–6120. doi: 10.1016/j.biortech.2009.06.015
  • Stredansky M, Conti E, Salaris A. Production of polyunsaturated fatty acids by Pythium ultimum in solid-state cultivation. Enzyme Microb Technol. 2000;26:304–307. doi: 10.1016/S0141-0229(99)00146-5
  • Dey P, Banerjee J, Maiti MK. Comparative lipid profiling of two endophytic fungal isolates – Colletotrichum sp. and Alternaria sp. having potential utilities as biodiesel feedstock. Bioresour Technol. 2011;102:5815–5823. doi: 10.1016/j.biortech.2011.02.064
  • Li P, Miao X, Li R, Zhong J. In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol. 2011;2011:1–8.
  • Penglin L, Xiaoling M, Rongxiu L, Jianjiang Z. In situ biodiesel production from fast-growing and high oil content Chlorella pyrenoidosa in rice straw hydrolysate. J Biomed Biotechnol. 2011;2011:1–8.
  • Wang CY. Defatted rice bran hydrolysate for culturing Yarrowia lipolytica Po1 g for lipid production; 2011;1:2012–2014.
  • Huang X, Wang Y, Liu W, Bao J. Biological removal of inhibitors leads to the improved lipid production in the lipid fermentation of corn stover hydrolysate by Trichosporon cutaneum. Bioresour Technol. 2011;102:9705–9709. doi: 10.1016/j.biortech.2011.08.024
  • Wei A, Zhang X, Wei D, Chen G, Wu Q, Yang ST. Effects of cassava starch hydrolysate on cell growth and lipid accumulation of the heterotrophic microalgae Chlorella protothecoides. J Ind Microbiol Biotechnol. 2009;36:1383–1389. doi: 10.1007/s10295-009-0624-x
  • Chen X, Li Z, Zhang X, Hu F, Ryu DDY, Bao J. Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Appl Biochem Biotechnol. 2009;159:591–604. doi: 10.1007/s12010-008-8491-x
  • Akhtar P, Gray JI, Asghar A. Synthesis of lipids by certain yeast strains grown on whey permeate. J Food Lipids. 1998;5:283–297. doi: 10.1111/j.1745-4522.1998.tb00125.x
  • Tewari PK, Batra VS, Balakrishnan M. Water management initiatives in sugarcane molasses based distilleries in India. Resour Conser Recy. 2007;52:351–367. doi: 10.1016/j.resconrec.2007.05.003
  • Zhu LY, Zong MH, Wu H. Efficient lipid production with Trichosporon fermentans and its use for biodiesel preparation. Bioresour Technol. 2008;99,7881–7885. doi: 10.1016/j.biortech.2008.02.033
  • Cheirsilp B, Suwannarat W, Niyomdecha R. Mixed culture of oleaginous yeast Rhodotorula glutinis and microalga Chlorella vulgaris for lipid production from industrial wastes and its use as biodiesel feedstock. N Biotechnol. 2011;28:362–368. doi: 10.1016/j.nbt.2011.01.004
  • Amaral PFF, Ferreira TF, Fontes GC, Coelho MAZ. Glycerol valorization: new biotechnological routes. Food Bioprod Process. 2009;87:179–186. doi: 10.1016/j.fbp.2009.03.008
  • Papanikolaou S, Aggelis G. Biotechnological valorization of biodiesel derived glycerol waste through production of single cell oil and citric acid by Yarrowia lipolytica. Lipid Technol. 2009;21:83–87. doi: 10.1002/lite.200900017
  • Meesters PAEP, Huijberts GNM, Eggink G. High-cell-density cultivation of the lipid accumulating yeast Cryptococcus curvatus using glycerol as a carbon source. Appl Microbiol Biotechnol. 1996;45:575–579. doi: 10.1007/s002530050731
  • Thompson JC, He BB. Characterization of crude glycerol from biodiesel production from multiple feedstocks. Appl Eng Agric. 2006;22:261–265. doi: 10.13031/2013.20272
  • Chatzifragkou A, Papanikolaou S, Dietz D, Doulgeraki AI, Nychas GJ, Zeng AP. Production of 1,3-propanediol by Clostridium butyricum growing on biodiesel-derived crude glycerol through a non-sterilized fermentation process. Appl Microbiol Biotechnol. 2011;91:101–112. doi: 10.1007/s00253-011-3247-x
  • Saenge C, Cheirsilp B, Suksaroge TT, Bourtoom T. Efficient concomitant production of lipids and carotenoids by oleaginous red yeast Rhodotorula glutinis cultured in palm oil mill effluent and application of lipids for biodiesel production. Biotechnol Bioprocess Eng. 2011;16:23–33. doi: 10.1007/s12257-010-0083-2
  • Liang Y, Sarkany N, Cui Y, Blackburn JW. Batch stage study of lipid production from crude glycerol derived from yellow grease or animal fats through microalgal fermentation. Bioresour Technol. 2010;101:6745–6750. doi: 10.1016/j.biortech.2010.03.087
  • Dufreche S, Hernandez R, French T, Sparks D, Zappi M, Alley E. Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J Am Oil Chem Soc. 2007;84(2):181–187. doi: 10.1007/s11746-006-1022-4
  • Peng Wf, Huang C, Chen Xf, Xiong L, Chen Xd, Chen Y, Ma Ll. Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis. Renew Energy. 2013;55:31–34. doi: 10.1016/j.renene.2012.12.017
  • Chen Xf, Huang C, Xiong L, Chen Xd, Chen Y, Ma LI. Oil production on wastewaters after butanol fermentation by oleaginous yeast Trichosporon coremiiforme. Bioresour Technol. 2012;118:594–597. doi: 10.1016/j.biortech.2012.05.023
  • Abou-Shanab RAI, Ji MK, Kim HC, Paeng KJ, Jeon BH. Microalgal species growing on piggery wastewater as a valuable candidate for nutrient removal and biodiesel production. J Environ Manage. 2013;115:257–264. doi: 10.1016/j.jenvman.2012.11.022
  • Chi Z, Zheng Y, Jiang A, Chen S. Lipid production by culturing oleaginous yeast and algae with food waste and municipal wastewater in an integrated process. Appl Biochem Biotechnol. 2011;165:442–453. doi: 10.1007/s12010-011-9263-6
  • Hall J, Hetrick M, French T, Hernandez R, Donaldson J, Mondala A, Holmes W. Oil production by a consortium of oleaginous microorganisms grown on primary effluent wastewater. J Chem Technol Biotechnol. 2011;86:54–60. doi: 10.1002/jctb.2506
  • Kong Q, Li L, Martinez B, Chen P, Ruan R. Culture of microalgae Chlamydomonas reinhardtii in wastewater for biomass feedstock production. Appl Biochem Biotechnol. 2010;160:9–18. doi: 10.1007/s12010-009-8670-4
  • Woertz I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J Environ Eng. 2009;135:1115–1122. doi: 10.1061/(ASCE)EE.1943-7870.0000129
  • Chinnasamy S, Bhatnagar A, Claxton R, Das K. Biomass and bioenergy production potential of microalgae consortium in open and closed bioreactors using untreated carpet industry effluent as growth medium. Bioresour Technol. 2010;101:6751–6760. doi: 10.1016/j.biortech.2010.03.094
  • Xue F, Gao B, Zhu Y, Zhang X, Feng W, Tan T. Pilot-scale production of microbial lipid using starch wastewater as raw material. Bioresour Technol. 2010;101:6092–6095. doi: 10.1016/j.biortech.2010.01.124
  • Muniraj IK, Xiao L, Hu Z, Zhan X, Shi J. Microbial lipid production from potato processing wastewater using oleaginous filamentous fungi Aspergillus oryzae. Water Res. 2013;47:3477–3483. doi: 10.1016/j.watres.2013.03.046
  • Muniraj IK, Xiao L, Liu H, Zhan X. Utilization of potato processing wastewater for microbial lipids and gamma-linolenic acid production by oleaginous fungi. J Sci Food Agric. 2014;11. doi:10.1002/jsfa.7044
  • Liu JX, Yue QY, Gao BY, Ma ZH, Zhang PD. Microbial treatment of the monosodium glutamate wastewater by Lipomyces starkeyi to produce microbial lipid. Bioresour Technol. 2012;106:69–73. doi: 10.1016/j.biortech.2011.12.022
  • Yousuf A, Sannino F, Addorisio V, Pirozzi D. Microbial conversion of olive oil mill wastewaters into lipids suitable for biodiesel production. J Agric Food Chem. 2010;58:8630–8635. doi: 10.1021/jf101282t
  • Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS. Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol. 2011;102:71–81. doi: 10.1016/j.biortech.2010.06.159
  • Li X, Xu H, Wu Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors. Biotechnol Bioeng. 2007;98:764–771. doi: 10.1002/bit.21489
  • Liu J, Huang J, Fan KW, Jiang Y, Zhong Y, Sun Z, Chen F. Production potential of Chlorella zofingienesis as a feedstock for biodiesel. Bioresour Technol. 2010;101:8658–8663. doi: 10.1016/j.biortech.2010.05.082
  • Amaretti A, Raimondi S, Sala M, Roncaglia L, De Lucia M, Leonardi A, Rossi M. Single cell oils of the cold-adapted oleaginous yeast Rhodotorula glacialis DBVPG 4785. Microb Cell Fact. 2010;9:73–78.
  • Ma L, Xing D, Wang H, Wang X, Xue D. [Effect of culture conditions on cell growth and lipid accumulation of oleaginous microorganism]. Sheng Wu Gong Cheng Xue Bao. 2009;25:55–59.
  • Mandal S, Mallick N. Microalga Scenedesmus obliquus as a potential source for biodiesel production. Appl Microbiol Biotechnol. 2009;84:281–291. doi: 10.1007/s00253-009-1935-6
  • Baber TM, Graiver D, Lira CT, Narayan R. Application of catalytic ozone chemistry for improving biodiesel product performance. Biomacromolecules. 2005;6:1334–1344. doi: 10.1021/bm049397f
  • Mandal S, Mallick N. Waste utilization and biodiesel production by the green microalga Scenedesmus obliquus, in applied and environmental microbiology. Am Soc Microbiol. 2010;77:374–377.
  • Lu Y, Zhai Y, Liu M, Wu Q. Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. J Appl Phycol. 2010;22:573–578. doi: 10.1007/s10811-009-9496-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.