378
Views
11
CrossRef citations to date
0
Altmetric
Reviews

Electrokinetic remediation of organic contamination

&
Pages 103-117 | Received 08 Dec 2014, Accepted 03 Oct 2015, Published online: 02 Nov 2015

References

  • Ferri V, Ferro S, Martínez-Huitle CA, De Battisti A. Electrokinetic extraction of surfactants and heavy metals from sewage sludge. Electrochim Acta. 2009;54:2108–2118. doi: 10.1016/j.electacta.2008.08.048
  • Park S-W, Lee J-Y, Yang J-S, Kim K-J, Baek K. Electrokinetic remediation of contaminated soil with waste-lubricant oils and Zinc. J Hazard Mater. 2009;169:1168–1172. doi: 10.1016/j.jhazmat.2009.04.039
  • Virkutyte J, Sillanpää M, Latostenmaa P. Electrokinetic soil remediation-critical overview. Sci Total Environ. 2002;289:97–121. doi: 10.1016/S0048-9697(01)01027-0
  • Gardner K. Electrochemical remediation and stabilization of contaminated sediments. Durham (NC): The NOAA/UNH Cooperative Institute for Coastal and Estuarine Environmental Technology; 2005.
  • Vane L, Zang GM. Effect of aqueous phase properties on clay particle zeta potential and electro-osmotic permeability: implications for electro-kinetic soil remediation processes. J Hazard Mater. 1997;55:1–22. doi: 10.1016/S0304-3894(97)00010-1
  • Wick LY, Shi L, Harms H. Electro-bioremediation of hydrophobic organic soil-contaminants: a review of fundamental interactions. Electrochim Acta. 2007;52:3441–3448. doi: 10.1016/j.electacta.2006.03.117
  • Acar YB, Gale RJ, Alshawabkeh AN, et al. Electrokinetic remediation: basics and technology status. J Hazard Mater. 1995;40:117–137 doi: 10.1016/0304-3894(94)00066-P
  • Cauwenberghe LV. Electrokinetics – Technology overview report. Pittsburgh (PA): GWRTAC; 1997.
  • Ribeiro A, Rodriguez-Maroto JM, Mateus EP, Gomes H. Removal of organic contaminants from soils by an electrokinetic process: the case of atrazine. Experimental and modeling. Chemosphere. 2005;59:1229–1239. doi: 10.1016/j.chemosphere.2004.11.054
  • Gomes HI, Dias-Ferreira C, Ribeiro AB. Electrokinetic remediation of organochlorines in soil: enhancement techniques and integration with other remediation technologies. Chemosphere. 2012;87:1077–1090. doi: 10.1016/j.chemosphere.2012.02.037
  • Grande S, Gent D. Electrokinetic remediation of contaminated sediments. Colombia Richland: Battelle Press. 2002. p. 205–212.
  • Pamukcu S, Huang CP. In-Situ Remediation of Contaminated Soils by Electrokinetic Processes. In: Oh CH, editor. Hazardous and radioactive waste treatment technologies handbook. Florida: CRC Press; 2001.
  • López-Vizcaíno R, Alonso J, Cañizares P, et al. Removal of phenanthrene from synthetic kaolin soils by electrokinetic soil flushing. Sep Puri Technol. 2014;132:33–40. doi: 10.1016/j.seppur.2014.05.004
  • Alshawabkeh AN, Bricka M. Basics and applications of electrokinetic remediation. In: Wise DL, Trantolo DJ, Cichon EJ, Inyang HI, Stottmeister U editors. Remediation engineering of contaminated soils. New York (NY): Marcel Dekker; 2000. p. 95–111.
  • Yeung AT, Gu Y-Y. A review on techniques to enhance electrochemical remediation of contaminated soils. J Hazard Mater. 2011;195:11–29. doi: 10.1016/j.jhazmat.2011.08.047
  • Yeung AT. Milestone developments, myths, and future directions of electrokinetic remediation. Sep Purif Technol. 2011;79:124–132. doi: 10.1016/j.seppur.2011.01.022
  • Méndez E, Pérez M, Romero O, et al. Effects of electrode material on the efficiency of hydrocarbon removal by an electrokinetic remediation process. Electrochim Acta. 2012;86:148–156. doi: 10.1016/j.electacta.2012.04.042
  • Yuan C, Hung C-H, Huang W-L. Enhancement with carbon nanotube barrier on 1,2-dichlorobenzene removal from soil by surfactant-assisted electrokinetic (SAEK) process – the effect of processing fluid. Sep Sci Technol. 2009;44:2284–2303. doi: 10.1080/01496390902979842
  • Ma JW, Wang FY, Huang ZH, Wang H. Simultaneous removal of 2,4-dichlorophenol and Cd from soils by electrokinetic remediation combined with activated bamboo charcoal. J Hazard Mater. 2010;176:715–720. doi: 10.1016/j.jhazmat.2009.11.093
  • Polcaro AM, Vacca A, Mascia M, Palmas S. Electrokinetic removal of 2,6-dichlorophenol and diuron from kaolinite and humic acid-clay system. J Hazard Mater. 2007;148:505–512. doi: 10.1016/j.jhazmat.2007.03.006
  • Jiradecha C, Urgun-Demirtas M, Pagilla K. Enhanced electrokinetic dissolution of naphthalene and 2,4-DNT from contaminated soils. J Hazard Mater. 2006;136:61–67. doi: 10.1016/j.jhazmat.2005.11.014
  • Reddy KR, Darko-Kagya K, Cameselle C. Electrokinetic-enhanced transport of lactate-modified nanoscale iron particles for degradation of dinitrotoluene in clayey soils. Sep Purif Technol. 2011;79:230–237. doi: 10.1016/j.seppur.2011.01.033
  • Hahladakis JN, Lekkas N, Smponias A, Gidarakos E. Sequential application of chelating agents and innovative surfactants for the enhanced electroremediation of real sediments from toxic metals and PAHs. Chemosphere. 2014;105:44–52. doi: 10.1016/j.chemosphere.2013.11.022
  • Ribeiro AB, Mateus EP, Rodríguez-Maroto J-M. Removal of organic contaminants from soils by an electrokinetic process: the case of molinate and bentazone. Experimental and modeling. Sep Purif Technol. 2011;79:193–203. doi: 10.1016/j.seppur.2011.01.045
  • Alcántara MT, Gómez J, Pazos M, Sanromán MA. Electrokinetic remediation of PAH mixtures from kaolin. J Hazard Mater 2010;179:1156–1160. doi: 10.1016/j.jhazmat.2010.03.010
  • Gómez J, Alcántara MT, Pazos M, Sanromán MA. A two-stage process using electrokinetic remediation and electrochemical degradation for treating benzo[a]pyrene spiked kaolin. Chemosphere. 2009;74:1516–1521. doi: 10.1016/j.chemosphere.2008.11.019
  • Chang J-H, Qiang Z, Huang C. Remediation and stimulation of selected chlorinated organic solvents in unsaturated soil by a specific enhanced electrokinetics. Colloids Surf A. 2006;287:86–93. doi: 10.1016/j.colsurfa.2006.03.039
  • Cong Y, Ye Q, Wu Z. Electrokinetic Behaviour of Chlorinated Phenols in Soil and their Electrochemical Degradation. Process Saf Environ Prot. 2005;83:178–183. doi: 10.1205/psep.03395
  • Yuan C, Weng C-H. Remediating ethylbenzene contaminated clayey soil by a surfactant aided electrokinetic (SAEK) process. Chemosphere. 2004;57:225–232. doi: 10.1016/j.chemosphere.2004.05.021
  • Pham TD, Shrestha RA, Virkutyte J, Sillanpää M. Combined ultrasonication and electrokinetic remediation for persistent organic removal from contaminated kaolin. Electrochim Acta. 2009;54:1403–1407. doi: 10.1016/j.electacta.2008.09.015
  • Wan J, Yuan S, Chen J, Li T, Lin L, Lu X. Solubility-enhanced electrokinetic movement of hexachlorobenzene in sediments: a comparison of cosolvent and cyclodextrin. J Hazard Mater. 2009;166:221–226. doi: 10.1016/j.jhazmat.2008.11.021
  • Oonnittan A, Shrestha RA, Sillanpää M. Removal of hexachlorobenzene from soil by electrokinetically enhanced chemical oxidation. J Hazard Mater. 2009;162:989–993. doi: 10.1016/j.jhazmat.2008.05.132
  • Oonnittan A, Shrestha RA, Sillanpää M. Effect of cyclodextrin on the remediation of hexachlorobenzene in soil by electrokinetic Fenton process. Sep Pur Technol. 2009;64:314–320. doi: 10.1016/j.seppur.2008.10.021
  • Colacicco A, Gioannis GD, Muntoni A, Pettinao E, Polettini A, Pomi R. Enhanced electrokinetic treatment of marine sediments contaminated by heavy metals and PAHs. Chemosphere. 2010;81:46–56. doi: 10.1016/j.chemosphere.2010.07.004
  • Suni S. Remediation of hydrocarbon contaminants in cold environments – electrokinetically enhanced bioremediation and biodegradable oil sorbents. Helsinki: University of Helsinki; 2006.
  • Li F, Guo S, Hartog N. Electrokinetics-enhanced biodegradation of heavy polycyclic aromatic hydrocarbons in soil around iron and steel industries. Electrochim Acta. 2012;85:228–234. doi: 10.1016/j.electacta.2012.08.055
  • Lima AT, Kleingeld PJ, Heister K, Gustav Loch JP. Removal of PAHs from contaminated clayey soil by means of electro-osmosis. Sep Purif Technol. 2011;79:221–229. doi: 10.1016/j.seppur.2011.02.021
  • Fan, G, Cang, L, Fang, G, Qin, W, Ge, L, Zhou, D. Electrokinetic delivery of persulfate to remediate PCBs polluted soils: effect of injection spot. Chemosphere. 2014;117:410–418. doi: 10.1016/j.chemosphere.2014.08.006
  • Fan G, Cang L, Qin W, Zhou C, Gomes HI, Zhou D. Surfactants-enhanced electrokinetic transport of xanthan gum stabilized nanoPd/Fe for the remediation of PCBs contaminated soils. Sep Purif Technol. 2013;114:64–72. doi: 10.1016/j.seppur.2013.04.030
  • Fan G, Cang L, Fang G, Zhou D. Surfactant and oxidant enhanced electrokinetic remediation of a PCBs polluted soil. Sep Purif Technol. 2014;123:106–113. doi: 10.1016/j.seppur.2013.12.035
  • Li Z, Yuan S, Wan J, Long H, Tong M. A combination of electrokinetics and Pd/Fe PRB for the remediation of pentachlorophenol-contaminated soil. J Contam Hydrol. 2011;124:99–107. doi: 10.1016/j.jconhyd.2011.03.002
  • Yuan S, Long H, Xie W, Liao P, Tong M. Electrokinetic transport of CMC-stabilized Pd/Fe nanoparticles for the remediation of PCP-contaminated soil. Geoderma. 2012;185–186:18–25. doi: 10.1016/j.geoderma.2012.03.028
  • Chang J-H, Cheng S-F. The remediation performance of a specific electrokinetics integrated with zero-valent metals for perchloroethylene contaminated soils. J Hazard Matter. 2005;131:153–162. doi: 10.1016/j.jhazmat.2005.09.026
  • Mao X, Wang J, Ciblak A, Cox EE, et al. Electrokinetic-enhanced bioaugmentation for remediation of chlorinated solvents contaminated clay. J Hazard Matter. 2012:213–214:311–317. doi: 10.1016/j.jhazmat.2012.02.001
  • Park J-Y, Kim S-J, Lee Y-J, Baek K, Yang J-W. EK-Fenton process for removal of phenanthrene in a two-dimensional soil system. Eng Geol. 2005;77:217–224. doi: 10.1016/j.enggeo.2004.07.012
  • Park JY, Kim JH. Switching effects of electrode polarity and introduction direction of reagents in electrokinetic-Fenton process with anionic surfactant for remediating iron-rich soil contaminated with phenanthrene. Electrochim Acta. 2011;56:8094–8100. doi: 10.1016/j.electacta.2011.04.074
  • Giannis A, Tay E, Kao J, Wang JW. Impact of vertical electrokinetic-flushing technology to remove heavy metals and polycyclic aromatic hydrocarbons from contaminated soil. Electrochim Acta. 2012;86:72–79. doi: 10.1016/j.electacta.2012.04.034
  • Maturi K, Reddy KR, Cameselle C. Surfactant-enhanced electrokinetic remediation of mixed contamination in low permeability soil. Sep Sci Technol. 2009;44:2385–2409. doi: 10.1080/01496390902983745
  • López-Vizcaíno R, Alonso J, Cañizares P, et al. Electroremediation of a natural soil polluted with phenanthrene in a pilot plant. J Hazard Mater. 2014;265:142–150. doi: 10.1016/j.jhazmat.2013.11.048
  • Park J-Y, Lee H-H, Kim S-J, Lee Y-J, Yang J-W. Surfactant-enhanced electrokinetic removal of phenanthrene from kaolinite. J Hazard Matter. 2007;140:230–236. doi: 10.1016/j.jhazmat.2006.06.140
  • Wang J-Y, Huang X-J, Kao JCM, Stabnikova O. Simultaneous removal of organic contaminants and heavy metals from kaolin using an upward electrokinetic soil remediation process. J Hazard Matter. 2007;144:292–299. doi: 10.1016/j.jhazmat.2006.10.026
  • Luo Q, Wang H, Zhang X, Fan X, Qian Y. In situ bioelectrokinetic remediation of phenol contaminated soil by use of an electrode matrix and a rotational operation mode. Chemosphere. 2006;64:415–422. doi: 10.1016/j.chemosphere.2005.11.064
  • Ho SV, Athmer CJ, Sheridan PW, Shapiro AP. Scale-up aspects of the LasagnaTM process for in situ soil decontamination. J Hazard Matter. 1997;55:39–60. doi: 10.1016/S0304-3894(97)00016-2
  • Cang L, Fan G-P, Zhou D-M, Wang Q-Y. Enhanced-electrokinetic remediation of copper–pyrene co-contaminated soil with different oxidants and pH control. Chemosphere. 2013;90:2326–2331. doi: 10.1016/j.chemosphere.2012.10.062
  • Pazos M, Ricart MT, Sanromán MA, Cameselle C. Enhanced electrokinetic remediation of polluted kaolinite with an azo dye. Electrochim Acta. 2007;52:3393–3398. doi: 10.1016/j.electacta.2006.04.067
  • Pazos M, Iglesias O, Gomez J, Rosales E, Sanroman MA. Remediation of contaminated marine sediment using electrokinetic–Fenton technology. J Ind Eng Chem. 2013;19:932–937. doi: 10.1016/j.jiec.2012.11.010
  • Dong Z-Y, Huang W-H, Xing D-F, Zhang H-F. Remediation of soil co-contaminated with petroleum and heavy metals by the integration of electrokinetics and biostimulation. J Hazard Mater. 2013;260:399–408. doi: 10.1016/j.jhazmat.2013.05.003
  • Wan C, Du M, Lee D-J, Yang X, Ma W, Zheng L. Electrokinetic remediation of b-cyclodextrin dissolved petroleum hydrocarbon-contaminated soil using multiple electrodes. J Taiwan Inst Chem Eng. 2011;42:972–975. doi: 10.1016/j.jtice.2011.04.008
  • Yang GCC, Chang YI. Integration of emulsified nanoiron injection with the electrokinetic process for remediation of trichloroethylene in saturated soil. Sep Purif Technol. 2011;79:278–284. doi: 10.1016/j.seppur.2011.03.004
  • Yang GCC, Yeh C-F. Enhanced nano-Fe3O4/S2O82− oxidation of trichloroethylene in a clayey soil by electrokinetics. Sep Purif Technol. 2011;79:264–271. doi: 10.1016/j.seppur.2011.03.003
  • Yang GC, Liu CY. Remediation of TCE contaminated soils by in-situ EK-Fenton process. J Hazard Mater. 2001;85:317–331. doi: 10.1016/S0304-3894(01)00288-6
  • Chung HI, Lee MH. A new method for remedial treatment of contaminated clayey soils by electrokinetics coupled with permeable reactive barriers. Electrochim Acta. 2007;52:3427–3431. doi: 10.1016/j.electacta.2006.08.074
  • Alshawabkeh AN. Electrokinetic soil remediation: challenges and opportunities. Sep Sci Technol. 2009;44:2171–2187. doi: 10.1080/01496390902976681
  • Schmidt CAB, Barbosa MC, Almeida MSS. A laboratory feasibility study on electrokinetic injection of nutrients on an organic, tropical, clayey soil. J Hazard Mater. 2007;143:655–661. doi: 10.1016/j.jhazmat.2007.01.009
  • Suni S, Romantschuk M. Mobilisation of bacteria in soils by electro-osmosis. Microbiol Ecol. 2004;49:51–57. doi: 10.1016/j.femsec.2004.01.016
  • Niqui-Arroyo J, Bueno-Montes M, Posada-Baquero R, Ortega-Calvo J. Electrokinetic enhancement of phenanthrene biodegradation in creosote-polluted clay soil. Environ Pollut. 2006;142:326–332. doi: 10.1016/j.envpol.2005.10.007
  • Godschalk MS, Lageman R. Electrokinetic Biofence, remediation of VOCs with solar energy and bacteria. Eng Geol. 2005;77:225–231. doi: 10.1016/j.enggeo.2004.07.013
  • Roy D, Kongara S, Valsaraj KT. Application of surfactant solutions and colloidal gas aphron suspensions in flushing naphthalene from a contaminated soil matrix. J Hazard Matter. 1995;42:247–263. doi: 10.1016/0304-3894(95)00018-P
  • Saichek RE, Reddy KR. Surfactant-enhanced electrokinetic remediation of polycyclic aromatic hydrocarbons in heterogeneous subsurface environments. J Environ Eng Sci. 2005;4:327–339. doi: 10.1139/s04-064
  • Reddy KR, Ala PR, Sharma S, Kumar SN. Enhanced electrokinetic remediation of contaminated manufactured gas plant soil. Eng Geol. 2006;85:132–146. doi: 10.1016/j.enggeo.2005.09.043
  • Hanna K, Chiron S, Oturan MA. Coupling enhanced water solubilization with cyclodextrin to indirect electrochemical treatment for pentachlorophenol contaminated soil remediation. Water Res. 2005;39:2763–2773. doi: 10.1016/j.watres.2005.04.057
  • Maturi K, Reddy KR. Simultaneous removal of organic comounds and heavy metals from soils by electrokinetic remediation with a modified cyclodextrin. Chemosphere. 2006;63:1022–1031. doi: 10.1016/j.chemosphere.2005.08.037
  • Alcántara MT, Gómez J, Pazos M, Sanromán MA. Electrokinetic remediation of lead and phenanthrene polluted soils. Geoderma. 2012;173–174:128–133. doi: 10.1016/j.geoderma.2011.12.009
  • Kim J-H, Han S-J, Kim S-S, Yang J-W. Effect of soil properties on the remediation of phenanthrene contaminated soil by electrokinetic-Fenton process. Chemosphere. 2006;63:1667–1676. doi: 10.1016/j.chemosphere.2005.10.008
  • Ren L, Lu H, He L, Zhang Y. The study of enhanced electrokinetic technologies with oxidization-reduction for organically-contaminated soil remediation – A review. Chem Eng J. 2014;247:111–124. doi: 10.1016/j.cej.2014.02.107
  • Kang N, Hua I, Rao SC. Enhanced Fenton's destruction of non-aqueous phase perchloroethylene in soil systems. Chemosphere. 2005;63:1685–1698. doi: 10.1016/j.chemosphere.2005.10.011
  • Sun H-W, Yan S-Q. Influence of Fenton oxidation on soil organic matter and its sorption and desorption of pyrene. J Hazard Matter. 2007;144:164–170. doi: 10.1016/j.jhazmat.2006.10.005
  • Zhang H, Zhang D, Zhou J. Removal of COD from landfill leachate by Electro-Fenton method. J Hazard Matter. 2006;135:106–111. doi: 10.1016/j.jhazmat.2005.11.025
  • Lin SH, Chang CC. Treatment of landfill leachate by combined electro-Fenton oxidation and sequencing batch reactor method. Water Res. 2000;34:4243–4249. doi: 10.1016/S0043-1354(00)00185-8
  • Brillas E, Casado J. Aniline degradation by electro-Fenton and peroxy-coagulation processes using a flow reactor for wastewater treatment. Chemosphere. 2002;47:241–248. doi: 10.1016/S0045-6535(01)00221-1
  • Kim SS, Kim JH, Hana SJ. Application of the electrokinetic-Fenton process for the remediation of kaolinite contaminated with phenanthrene. J Hazard Matter. 2005;118:121–131. doi: 10.1016/j.jhazmat.2004.10.005
  • Yuan S-H, Lu X-H. Comparison treatment of various chlorophenols by electro-Fenton method: relationship between chlorine content and degradation. J Hazard Matter. 2005;118:85–92. doi: 10.1016/j.jhazmat.2004.08.025
  • Oonnittan A, Shrestha RA, Sillanpää M. Remediation of hexachlorobenzene in soil by enhanced electrokinetic Fenton process. J Environ Sci Health Part A. 2008;43:894–900. doi: 10.1080/10934520801974400
  • Oonnittan A, Isosaari P, Sillanpää M. Oxidant availability and its effect on HCB removal during Electrokinetic Fenton process. Sep Pur Technol. 2010;76:146–150. doi: 10.1016/j.seppur.2010.09.034
  • Kaschl A, Kopinke F-D, Schirmer M, Weiss H. Chapter 10 – In situ treatment of large-scale sites contaminated by chlorinated compounds. In: Lens P, Grotenhuis T, Malina G, Tabak H, editors. Soil and sediment remediation: mechanism, technologies and applications. London: IWA Publishing; 2005. p. 176–194.
  • Wan J, Li Z, Lu X, Yuan S. Remediation of a hexachlorobenzene-contaminated soil by surfactant-enhanced electrokinetics coupled with microscale Pd/Fe PRB. J Hazard Mater. 2010;184:184–190. doi: 10.1016/j.jhazmat.2010.08.022
  • U.S. Department of Energy, “Innovative technology summary reports,” 1996.
  • Chung HI, Kamon M. Ultrasonically enhanced electrokinetic remediation for removal of Pb and phenanthrene in contaminated soils. Eng Geol. 2005;77:233–242. doi: 10.1016/j.enggeo.2004.07.014
  • Pham TD, Shrestha RA, Sillanpää M. Electrokinetic and ultrasonic treatment of Kaolin contaminated by POPs. Sep Sci Technol. 2009;44(10):2410–2420. doi: 10.1080/01496390902983760
  • Shrestha RA, Pham TD, Sillanpáá M. Electro ultrasonic remediation of polycyclic aromatic hydrocarbons from contaminated soil. J Appl Electrochem. 2010;40:1407–1413. doi: 10.1007/s10800-010-0117-7
  • Electrochemical Processes, llc (Stuttgart, Germany). [Online] Available at: http://ecp-int.com [Accessed 2007].
  • Electro-Petroleum Inc. (Wayne, PA USA).[Online] Available at: http://www.electropetroleum.com [Accessed 2007].
  • Chang J-H, Chang S-F. The operation characteristics and electrochemical reactions of a specific circulation-enhanced electrokinetics. J Hazard Matter. 2007;141:168–175. doi: 10.1016/j.jhazmat.2006.06.104
  • Chang J-H, Liao Y-C. The effect of critical operational parameters on the circulation-enhanced electrokinetics. J Hazard Matter. 2006;129:186–193. doi: 10.1016/j.jhazmat.2005.08.030
  • Reddy KR, Saichek RE. Enhanced electrokinetic removal of phenanthrene from clay soil by periodic electric potential application. J Environ Sci Health, Part A. 2004;39:1189–1212. doi: 10.1081/ESE-120030326
  • Fan X, Wang H, Luo Q, Ma J, Zhang X. The use of 2D non-uniform electric field to enhance in situ bioremediation of 2,4-dichlorophenol contaminated soil. J Hazard Matter. 2007;148:29–37. doi: 10.1016/j.jhazmat.2007.01.144

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.