1,190
Views
7
CrossRef citations to date
0
Altmetric
Reviews

Assessing the potential for tertiary nitrification in sub-surface flow constructed wetlands

, , , &
Pages 68-77 | Received 01 Oct 2015, Accepted 08 May 2016, Published online: 10 Jun 2016

References

  • Langergraber G, Leroch K, Pressl A, Sleytr K, Rohrhofer R, Haberl R. High-rate nitrogen removal in a two-stage subsurface vertical flow constructed wetland. Desalination. 2009;246:55–68. doi: 10.1016/j.desal.2008.02.037
  • Pearce P. Sustainable processes to meet low ammonia consents – the small works challenge. Paper presented at: Proceedings of the 2nd Conference on Low Energy Wastewater Treatment Systems; 2013 September 24; Solihull.
  • Wu S, Kuschk P, Brix H, Vymazal J, Dong R. Development of constructed wetlands in performance intensifications for wastewater treatment: a nitrogen and organic matter targeted review. Water Res. 2014;57:40–55. doi: 10.1016/j.watres.2014.03.020
  • Vymazal J, Kröpfelová L. Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience. Sci Total Environ. 2009;407:3911–3922. doi: 10.1016/j.scitotenv.2008.08.032
  • Ouellet-Plamondon C, Chazarenc F, Comeau Y, Brisson J. Artificial aeration to increase pollutant removal efficiency of constructed wetlands in cold climate. Ecol Eng. 2006;27:258–264. doi: 10.1016/j.ecoleng.2006.03.006
  • Wallace S, Higgins J, Crolla A, Kinsley C. High-rate ammonia removal in aerated engineered wetlands. Paper presented at: Proceedings of 10th International Conference on Wetland Systems for Water Pollution Control; 2006; Lisbon.
  • Zhang L, Zhang L, Liu Y-D, Shen Y-W, Liu H, Xiong Y. Effect of limited artificial aeration on constructed wetland treatment of domestic wastewater. Desalination. 2010;250:915–920. doi: 10.1016/j.desal.2008.04.062
  • Garcia-Ochoa F, Gomez E. Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv. 2009;27:153–176. doi: 10.1016/j.biotechadv.2008.10.006
  • Nowak O. Upgrading of wastewater treatment plants equipped with rotating biological contactors to nitrification and P removal. Water Sci Technol. 2000;41:145–153.
  • Joint Task Force of the Water Pollution Control Federation and the American Society of Civil Engineers. Aeration: a wastewater treatment process, water pollution control federation & ASCE, 1988. Available from: https://books.google.co.uk/books?id=hrQsBAivZb4C&redir_esc=y.
  • Coulson J, Richardson J, Backhurst J, Harker J. Chemical engineering. 5th ed. Oxford: Butterworth-Heinemann; 2002.
  • Mendoza-Espinosa L, Stephenson T. A review of biological aerated filters (BAFs) for wastewater treatment. Environ Eng Sci. 1999;16:201–216. doi: 10.1089/ees.1999.16.201
  • Tchobanoglous G, Burton FL, Stensel HD. Metcalf & Eddy wastewater engineering: treatment and reuse. New York: McGraw-Hill Education; 2003.
  • Mueller J, Boyle WC, Popel IHJ. Aeration: principles and practice, Volume 11. Boca Raton: CRC Press; 2002.
  • Fujie K, Hu H, Ikeda Y, Urano K. Gas-liquid oxygen transfer characteristics in an aerobic submerged biofilter for the wastewater treatment. Chem Eng Sci. 1992;47:3745–3752. doi: 10.1016/0009-2509(92)85093-Q
  • Harris S, Stephenson T, Pearce P. Aeration investigation of biological aerated filters using off-gas analysis. Water Sci Technol. 1996;34:307–314. doi: 10.1016/0273-1223(96)00587-2
  • Collignon D. MSc Thesis: insight into oxygen transfer in IFAS processes [dissertation]. Cranfield University; 2006.
  • Butterworth E, Beneteau M, Dotro G, Jefferson B. Effect of media on oxygen transfer in packed beds. Water Res. 2015. under review.
  • Nivala J, Wallace S, Headley T, et al. Oxygen transfer and consumption in subsurface flow treatment wetlands. Ecol Eng. 2013;61:544–554. doi: 10.1016/j.ecoleng.2012.08.028
  • Tyroller L, Rousseau DPL, Santa S, García J. Application of the gas tracer method for measuring oxygen transfer rates in subsurface flow constructed wetlands. Water Res. 2010;44:4217–4225. doi: 10.1016/j.watres.2010.05.027
  • Andreottola G, Oliveira E. Respirometric techniques for assessment of biological kinetics in constructed wetland. Water Sci Technol. 2007;56:255–266. doi: 10.2166/wst.2007.512
  • Ortigara A, Foladori P, Andreottola G. Kinetics of heterotrophic biomass and storage mechanism in wetland cores measured by respirometry. Water Sci Technol. 2011;64:409–415. doi: 10.2166/wst.2011.547
  • Brix H. Gas exchange through the soil-atmosphere interphase and through dead culms of Phragmites australis in a constructed reed bed receiving domestic sewage. Water Res. 1990;4:259–266. doi: 10.1016/0043-1354(90)90112-J
  • Bezbaruah A, Zhang T. Quantification of oxygen release by bulrush (Scirpus validus) roots in a constructed treatment wetland. Biotechnol Bioeng. 2005;89:308–318. doi: 10.1002/bit.20332
  • Kaseva M. Performance of a sub-surface flow constructed wetland in polishing pre-treated wastewater – a tropical case study. Water Res. 2004;38:681–687. doi: 10.1016/j.watres.2003.10.041
  • Butterworth E, Dotro G, Jones M, et al. Effect of artificial aeration on tertiary nitrification in a full-scale subsurface horizontal flow constructed wetland. Ecol Eng. 2013;54:236–244. doi: 10.1016/j.ecoleng.2013.01.034
  • García-Pérez A, Harrison M, Grant B. Recirculating vertical flow constructed wetland: green alternative to treating both human and animal sewage. J Environ Health. 2009;72:17–20.
  • Sousa WTZ, Panitz CMN, Thomaz SM. Performance of pilot-scale vertical flow constructed wetlands with and without the emergent macrophyte Spartina alterniflora treating mariculture effluent. Braz Arch Biol Technol. 2011;54:405–413. doi: 10.1590/S1516-89132011000200024
  • Tanner CC, D’Eugenio J, McBride GB, et al. Effect of water level fluctuation on nitrogen removal from constructed wetland mesocosms. Ecol Eng. 1999;12:67–92. doi: 10.1016/S0925-8574(98)00055-X
  • Austin D. Influence of cation exchange capacity (CEC) in a tidal flow, flood and drain wastewater treatment wetland. Ecol Eng. 2006;28:35–43. doi: 10.1016/j.ecoleng.2006.03.010
  • Torrens A, Molle P, Boutin C, Salgot M. Impact of design and operation variables on the performance of vertical-flow constructed wetlands and intermittent sand filters treating pond effluent. Water Res. 2009;43:1851–1858. doi: 10.1016/j.watres.2009.01.023
  • Cooper P, Smith M, Maynard H. The design and performance of a nitrifying vertical-flow reed bed treatment system. Water Sci Technol. 1997;35:215–221. doi: 10.1016/S0273-1223(97)00071-1
  • Zhao Y, Sun G, Allen S. Purification capacity of a highly loaded laboratory scale tidal flow reed bed system with effluent recirculation. Sci Total Environ. 2004;330:1–8. doi: 10.1016/j.scitotenv.2004.03.002
  • Behrends L, Houke L, Bailey E. Reciprocating constructed wetlands for treating industrial, municipal and agricultural wastewater. Water Sci Technol. 2001;44:399–405.
  • Wu S, Zhang D, Austin D, et al. Evaluation of a lab-scale tidal flow constructed wetland performance: oxygen transfer capacity, organic matter and ammonium removal. Ecol Eng. 2011;37:1789–1795. doi: 10.1016/j.ecoleng.2011.06.026
  • Munoz P, Drizo A, Hession W. Flow patterns of dairy wastewater constructed wetlands in a cold climate. Water Res. 2006;40:3209–3218. doi: 10.1016/j.watres.2006.06.036
  • Cottingham P, Davies T, Hart B. Aeration to promote nitrification in constructed wetlands. Environ Technol. 1999;20:69–75. doi: 10.1080/09593332008616794
  • Tang X, Huang S, Scholz M. Nutrient removal in wetlands during intermittent artificial aeration. Environ Eng Sci. 2008;5:1279–1290. doi: 10.1089/ees.2007.0260
  • Stefanakis AI, Tsihrintzis VA. Effect of outlet water level raising and effluent recirculation on removal efficiency of pilot-scale, horizontal subsurface flow constructed wetlands. Desalination. 2009;248:961–976. doi: 10.1016/j.desal.2008.08.008
  • Nivala J, Hoos MB, Cross C, et al. Treatment of landfill leachate using an aerated, horizontal subsurface-flow constructed wetland. Sci Total Environ. 2007;380:19–27. doi: 10.1016/j.scitotenv.2006.12.030
  • Fan J, Wang W, Zhang B, et al. Nitrogen removal in intermittently aerated vertical flow constructed wetlands: impact of influent COD/N ratios. Bioresour Technol. 2013;143:461–466. doi: 10.1016/j.biortech.2013.06.038
  • Tanner CC, Kadlec RH, Gibbs MM, et al. Nitrogen processing gradients in subsurface-flow treatment wetlands – influence of wastewater characteristics. Ecol Eng. 2002;18:499–520. doi: 10.1016/S0925-8574(02)00011-3
  • Trang NTD, Konnerup D, Schierup H-H, et al. Kinetics of pollutant removal from domestic wastewater in a tropical horizontal subsurface flow constructed wetland system: effects of hydraulic loading rate. Ecol Eng. 2010;36:527–535. doi: 10.1016/j.ecoleng.2009.11.022
  • O’Luanaigh ND, Goodhue R, Gill LW. Nutrient removal from on-site domestic wastewater in horizontal subsurface flow reed beds in Ireland. Ecol Eng. 2010;36:1266–1276. doi: 10.1016/j.ecoleng.2010.06.002
  • Zhang J, Huang X, Liu C, et al. Nitrogen removal enhanced by intermittent operation in a subsurface wastewater infiltration system. Ecol Eng. 2005;25:419–428. doi: 10.1016/j.ecoleng.2005.06.011
  • Stevik T, Ausland G, Hanssen J, Jenssen P. The influence of physical and chemical factors on the transport of E. coli through biological filters for wastewater purification. Water Res. 1999;33:3701–3706. doi: 10.1016/S0043-1354(99)00077-9
  • Molle P, Liénard A, Grasmick A, Iwema A. Effect of reeds and feeding operations on hydraulic behaviour of vertical flow constructed wetlands under hydraulic overloads. Water Res. 2006;40:606–612. doi: 10.1016/j.watres.2005.11.026
  • Jia W, Zhang J, Wu J, et al. Effect of intermittent operation on contaminant removal and plant growth in vertical flow constructed wetlands: a microcosm experiment. Desalination. 2010;262:202–208. doi: 10.1016/j.desal.2010.06.012
  • Brix H, Arias CA. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Constr Wetl Wastewater Treat. 2005;25:491–500.
  • Molle P, Liénard A, Boutin C, et al. How to treat raw sewage with constructed wetlands: an overview of the French systems. Water Sci Technol. 2005;51:11–21.
  • Kadlec R, Wallace S. Treatment wetlands. Boca Raton, FL: CRC Press; 2009.
  • Langergraber G, Pressl A, Leroch K, et al. Long-term behaviour of a two-stage CW system regarding nitrogen removal. Water Sci Technol. 2011;64:1137–1141. doi: 10.2166/wst.2011.332
  • Bellucci M, Ofiteru I. Low-dissolved-oxygen nitrifying systems exploit ammonia-oxidizing bacteria with unusually high yields. Appl Environ Microbiol. 2011;77:7787–7796. doi: 10.1128/AEM.00330-11
  • Krasnits E, Friedler E, Sabbah I. Spatial distribution of major microbial groups in a well established constructed wetland treating municipal wastewater. Ecol Eng. 2009;35:1085–1089. doi: 10.1016/j.ecoleng.2009.03.020
  • Vrancken C. MSc Thesis: off-grid electricity supply for small wastewater treatment works [dissertation]. Cranfield University; 2015.
  • Chazarenc F, Gagnon V, Comeau Y, Brisson J. Effect of plant and artificial aeration on solids accumulation and biological activities in constructed wetlands. Ecol Eng. 2009;35:1005–1010. doi: 10.1016/j.ecoleng.2008.07.008
  • Mansi G, Butterworth E, Ranieri E, et al. Effect of artificial aeration on hydraulic behavior of horizontal subsurface flow wetlands. Paper presented at: Proceedings of 2nd Conference on Low Energy Wastewater Treatment Systems; 2013 September 24; Solihull, UK.
  • Matthys A, Parkin G, Wallace S. A comparison of constructed wetlands used to treat domestic wastes: conventional, drawdown, and aerated systems. In: International Water Association, Editor. Proceedings of 7th international conference on wetland systems for water pollution control, International Water Association, Colchester 2000.
  • Yalcuk A, Ugurlu A. Comparison of horizontal and vertical constructed wetland systems for landfill leachate treatment. Bioresour Technol. 2009;100:2521–2526. doi: 10.1016/j.biortech.2008.11.029
  • Caselles-Osorio A, García J. Performance of experimental horizontal subsurface flow constructed wetlands fed with dissolved or particulate organic matter. Water Res. 2006;40:3603–3611. doi: 10.1016/j.watres.2006.05.038
  • Caselles-Osorio A, Garcia J. Effect of physico-chemical pretreatment on the removal efficiency of horizontal subsurface-flow constructed wetlands. Environ Pollut. 2007;146:55–63. doi: 10.1016/j.envpol.2006.06.022
  • Agudelo RM, Peñuela G, Aguirre NJ, et al. Simultaneous removal of chlorpyrifos and dissolved organic carbon using horizontal sub-surface flow pilot wetlands. Ecol Eng. 2010;36:1401–1408. doi: 10.1016/j.ecoleng.2010.06.019
  • Vymazal J. Long-term performance of constructed wetlands with horizontal sub-surface flow: ten case studies from the Czech Republic. Ecol Eng. 2011;37:54–63. doi: 10.1016/j.ecoleng.2009.11.028
  • Vymazal J. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol Eng. 2005;25:478–490. doi: 10.1016/j.ecoleng.2005.07.010
  • Matamoros V, García J, Bayona JM. Organic micropollutant removal in a full-scale surface flow constructed wetland fed with secondary effluent. Water Res. 2008;42:653–660. doi: 10.1016/j.watres.2007.08.016
  • Yousefi Z, Mohseni-Bandpei A. Nitrogen and phosphorus removal from wastewater by subsurface wetlands planted with Iris pseudacorus. Ecol Eng. 2010;36:777–782. doi: 10.1016/j.ecoleng.2010.02.002
  • Maltais-Landry G, Maranger R, Brisson J, Chazarenc F. Greenhouse gas production and efficiency of planted and artificially aerated constructed wetlands. Environ Pollut. 2009;157:748–754. doi: 10.1016/j.envpol.2008.11.019
  • Albuquerque A, Oliveira J, Semitela S, Amaral L. Influence of bed media characteristics on ammonia and nitrate removal in shallow horizontal subsurface flow constructed wetlands. Bioresour Technol. 2009;100:6269–6277. doi: 10.1016/j.biortech.2009.07.016
  • Llorens E, Matamoros V, Domingo V, Bayona JM, García J. Water quality improvement in a full-scale tertiary constructed wetland: effects on conventional and specific organic contaminants. Sci Total Environ. 2009;407:2517–2524. doi: 10.1016/j.scitotenv.2008.12.042
  • Sklarz MY, Gross A, Yakirevich A, Soares MIM. A recirculating vertical flow constructed wetland for the treatment of domestic wastewater. Desalination. 2009;246:617–624. doi: 10.1016/j.desal.2008.09.002
  • Green M, Friedler E, Ruskol Y, Safrai I. Investigation of alternative method for nitrification in constructed wetlands. Water Sci Technol. 1997;35:63–70. doi: 10.1016/S0273-1223(97)00053-X
  • Foladori P, Ruaben J, Ortigara A. Recirculation or artificial aeration in vertical flow constructed wetlands: a comparative study for treating high load wastewater. Bioresour Technol. 2013;149:398–405. doi: 10.1016/j.biortech.2013.09.099
  • Weedon C. Compact vertical flow constructed wetland systems-first two years’ performance. Water Sci Technol. 2003;48:15–23.
  • Langergraber G, Tietz A, Haberl R. Comparison of measured and simulated distribution of microbial biomass in subsurface vertical flow constructed wetlands. Water Sci Technol. 2007;56:233–240. doi: 10.2166/wst.2007.496
  • Bruch I, Fritsche J, Bänninger D. Improving the treatment efficiency of constructed wetlands with zeolite-containing filter sands. Bioresour Technol. 2011;102:937–941. doi: 10.1016/j.biortech.2010.09.041
  • Mitterer-Reichmann G. Data evaluation of constructed wetlands for treatment of domestic wastewater. Paper presented at: Proceedings of 8th International Conference on Wetland Systems for Water Pollution Control, IWA and University of Dar es Salaam; 2002 September 16–19; Arusha, Tanzania.
  • Kayser K, Kunst S. Processes in vertical-flow reed beds: nitrification, oxygen transfer and soil clogging. Water Sci Technol. 2005;51:177–184.
  • Sun G, Zhao Y, Allen S. Enhanced removal of organic matter and ammoniacal-nitrogen in a column experiment of tidal flow constructed wetland system. J Biotechnol. 2005;115:189–197. doi: 10.1016/j.jbiotec.2004.08.009
  • Babatunde AO, Zhao YQ, Zhao XH. Alum sludge-based constructed wetland system for enhanced removal of P and OM from wastewater: concept, design and performance analysis. Bioresour Technol. 2010;101:6576–6579. doi: 10.1016/j.biortech.2010.03.066
  • Sun G, Gray K, Biddlestone A, Cooper D. Treatment of agricultural wastewater in a combined tidal flow-downflow reed bed system. Water Sci Technol. 1999;40:139–146. doi: 10.1016/S0273-1223(99)00457-6
  • Ong S-A, Uchiyama K, Inadama D, Ishida Y, Yamagiwa K. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresour Technol. 2010;101:7239–7244. doi: 10.1016/j.biortech.2010.04.032
  • Zhao YQ, Babatunde AO, Hu YS, Kumar JLG, Zhao XH. Pilot field-scale demonstration of a novel alum sludge-based constructed wetland system for enhanced wastewater treatment. Process Biochem. 2011;46:278–283. doi: 10.1016/j.procbio.2010.08.023
  • O’Hogain S. The design, operation and performance of a municipal hybrid reed bed treatment system. Water Sci Technol. 2003;48:119–126.
  • Johansen N, Brix H. Design criteria for a two-stage constructed wetland. In: Paper presented at: Proceedings of 5th International Conference on Wetland System for Water Pollution Control, Universitaet fuer Bandenkutur Wien and International Association on Water Quality; 1996; Vienna; pp. 3–7.
  • Curia A, Koppe J, Costa J. Application of pilot-scale-constructed wetland as tertiary treatment system of wastewater for phosphorus and nitrogen removal. Water, Air, Soil Pollut. 2011;218:131–143. doi: 10.1007/s11270-010-0629-0
  • Dong H, Qiang Z, Li T, Jin H, Chen W. Effect of artificial aeration on the performance of vertical-flow constructed wetland treating heavily polluted river water. J Environ Sci. 2012;24:596–601. doi: 10.1016/S1001-0742(11)60804-8
  • Palmer H. MSc Thesis: high rates of ammonia removal in constructed treatment wetland mesocosms using oxygenation [dissertation]. Washington State University; 2008.