474
Views
32
CrossRef citations to date
0
Altmetric
Reviews

Review of technologies for biotreatment of refinery wastewaters: progress, challenges and future opportunities

, , &
Pages 12-38 | Received 18 Oct 2015, Accepted 06 Mar 2016, Published online: 05 Apr 2016

References

  • Strubinger A, Ehrmann U, León V, deSisto, A., González, M. Changes in Venezuelan Orinoco belt crude after different biotechnological approaches. Pet Sci Technol. 2015;127:421–432.
  • Alva-Argaez A, Kokossis AC, Smith R. The design of water using systems in petroleum refining using a water-pinch decomposition. Chem Eng J. 2007;128(1):33–46.
  • Coelho A, Castro AV, Dezotti M, Sant’Anna GL Jr. Treatment of petroleum refinery sour water by advanced oxidation processes. J Hazard Mater. 2006;137(1):178–184.
  • Diya'uddeen BH, Wan Daud WMA, Abdul Aziz AR. Treatment technologies for petroleum refinery effluents: a review. Process Saf Environ Protect. 2011;89(2):95–105.
  • Technical support document for the 2004 effluent guidelines. Washington, DC: United states Environmental Protection Agency (US EPA); 2008.
  • Ahmadun FA, Pendashteh A, Abdullah LC, et al. Review of technologies for oil and gas produced water treatment. J Hazard Mater. 2009;170(2–3):530–551.
  • Tong K, Zhang Y, Liu G, Ye Z, Chu PK. Treatment of heavy oil wastewater by a conventional activated sludge process coupled with an immobilized biological filter. Int Biodeterior Biodegrad. 2013;84:65–71.
  • Haritash AK, Kaushik CP. Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review. J Hazard Mater. 2009;169(1–3):1–15.
  • El-Naas MH, Alhaija MA, Al-Zuhair S. Evaluation of a three-step process for the treatment of petroleum refinery waste water. J Environ Chem Eng. 2014;2(1):56–62.
  • Samanta SK, Singh OV, Jain RK. Polycyclic aromatic hydrocarbons: environmental pollution and bioremediation. Trends in Biotechnol. 2002;20(6):243–248.
  • Ma F, Guo J-B, Zhao LJ, Chang C-C, Cui D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. Bioresour Technol. 2009;100(2):597–602.
  • Shokrollahzadeha S, Azizmohseni F, Golmohammad F, Shokouhi H, Khademhaghighat F. Biodegradation potential and bacterial diversity of a petrochemical wastewater treatment plant in Iran. Bioresour Technol. 2008;99(14):6127–6133.
  • Aljuboori AHR, Idris A, Abdullah N, Mohamad R. Production and characterization of a bioflocculant produced by Aspergillus flavus. Bioresour Technol. 2013;127:489–493.
  • Yavuz Y, Koparal AS, Ögütveren ÜB. Treatment of petroleum refinery waste water by electrochemical methods. Desalination. 2010;258(1–3):201–205.
  • El-Naas MH, Acio JA, El Telib AE. Aerobic biodegradation of BTEX: progresses and prospects. J Environ Chem Eng. 2014b;2(2):1104–1122.
  • Zarooni MA, Elshorbagy W. Characterization and assessment of Al-Ruwais refinery waste water. J Hazard Mater. 2006;136(3):398–405.
  • Wake H. Oil refineries: a review of their ecological impacts on the aquatic environment. Est Coast Shelf Sci. 2005;62(1–2):131–140.
  • OSPAR Commission. 2009 Report on discharges spills and emissions from off-shore oil and gas. ISBN 978-1-906840-92-1, publication number: 452/2009.
  • Fratila-Apachitei LE, Kennedy MD, Linton JD, Blume I, Schippers JC. Influence of membrane morphology on the flux decline during dead-end ultrafiltration of refinery and petrochemical wastewater. J Membr Sci. 2001;182:151–159.
  • Gargouri B, Karray F, Mhiri N, Aloui F, Sayadi S. Application of a continuously stirred tank bioreactor (CSTR) for bioremediation of hydrocarbon-rich industrial wastewater effluents. J Hazard Mater 2011;189(1–2):427–434.
  • Khaing T-H, Li J, Li Y, Wai N, Wong F-S. Feasibility study on petrochemical wastewater treatment and reuse using a novel submerged membrane distillation bioreactor. Sep Purif Technol. 2010;74(1):138–143.
  • Wei L, Guo S, Yan G, Chen C, Jiang X. Electrochemical pretreatment of heavy oil refinery wastewater using a three-dimensional electrode reactor. Electrochim Acta. 2010;55(28):8615–8620.
  • Lu M, Zhang Z, Yu W, Zhu W. Biological treatment of oilfield-produced water: a pilot field study. Int Biodeterior Biodegrad. 2009;63(3):316–321.
  • Dold PL. Current practice for treatment of petroleum refinery wastewater and toxics removal. Water Pollut Res J Can. 1989;24(3):363–390.
  • Bakke T, Klungsøyr J, Sanni S. Environmental impacts of produced water and drilling waste discharges from the Norwegian offshore petroleum industry. Mar Environ Res. 2013;92:154–169.
  • Robertson SJ, McGill WB, Massicotte HB, Rutherford PM. Petroleum hydrocarbon contamination in boreal forest soils: a mycorrhizal ecosystems perspective. Biol Rev. 2007;82(2):213–240.
  • Incardona JP, Collier TK, Scholz NL. Defects in cardiac function precede morphological abnormalities in fish embryos exposed to polycyclic aromatic hydrocarbons. Toxicol Appl Pharmacol. 2004;196(2):191–205.
  • Sturve J, Hasselberg L, Fälth H, Celander M, Förlin L. Effects of North Sea oil and alkylphenols on biomarker responses in juvenile Atlantic cod (Gadus morhua). Aquat Toxicol. 2006;78:S73–S78.
  • Assessment 2007: oil and gas activities in the arctic – effects and potential effects, vol. II. Oslo (Norway): Arctic Monitoring and Assessment Programme (AMAP); 2010.
  • Keith LH, Telliand WA. Priority pollutants. Environ Sci Technol. 1979;13(4):416–423.
  • Wang Y, Song J, Zhao W, et al. In situ degradation of phenol and promotion of plant growth in contaminated environments by a single Pseudomonas aeruginosa strain. J Hazard Mater. 2011;192(1):354–360.
  • Ismail Z, Beddri AM. Potential of water hyacinth as a removal agent for heavy metals from petroleum refinery effluents. Water Air Soil Pollut. 2009;199(1–4):57–65.
  • Ramos J-L, Marqués S, Dillewijn P, et al. Laboratory research aimed at closing the gaps in microbial bioremediation. Trends in Biotechnol. 2011;29(12):641–647.
  • Affandi IE, Suratman NH, Abdullah S, Ahmad WA, Zakaria ZA. Degradation of oil and grease from high-strength industrial effluents using locally isolated aerobic biosurfactant-producing bacteria. Int Biodeterior Biodegrad 2014;95(A):33–40.
  • Das N, Chandran P. Microbial degradation of petroleum hydrocarbon contaminants: an overview. Biotechnol Res Int. 2011;2011:1–13.
  • Mohee R, Mudhoo A. Bioremediation and sustainability: research and applications. Hoboken, NJ: John Wiley & Sons Inc. and Salem, MA: Scrivener Publishing LLC; 2012.
  • Brooijmans RJW, Pastink MI Siezen RJ. Hydrocarbon-degrading bacteria: the oil-spill clean-up crew. Microbial Biotechnol. 2009;2(6):587–594.
  • Yakimov MM, Timmis KN, Golyshin PN. Obligate oil-degrading marine bacteria. Curr Opin Biotechnol. 2007;18(3):257–266.
  • Jones DM, Douglas AG, Parkes RJ, et al. The recognition of biodegraded petroleum-derived aromatic hydrocarbons in recent marine sediments. Mar Pollut Bull. 1983;14(3):103–108.
  • Throne-Holst M, Wentzel A, Ellingsen TE, Kotlar H-K, Zotchev SB. Identification of novel genes involved in long-chain n-alkane degradation by Acinetobacter sp. strain DSM 17874. Appl Environ Microbiol. 2007;73(10):3327–3332.
  • Das K, Mukherjee AK. Crude petroleum-oil biodegradation efficiency of Bacillus subtilis and Pseudomonas aeruginosa strains isolated from a petroleum-oil contaminated soil from North-East India. Bioresour Technol. 2007;98(7):1339–1345.
  • Gargouri B, Mhiri N, Karray F, Aloui F, Sayadi S. Isolation and characterization of hydrocarbon-degrading yeast strains from petroleum contaminated industrial wastewater. Biomed Res Int. 2015;2015:1–11.
  • Hassanshahian M, Tebyanian H, Cappello S. Isolation and characterization of two crude oil degrading yeast strains, Yarrowia lipolytica PG-20 and PG-32, from the Persian Gulf. Mar Pollut Bull. 2012;64(7):1386–1391.
  • Sood N, Lal B. Isolation of a novel yeast strain Candida digboiensis TERI ASN6 capable of degrading petroleum hydrocarbons in acidic conditions. J Environ Manage. 2009;90(5):1728–1736.
  • Chaillan F, Flèche AL, Bury E, et al. Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol. 2004;155:587–595.
  • Singh H. Mycoremediation: fungal bioremediation. New York, NY: Wiley-Interscience; 2006.
  • Basak SP, Sarkar P, Pal P. Isolation and characterization of phenol utilizing bacteria from industrial effluent-contaminated soil and kinetic evaluation of their biodegradation potential. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(1):67–77.
  • Haddadia A, Shavandi M. Biodegradation of phenol in hypersaline conditions by Halomonas sp. strain PH2-2 isolated from saline soil. Int Biodeterior Biodegrad. 2013;85:29–34.
  • Fritsche W, Holfrichter M. Aerobic degradation by microorganisms in environmental processes – soil decontamination. In: Klein J, editor. Weinheim: Wiley-VCH; 2000. p. 146–155.
  • van Beilen JB, Funhoff EG. Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol. 2007;74(1):13–21.
  • Scheller U, Zimmer T, Becher D, Schauer F, Schunck WH. Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P45052A3. J Biol Chem. 1998;273:32528–32534.
  • Carmona M, Zamarro MT, Blázquez B, et al. Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiol Mol Biol Rev. 2009;73(1):71–133.
  • So CM, Phelps CD, Young LY. Anaerobic transformation of alkanes to fatty acids by a sulfate-reducing bacterium, strain Hxd3. Appl Environ Microbiol. 2003;69(7):3892–3900.
  • Zhang T, Gannon SM, Nevin KP, Franks AE, Lovley DR. Stimulating the anaerobic degradation of aromatic hydrocarbons in contaminated sediments by providing an electrode as the electron acceptor. Environ Microbiol. 2010;12(4):1011–1020.
  • Ling J, Zhang G, Sun H, et al. Isolation and characterization of a novel pyrene-degrading Bacillus vallismortis strain JY3A. Sci Total Environ. 2011;409(10):1994–2000.
  • Lei A-P, Hu Z-L, Wong Y-S, Tam NF-E. Removal of fluoranthene and pyrene by different microalgal species. Bioresour Technol. 2007;98(2):273–280.
  • Abd-Elsalam HE, Hafez EE, Hussain AA, Ali AG, El-Hanafy AA. Isolation and identification of three-ring polyaromatic hydrocarbons (anthracene and phenanthrene) degrading bacteria. Am Euras J Agric Environ Sci. 2009;5(1):31–38.
  • Moody JD, Freeman JP, Doerge DR, Cerniglia CE. Degradation of phenanthrene and anthracene by cell suspensions of Mycobacterium sp. strain PYR-1. Appl Environ Microbiol. 2001;67(4):1476–1483.
  • Teng Y, Luo Y, Sun M, et al. Effect of bioaugmentation by Paracoccus sp. strain HPD-2 on the soil microbial community and removal of polycyclic aromatic hydrocarbons from an aged contaminated soil. Bioresour Technol. 2010;101(10):3437–3443.
  • Kanaly RA, Harayama S. Advances in the field of high molecular weight polyaromatic hydrocarbon biodegradation by bacteria. Microb Biotechnol. 2010;3(2):136–164.
  • Cajthaml T, Erbanová P, Kollmann A, et al. Degradation of PAHs by ligninolytic enzymes of Irpex lacteus. Folia Microbiol. 2008;53(4):289–294.
  • Clemente AR, Anazawa TA, Durrant LR. Biodegradation of polycyclic aromatic hydrocarbons by soil fungi. Braz J Microbiol. 2001;32(4):255–261.
  • Punapayak H, Prasongsuk S, Messner K, Danmek K, Lotrakul P. Polycylic aromatic hydrocarbons (PAHs) degradation by laccase from a tropical white rot fungus (Ganoderma lucidum). Afr J Biotechnol. 2009;8:5897–5900.
  • Ueno R, Wada S, Urano N. Synergetic effects of cell immobilization in polyurethane foam and use of thermotolerant strain on degradation of mixed hydrocarbon substrate by Prototheca zopfii. Fish Sci. 2006;72:1027–1033.
  • Borde X, Guieysse B, Delgado O, et al. Synergistic relationships in algal–bacterial microcosms for the treatment of aromatic pollutants. Bioresour Technol. 2003;86(3):293–300.
  • Coates JD, Anderson RT, Lovley DR. Oxidation of polycyclic aromatic hydrocarbons under sulfate-reducing conditions. Appl Environ Microbiol. 1996;62(3):1099–1101.
  • Bregnard TPA, Höhener P, Häner A, Zeyer J. Degradation of weathered diesel fuel by microorganisms from a contaminated aquifer in aerobic and anaerobic microcosms. EnvironToxicol Chem. 1996;15:299–307.
  • Langenhoff AAM, Zehnder AJB, Schraa G. Behaviour of toluene, benzene and naphthalene under anaerobic conditions in sediment columns. Biodegradation 1996;7(3):267–274.
  • Ambrosoli R, Petruzzelli L, Minati JL, Marsan FA. Anaerobic PAH degradation in soil by a mixed bacterial consortium under denitrifying conditions. Chemosphere. 2005;60(9):1231–1236.
  • Tsai J-C, Kumar M, Lin J-G. Anaerobic biotransformation of fluorene and phenanthrene by sulfate-reducing bacteria and identification of biotransformation pathway. J Hazard Mater 2009;164(2–3):847–855.
  • Musat F, Galushko A, Jacob J, et al. Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol. 2009;11:209–219.
  • Foght J. Anaerobic biodegradation of aromatic hydrocarbons: pathways and prospects. J Mol Microbiol Biottechnol. 2008;15(2-3):93–120.
  • Cerniglia CE. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation. 1992;3:351–368.
  • Bouchez M, Blanchet D, Vandecasteele JP. Degradation of polycyclic aromatic hydrocarbons by pure strains and by defined strain associations: inhibition phenomena and cometabolism. Appl Microbiol Biotechnol. 1995;43(1):156–164.
  • Stringfellow WT, Aitken MD. Competitive metabolism of naphthalene, methylnaphthalenes, and fluorene by phenanthrene-degrading pseudomonads. Appl Environ Microbiol. 1995;61(1):357–362.
  • Obayori OS, Ilori MO, Adebusoye SA, et al. Degradation of hydrocarbons and biosurfactant production by Pseudomonas sp. strain LP1. World J Microbiol Biotechnol. 2009;25(9):1615–1623.
  • Zahed MA, Aziz HA, Isa MH, Mohajeri L. Effect of initial oil concentration and dispersant on crude oil biodegradation in contaminated seawater. Bull Environ Contamin Toxicol. 2010;84(4):438–442.
  • Youssef N, Simpson DR, Duncan KE, et al. In situ biosurfactant production by Bacillus strains injected into a limestone petroleum reservoir. Appl Environ Microbiol. 2007;73(4):1239–1247.
  • Kumar M, León V, Materano ADS, Ilzins OA, Luis L. Biosurfactant production and hydrocarbon-degradation by halotolerant and thermotolerant Pseudomonas sp. World J Microbiol Biotechnol. 2008;24(7):1047–1057.
  • Daverey A, Pakshirajan K. Production of sophorolipids by the yeast Candida bombicola using simple and low cost fermentative media. Food Res Int. 2009;42(4):499–504.
  • Muthusamy K, Gopalakrishnan S, Ravi TK, Sivachidambaram P. Biosurfactants: properties, commercial production and application. Curr Sci. 2008;94(6):736–747.
  • Stephens S. BTEX metabolism meta-pathway map. Available from: http://umbbd.ethz.ch/BTEX/BTEX_map.html 2011.
  • Farhadian M, Vachelard C, Duchez D, Larroche C. In situ bioremediation of monoaromatic pollutants in groundwater: a review. Bioresour Technol. 2008;99: 5296–5308.
  • Andreoni V, Gianfreda L. Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol. 2007;76: 287–308.
  • Gibson DT, Subramanian V. Microbial degradation of aromatic hydrocarbons. New York, NY: Marcel Dekker Inc.; 1984.
  • Lin CW, Chen L-H, I Y-P, Lai C-Y. Microbial communities and biodegradation in lab-scale BTEX contaminated ground water remediation using an oxygen releasing reactive barrier. Bioprocess Biosyst Eng. 2010;33(3):383–391.
  • Ryan MP, Pembroke JT, Adley CC. Ralstonia pickettii in environmental biotechnology: potential and applications. J Appl Microbiol. 2007;103(4):754–764.
  • You Y, Shim J, Cho CH, et al. Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil. J Basic Microbiol. 2013;53(5):469–475.
  • Zhou Y-Y, Chen D-Z, Zhu R-Y, Chen J-M. Substrate interactions during the biodegradation of BTEX and THF mixtures by Pseudomonas oleovorans DT4. Bioresour Technol. 2011;102(12):6644–6649.
  • Mazzeo DE, Levy CE, de Angelis Dde F, Marin-Morales MA. BTEX biodegradation by bacteria from effluents of petroleum refinery. Sci Total Environ. 2010;408(20):4334–4340.
  • Zhang L, Zhang C, Cheng Z, Yao Y, Chen J. Biodegradation of benzene, toluene, ethylbenzene, and o-xylene by the bacterium Mycobacterium cosmeticum byf-4. Chemosphere. 2013;90:1340–1347.
  • Kim D, Kim Y-S, Kim S-K, et al. Monocyclic aromatic hydrocarbon degradation by Rhodococcus sp. strain DK17. Appl Environ Microbiol. 2002;68:3270–3278.
  • Nicholson CA, Fathepure BZ. Biodegradation of benzene by halophilic and halotolerant bacteria under aerobic conditions. Appl Environ Microbiol. 2004;70: 1222–1225.
  • Wang L, Shao Z. Isolation and characterization of 4 benzene/toluene degrading bacterial strains and detection of related degradation genes. Chin J Microbiol 2006;46: 753–757.
  • Cozzarelli IM, Baehr AL. Volatile fuel hydrocarbons and MTBE in the environment. In: DH Heinrich, KT Karl editors. Treatise on geochemistry. Oxford: Pergamon; 2003. p. 433–474.
  • Prenafeta-Boldú FX, Kuhn A, Luykx DMAM, et al. Isolation and characterization of fungi growing on volatile aromatic hydrocarbons as their sole carbon and energy source. Mycol Res. 2001;105(4):477–484.
  • Nikolova N, Nenov V. BTEX degradation by fungi. Water Sci Technol 2005;51: 87–93.
  • Garcia-Pena I, Ortiz I, Hernandez S, Revah S. Biofiltration of BTEX by the fungus Paecilomyces variotii. Int Biodeterior Biodegrad. 2008;62:442–447.
  • Corseuil HX, Monier AL, Fernandes M, et al. BTEX plume dynamics following an ethanol blend release: geochemical footprint and thermodynamic constraints on natural attenuation. Environ Sci Technol. 2011;45(8):3422–3429.
  • Gusmao VR, Martins TH, Chinalia FA, et al. BTEX and ethanol removal in horizontal-flow anaerobic immobilized biomass reactor, under denitrifying condition. Process Biochem. 2006;41: 1391–1400.
  • Chen J, Wong MH, Wong YS, Tam NF. Multi-factors on biodegradation kinetics of polycyclic aromatic hydrocarbons (PAHs) by Sphingomonas sp. a bacterial strain isolated from mangrove sediment. Mar Pollut Bull. 2008;57(6–12):695–702.
  • Dou J, Liu X, Hu Z. Anaerobic BTEX degradation in soil bioaugmented with mixed consortia under nitrate reducing conditions. J Environ Sci 2008;20:585–592.
  • Bonin P, Cravo-Laureau C, Michotey V, Hirschler-Réa A. The anaerobic hydrocarbon biodegrading bacteria: an overview. Ophelia. 2004;58(3):243–254.
  • Heider J, Spormann AM, Beller HR, Widdel F. Anaerobic bacterial metabolism of hydrocarbons. FEMS Microbiol Rev. 1998;22(5):459–473.
  • Xin B-P, Wu C-H, Wu C-H, Lin C-W. Bioaugmented remediation of high concentration BTEX-contaminated groundwater by permeable reactive barrier with immobilized bead. J Hazard Mater 2013;244–245: 765–772.
  • Lin CW, Wu CH, Tang CT, Chang SH. Novel oxygen-releasing immobilized cell beads for bioremediation of BTEX-contaminated water. Bioresour Technol. 2012;124:45–51.
  • Singh D, Fulekar MH. Benzene bioremediation using cow dung microflora in two phase partitioning bioreactor. J Hazard Mater. 2010;175(1–3):336–343.
  • Di MC, Lopez NI, Raiger ILJ. Isolation and characterization of benzene, toluene and xylene degrading Pseudomonas sp. selected as candidates for bioremediation. Int Biodeterior Biodegrad. 2012;67:15–20.
  • Liu JH, Maity JP, Jean JH, et al. Biodegradation of benzenes by pure and mixed cultures of Bacillus spp. World J Microbiol Biotechnol. 2010;26(9):1557–1567.
  • Dolfing J, Xu A, Gray ND, Larter SR, Head IM. The thermodynamic landscape of methanogenic PAH degradation. Microb Biotechnol. 2009;2(5):566–574.
  • Pazos F, Guijas D, Valencia A, de Lorenzo V. MetaRouter: bioinformatics for bioremediation. Nucl Acids Res. 2005;33:D588–D592.
  • Chen B-Y, Chen W-M, Chang J-S. Optimal biostimulation strategy for phenol degradation with indigenous rhizobium Ralstonia taiwanensis. J Hazard Mater. 2007;139(2):232–237.
  • Yu KSH, Wong AHY, Yau KWY, Wong YS, Tam NFY. Natural attenuation, biostimulation and bioaugmentation on biodegradation of polycyclic aromatic hydrocarbons (PAHs) in mangrove sediments. Mar Pollut Bull. 2005;51(8-12):1071–1077.
  • Epuri V, Sorensen D. Benzo(a)pyrene and hexachlorobiphenyl contaminated soil: phytoremediation potential. 6th ed. Washington, DC: American Chemical Society Press; 1997.
  • Newman LA, Reynolds CMR. Phytodegradation of organic compounds. Curr Opin Biotechnol. 2004;15(3):225–230.
  • Li H, Hao H, Yang X, et al. Purification of refinery wastewater by different perennial grasses growing in a floating bed. J Plant Nutr. 2012;35(1):93–110.
  • Mâşu S, Popa M, Morariu F, Lixandru B, Popescu D. Prospects of using leguminous species in phytoremediation of total petroleum hydrocarbons polluted soils. Anim Sci Biotechnol. 2014;47(1):172–176.
  • Du W, Sun Y, Cao L, et al. Environmental fate of phenanthrene in lysimeter planted with wheat and rice in rotation. J Hazard Mater. 2011;188(1-3):408–413.
  • White PM Jr, Wolf DC, Thoma GJ, Reynolds CM. Phytoremediation of alkylated polycyclic aromatic hydrocarbons in a crude oil-contaminated soil. Water Air Soil Pollut. 2006;169(1-4):207–220.
  • Kang F, Chen D, Gao Y, Zhang Y. Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum). BMC Plant Biol. 2010;10:1471–1477.
  • Moustafa YM, Shara SI. Studies of seasonal variations on polynuclear aromatic hydrocarbons along the Nile River. Egypt J Appl Sci Res. 2009;5(12):2349–2356.
  • Wolverton BC, McDonald RC. Don’t waste water weeds. New Scientist. 1976;71:318–320.
  • Nesterenko-Malkovskaya A, Kirzhner F, Zimmels Y, Armon R. Eichhornia crassipes capability to remove naphthalene from wastewater in the absence of bacteria. Chemosphere. 2012;87(10):1186–1191.
  • Glick BR. Using soil bacteria to facilitate phytoremediation. Biotechnol Adv. 2010;28(3):367–374.
  • Vymazal J. Constructed wetlands for treatment of industrial wastewaters: a review. Ecol Eng. 2014;73:724–751.
  • Sundaravadivel M, Vigneswaran S. Constructed wetlands for waste water treatment. Critical Rev Environ Sci Technol. 2001;31(4):351–409.
  • Litchfield DK. Constructed wetlands for waste water treatment at Amoco Oil Company’s Mandan, North Dakota Refinery. In Moshiri GA, editor. Constructed wetlands for water pollution improvement. Boca Raton, FL: CRC Press/Lewis Publishers; 1993. p. 485–488.
  • Lakatos G. Hungary. In: Vymazal J, Brix H, Cooper PF, Green B, Haberl R, editors. Constructed wetlands for wastewater treatment in Europe. Leiden: Backhuys Publishers; 1998. p. 191–206.
  • Hawkins WB, Rodgers JH Jr, Gillespie WB Jr, et al. Design and construction of wetlands for aqueous transfers and transformations of selected metals. Ecotoxicol Environ Saf. 1997;36(3):238–248.
  • Gillespie WB Jr, Hawkins WB, Rodgers JH Jr, Cano ML, Dorn PB. Transfers and transformations of zinc in constructed wetlands: mitigation of a refinery effluent. Ecol Eng. 2000;14(3):279–292.
  • Huddleston GM, Gillespie WB, Rodgers JH. Using constructed wetlands to treat biochemical oxygen demand and ammonia associated with a refinery effluent. Ecotoxicol Environ Saf. 2000;45(2):188–193.
  • Chapple M, Cooper P, Cooper D, Revitt M. Pilot trials of a constructed wetland system for reducing the dissolved hydrocarbon in a runoff from a decommissioned refinery. Proceedings of the 8th international conference wetland systems for water pollution control. Arusha: University of Dar-es-Salaam, Tanzania and IWA; 2002. p. 877–883.
  • Haberl R, Grego S, Langergraber G, et al. Constructed wetlands for the treatment of organic pollutants. J Soils Sediments. 2003;3(2):109–124.
  • Wallace S, Schmidt M, Lasson E. Long term hydrocarbon removal using treatment wetlands. Soc Pet Eng. 2011;145:1–10.
  • Czudar A, Gyulai I, Keresztúri P, et al. Removal of organic materials and plant nutrients in a constructed wetland for petrochemical wastewater treatment. Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii. 2011;21(1):109–114.
  • Metcalf & Eddy. Wastewater engineering: treatment and reuse. 4th ed. New York, NY: Mc Graw-Hill Inc.; 2003.
  • Grieves CG, Stenstrom MK, Walk JD, Grutsch JF. Powdered carbon improves activated sludge treatment. Hydrocarb Process. 1977;1977:125–130.
  • Ng A, Stenstrom MK, Marrs DR. Nitrification enhancement in the powdered activated carbon activated sludge process for the treatment of petroleum refinery wastewater. Water Pollut Control Fed. 1987;59(4):199–211.
  • Yasui H, Nakamura K, Sakuma S, Iwasaki M, Sakai Y. A full scale operation of a novel activated sludge process without excess sludge production. Water Sci Technol. 1996;34(3–4):395–404.
  • Tellez GT, Nirmalakhandan N, Gardea-Torresdey JL. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water. Adv Environ Res. 2002;6:455–470.
  • Santo CE, Vilar VJP, Bhatnagar A, et al. Biological treatment of activated sludge of petroleum refinery wastewaters. Desalin Water Treat. 2013;51(34–36):6641–6654.
  • Mirbagheri SA, Ebrahimi M, Mohammadi M. Optimization method for the treatment of Tehran petroleum refinery wastewater using activated sludge contact stabilization process. Desalin Water Treat. 2014;52(1–3):156–163.
  • Mahvi AH. Sequencing batch reactor: a promising technology in wastewater treatment: an overview. Iran J Environ Health Sci Eng. 2008;5(2):79–90.
  • Leong ML, Lee KM, Lai SO, Ooi BS. Sludge characteristics and performances of the sequencing batch reactor at different influent phenol concentrations. Desalination. 2011;270(1–3):181–187.
  • Ahmed GH, Kutty SRM, Isa MH. Petroleum refinery effluent biodegradation in sequencing batch reactor. Int J Appl Sci Technol. 2011;1(6):179–183.
  • Kutty SRM, Ahmed GA, Khamaruddin PF, Malakahmed A. Biological treatability study for refinery wastewater using bench scale sequencing batch reactor systems. WIT Trans Ecol Environ. 2011;145:1743–3541.
  • Thakur C, Srivastava VC, Mall ID. Aerobic degradation of petroleum refinery wastewater in sequential batch reactor. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2014;49(12):1436–1444.
  • Baldoni-Andrey P, Lesage N, Segues B, Pedenaud P, Dehaene PL. Impact of high salinity of produced water on the technical feasibility of biotreatment for E&P on shore applications. SPE International Health, Safety & Environment Conference; 2006; April 2–4; Abu Dhabi, UAE, SPE 98751.
  • Ivanovic I, Leiknes TO. The biofilm membrane bioreactor (BF-MBR) – a review. Desalin Water Treat. 2012;37(1–3):288–295.
  • Kraume M, Drews A. Membrane bioreactors in waste water treatment – status and trends. Chem Eng Technol. 2010;33(8):1251–1259.
  • Judd S. The MBR book: principles and applications of membrane bioreactors in water and wastewater treatment. Oxford: Elsevier; 2006.
  • Yaopo F, Jusi W, Zhaochun J. Treatment of petrochemical wastewater with a membrane bioreactor. Acta Scientiae Circumstantiae. 1997;1:68–74.
  • Rahman MM, Al-Malack MH. Performance of a crossflow membrane bioreactor (CF-MBR) when treating refinery wastewater. Desalination 2006;191(1–3):16–26.
  • Shariati SRP, Bonakdarpour B, Zare N, Ashtiani FZ. The effect of hydraulic retention time on the performance and fouling characteristics of membrane sequencing batch reactors used for the treatment of synthetic petroleum refinery wastewater. Bioresour Technol. 2011;102(17):7692–7699.
  • Wiszniowski J, Ziembińska A, Ciesielski S. Removal of petroleum pollutants and monitoring of bacterial community structure in a membrane bioreactor. Chemosphere. 2011;83(1):49–56.
  • Malamis S, Katsou E, Di Fabio S, et al. Treatment of petrochemical wastewater by employing membrane bioreactors: a case study of effluents discharged to a sensitive water recipient. Desalin Water Treat. 2015;53(12):3397–3406.
  • Zhidong L, Na L, Honglin Z, Dan L. Study of an A/O submerged membrane bioreactor for oil refinery wastewater treatment. Pet Sci Technol. 2009;27(12):1274–1285.
  • Viero AF, de Melo TM, Torres APR, et al. The effects of long-term feeding of high organic loading in a submerged membrane bioreactor treating oil refinery wastewater. J Membr Sci. 2008;319(1–2):223–230.
  • Drews A. Membrane fouling in membrane bioreactors-characterization, contradictions, cause and cures. J Membr Sci. 2010;363:1–28.
  • Santos A, Ma W, Judd SJ. Membrane bioreactors: two decades of research and implementation. Desalination. 2011;273(1):148–154.
  • Meng F, Chae S-R, Drews A, et al. Recent advances in membrane bioreactors (MBRs): membrane fouling and membrane material. Water Res. 2009;43(6):1489–1512.
  • Shabir G, Afzal M, Tahseen R, et al. Treatment of oil refinery wastewater using pilot scale fed batch reactor followed by coagulation and sand filtration. Am J Environ Protect. 2013;1(1):10–13.
  • Ren L, Siegert M, Ivanov I, Pisciotta JM, Logan BE. Treatability studies on different refinery wastewater samples using high-throughput microbial electrolysis cells (MECs). Bioresour Technol. 2013;136:322–328.
  • Hao OJ, Shin C-J, Lin C-F, Jeng F-T, Chen Z-C. Use of microtox tests for screening industrial wastewater toxicity. Water Sci Technol. 1996;34(10):43–50.
  • Gargouri B, Aloui F, Sayadi S. Reduction of petroleum hydrocarbons content from an engine oil refinery wastewater using a continuous stirred tank reactor monitored by spectrometry tools. J Chem Technol Biotechnol. 2012;87(2):238–243.
  • Hsien T-Y, Lin Y-H. Biodegradation of phenolic wastewater in a fixed biofilm reactor. Biochem Eng J. 2005;27(2):95–103.
  • de Mello JMM, de Lima Brandão H, de Souza AAU, da Silva A, de Arruda Guelli Ulson de Souza SM. Biodegradation of BTEX compounds in a biofilm reactor—modeling and simulation. J Petro Sci Eng. 2010;70(1–2):131–139.
  • Jou C-JG, Huang G-C. A pilot study for oil refinery wastewater treatment using a fixed-bed bioreactor. Adv Environ Res. 2003;7:463–469.
  • Patel H, Madamwar D. Effects of temperatures and organic loading rates on biomethanation of acidic petrochemical wastewater using an anaerobic upflow fixed-film reactor. Bioresour Technol. 2002;82(1):65–71.
  • Wan L, Alvarez-Cuenca M, Upreti SR, Lohi A. Development of a three-phase fluidized bed reactor with enhanced oxygen transfer. Chem Eng Process Process Intensif. 2010;49(1):2–8.
  • Sokol W. Treatment of refinery wastewater in a three phase fluidized bed reactor with a low density biomass support. Biochem Eng J. 2003;15:1–10.
  • Sokół W, Woldeyes B. Evaluation of the inverse fluidized bed biological reactor for treating high-strength industrial wastewaters. Adv Chem Eng Sci. 2011;1(4):239–244.
  • Mukherji S, Chavan A. Treatment of aqueous effluents containing non-aqueous phase liquids in rotating biological contactor with algal bacterial biofilm. Chem Eng J. 2012;200–202:459–470.
  • Jeswani H, Mukherji S. Degradation of phenolics, nitrogen-heterocyclics and polynuclear aromatic hydrocarbons in a rotating biological contactor. Bioresour Technol. 2012;111:12–20.
  • Radwan SS, Al-Hasan RH, Salamah S, Al-Dabbous S. Bioremediation of oily sea water by bacteria immobilized in biofilms coating macroalgae. Int Biodeterior Biodegrad. 2002;50(1):55–59.
  • Mishra PK, Mukherji S. Biosorption of diesel and lubricating oil on algal biomass. 3 Biotech. 2012;2(4):301–310.
  • Tyagi RD, Tran FT, Chowdhury AK. Performance of RBC coupled to a polyurethane foam to biodegrade petroleum refinery wastewater. Environ Pollut. 1992;76(1):61–70.
  • Liu G-H, Ye Z, Tong K, Yi-He Zhang Y-H. Biotreatment of heavy oil wastewater by combined upflow anaerobic sludge blanket and immobilized biological aerated filter in a pilot-scale test. Biochem Eng J. 2013;72:48–53.
  • Safa M, Alemzadeh I, Vossoughi M. Biodegradability of oily wastewater using rotating biological contactor combined with an external membrane. J Environ Health Sci Eng. 2014;12(1):117–121.
  • Trigueros DEG, Modenes AN, Kroumov AD, Espinoza-Quinones FR. Modeling of biodegradation process of BTEX compounds: kinetic parameters estimation by using particle Swarm global optimizer. Process Biochem. 2010;45:1355–1361.
  • Desai AM, Autenrieth RL, Dimitriou-Christidis P, McDonald TJ. Biodegradation kinetics of select polycyclic aromatic hydrocarbon (PAH) mixtures by Sphingomonas paucimobilis EPA505. Biodegradation. 2008;19:223–233.
  • Mathur AK, Majumder CB. Kinetics modelling of the biodegradation of benzene, toluene and phenol as single substrate and mixed substrate by using Pseudomonas putida. Chem Biochem Eng Quart. 2010; 24(1):101–109.
  • Shim H, Hwang B, Lee SS. Kinetics of BTEX biodegradation by a co-culture of Pseudomonas putida and Pseudomonas fluorescens under hypoxic conditions. Biodegradation. 2005;16:319–327.
  • Koutinas M, Kiparissides A, Lam M-C, et al. Improving the prediction of Pseudomonas putida mt-2 growth kinetics with the use of a gene expression regulation model of the TOL plasmid. Biochem Eng J. 2011;55:108–118.
  • Lin C-W, Cheng Y-W, Tsai S-L. Multi-substrate biodegradation kinetics of MTBE and BTEX mixtures by Pseudomonas aeruginosa. Process Biochem. 2007;42:1211–1217.
  • Steliga T, Jakubowicz P, Kapusta P. Optimization research of petroleum hydrocarbon biodegradation in weathered drilling wastes from waste pits. Waste Manage Res. 2010;28(12):1065–1075.
  • Zahed MA, Aziz HA, Isa MH, et al. Kinetic modeling and half-life study on bioremediation of crude oil dispersed by Corexit 9500. J Hazard Mater. 2011;185(2–3):1027–1031.
  • Banerjee A, Ghoshal AK. Phenol degradation by Bacillus cereus: pathway and kinetic modeling. Bioresource Technol. 2010;101(14):5501–5507.
  • Jung I-G, Park C-H. Characteristics of Rhodococcus pyridinovorans PYJ-1 for the biodegradation of benzene, toluene, m-xylene (BTX), and their mixtures. J Biosci Bioeng. 2004;97:429–431.
  • El.Bestawy E, Abu Rass M, Abdel-Kawi MA. Removal of lead and oil hydrocarbon from oil refining contaminated wastewater using Pseudomonas sp. J Natl Sci Res. 2013;3(11):112–124.
  • Jiang Y, Qi H, Zhang X, Chen G. Inorganic impurity removal from waste oil and wash-down water by Acinetobacter johnsonii. J Hazard Mater. 2012;239–240:289–293.
  • Atlas RM, Philp J. Bioremediation – applied microbial solutions for real-world environmental cleanup. Washington, DC: American Society for Microbiology (ASM); 2005.
  • Huang JP, Huang CP, Morehart AL. Removal of heavy metals by fungal (Aspergillus oryzae) adsorption. In: JP Vernet, Trace metals in the environment. 2nd ed. Amsterdam: Elsevier. 1994. p. 329–349.
  • Brady D, Rose PD, Duncan JR. The use of hollow fiber cross-flow microfiltration in bioaccumulation and continuous removal of heavy metals from solution by Saccharomyces cerevisiae. Biotechnol Bioeng. 1994;44(11):1362–1366.
  • Fagan MJ, Saier MH. P-type ATPases of eukaryotes and bacteria: sequence analysis and construction of phylogenetic trees. J Mol Evol. 1994;38(1):57–99.
  • Velusamy P, Awad YM, Abd El-Azeem SAM, Ok YS. Screening of heavy metal resistant bacteria isolated from hydrocarbon contaminated soil in Korea. J Agric Life Environ Sci. 2011;23(1):40–43.
  • Gomma EZ. Production and characteristics of a heavy metal removing bioflocculant produced by Pseudomonas aeruginosa. Polish J Microbiol. 2012;61(4):281–289.
  • Liu Q, Zhao C, Zhao D, Zhang Y. Screening of bioflocculant-producing strains and study on the production and oily wastewater flocculation characteristics. Remote sensing, environment and transportation engineering (RSETE). 2nd international conference; Nanjing, China; 2012.
  • Subudhi S, Batta N, Pathak M, et al. Bioflocculant production and biosorption of zinc and lead by a novel bacterial species, Achromobacter sp. TERI-IASST N, isolated from oil refinery waste. Chemosphere. 2014;113:116–124.
  • Nwodo UU, Agunbiade MO, Green E, Mabinya LV, Okoh AI. A freshwater Streptomyces, isolated from Tyume River, produces a predominantly extracellular glycoprotein bioflocculant. Int J Mol Sci. 2012;13(7):8679–95.
  • Liu Q-Y, Zhang Y-B, Zhao C-C. The isolation of bioflocculant producing strains and the application in the oily wastewater treatment process. Pet Sci Technol. 2014;32(23):2807–2814.
  • de Lorenzo V. Recombinant bacteria for environmental release: what went wrong and what we have learnt from it. Clin Microbiol Infect. 2009;15:63–65.
  • van der Meer JR, Belkin S. Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol. 2010;8(7):511–522.
  • Ben-Yoav H, Biran A, Pedahzur R, et al. A whole cell electrochemical biosensor for water genotoxicity bio-detection. Electrochim Acta. 2009;54(25):6113–6118.
  • Roca A, Rodríguez-Herva JJ, Duque E, Ramos JL. Physiological responses of Pseudomonas putida to formaldehyde during detoxification. Microb Biotechnol. 2008;1(2):158–169.
  • Wang M, Ford RM. Quantitative analysis of transverse bacterial migration induced by chemotaxis in a packed column with structural physical heterogeneity. Environ Sci Technol. 2010;44(2):780–786.
  • Englert DL, Adase CA, Jayaraman A, Manson MD. Repellent taxis in response to nickel ion requires neither Ni2+ transport nor the periplasmic Nik A binding protein. J Bacteriol. 2010;192(10):2633–2637.
  • Krell T, Lacal J, Muñoz-Martínez F, et al. Diversity at its best: bacterial taxis. Environ Microbiol. 2011;13(5):1115–1124.
  • Molina L, Duque E, Gómez MJ, et al. The pGRT1 plasmid of Pseudomonas putida DOT-T1E encodes functions relevant for survival under harsh conditions in the environment. Environ Microbiol. 2011;13(8):2315–2327.
  • Lacal J, Muñoz-Martínez F, Reyes-Darías J-A, et al. Bacterial chemotaxis towards aromatic hydrocarbons in Pseudomonas. Environ Microbiol. 2011;13(7):1733–1744.
  • Siezen R J, Galardini M. Genomics of biological wastewater treatment. Microb Biotechnol. 2008;1(5):333–340.
  • Wasilkowski D, Swedziol Z, Mrozik A. The applicability of genetically modified microorganism in bioremediation of contaminated environments. CHEMIK 2012;66(8):822–826.
  • Sayler GS, Ripp S. Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol. 2000;11(3):286–289.
  • Filonov AE, Akhmetov LI, Puntus IF, et al. The construction and monitoring of genetically tagged, plasmid-containing, naphthalene-degrading strains in soil. Microbiology. 2005;74(4):453–458.
  • Singh JS, Abhilash PC, Singh HB, Singh RP, Singh DP. Genetically engineered bacteria: an emerging tool for environmental remediation and future research perspectives. Gene. 2011;480(1–2):1–9.
  • Jagmann N, Brachvogel H-P, Philipp B. Parasitic growth of Pseudomonas aeruginosa in co-culture with the chitinolytic bacterium Aeromonas hydrophila. Environ Microbiol. 2010;12(6):1787–1802.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.