561
Views
30
CrossRef citations to date
0
Altmetric
Reviews

Production and harvesting of microalgae biomass from wastewater: a critical review

, , &
Pages 39-56 | Received 11 Jan 2016, Accepted 26 Jun 2016, Published online: 20 Jul 2016

References

  • Chisti Y. Biodiesel from microalgae. Biotechnol Adv. 2007;25:249–306.
  • Munoz R, Guieysse B. Algal-bacterial processes for the treatment of hazardous contaminants: a review. Water Res. 2006;40:2799–2815. doi: 10.1016/j.watres.2006.06.011
  • Rawat I, Kumar RR, Mutanda T, Bux F. Dual role of microalgae: phycoremediation of domestic wastewater and biomass production for sustainable biofuels production. Appl Energy. 2011;88:3411–3424. doi: 10.1016/j.apenergy.2010.11.025
  • Efaq AN, Rahman Nik Norulaini Nik Ab, Nagao H, Al-Gheethi AA, Shahadat Md, Kadir MO Ab. Supercritical carbon dioxide as non-thermal alternative technology for safe handling of clinical wastes. J Environ Process. 2015;2:797–822. doi: 10.1007/s40710-015-0116-0
  • Vandamme D, Eyley S, Van den Mooter G, Muylaert K, Thielemans W. Highly charged cellulose-based nanocrystals as flocculants for harvesting Chlorella vulgaris. Bioresour Technol. 2015;194:270–275. doi: 10.1016/j.biortech.2015.07.039
  • Sena RF, Moreira RF, José HJ. Comparison of coagulants and coagulation aids for treatment of meat processing wastewater by column flotation. Bioresour Technol. 2008;99(17):8221–8225. doi: 10.1016/j.biortech.2008.03.014
  • Caixeta C, Cammarota M, Xavier A. Slaughterhouse house wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. Bioresour Technol. 2002;81:61–69. doi: 10.1016/S0960-8524(01)00070-0
  • Bohdziewicz J, Sroka E, Korus I. Application of ultrafiltration and reverse osmosis to the treatment of the wastewater produced by the meat industry. Polish J Environ Studies. 2003;12(3):269–274.
  • Qazi JI, Nadeem M, Baig SS, Baig S, Syed Q. Anaerobic fixed film biotreatment of dairy wastewater. Middle-East J Sci Res. 2011;8(3):590–593.
  • Tikahara A, Sahu O. Study of characteristics and treatments of dairy industry waste water. J Appl Environ Microbiol. 2014;2(1):16–22.
  • Patil AS, Ahire V, Hussain M. Dairy wastewater: a case study. Int J Res Eng Technol. 2014;3(9):30–34. doi: 10.15623/ijret.2014.0309005
  • Hussain J, Hussain I, Arif M. Characterization of textile wastewater. J Ind Poll Control. 2004;20:137–144.
  • Savin II, Butnaru R. Wastewater characteristics in textile finishing mills. Environ Eng Manage J. 2008;7(6):859–864.
  • Imtiazuddin S, Mumtaz M, Mallick KA. Pollutants of wastewater characteristics in textile industries. J Basic Appl Sci. 2012;8:554–556.
  • Ur Rahman U, Sahar A, Khan MA. Recovery and utilization of effluents from meat processing industries. Food Res Int. 2014;65:322–328. doi: 10.1016/j.foodres.2014.09.026
  • Al-Gheethi AAS, Norli I. Biodegradation of pharmaceutical residues in sewage treated effluents by Bacillus subtilis 1556WTNC. J Environ Process. 2014;1(4):459–481. doi: 10.1007/s40710-014-0034-6
  • Al-Gheethi AAS. Recycling of sewage sludge as production medium for cellulase enzyme by a Bacillus megaterium strain. Int J Rec Org Waste Agri. 2015;4(2):105–119. doi: 10.1007/s40093-015-0090-6
  • Farhadian M, Vachelard C, Duchez D, Larroche C. In situ bioremediation of monoaromatics pollutants in groundwater: a review. Bioresour Technol. 2008;99:5296–5308. doi: 10.1016/j.biortech.2007.10.025
  • Chiu SY, Kao CY, Chen TY, Chang YB, Kuo CM, Lin CS. Cultivation of microalgal Chlorella for biomass and lipid production using wastewater as nutrient resource. Bioresour Technol. 2015;184:179–189. doi: 10.1016/j.biortech.2014.11.080
  • Yaakob Z, Ali E, Mohamad M, Takrif MS. An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res. 2014;21(6):1–10.
  • Arumugam M, Agarwal A, Arya AC, Ahmed Z. Influence of nitrogen sources on biomass productivity of microalgae Scenedesmus bijugatus. Short Communication. Bioresour Technol. 2013;131:246–249. doi: 10.1016/j.biortech.2012.12.159
  • Yaakob Z, Kamarudin KF, Rajkumar R, Takriff MS, Badar SN. The current methods for biomass production of the microalgae from wastewaters: an overview. World App Sci J. 2014;31(10):1744–1758.
  • Cavet J, Borrelly G, Robinson N. Zn, Cu, and Co in cynobacteria; a selective control of metal availability. FEMS Microbial Rev. 2003;27:165–181. doi: 10.1016/S0168-6445(03)00050-0
  • Mehta SK, Gaura JP. Use of algae for removing heavy metal ions from wastewater: progress and prospects. Crit Rev Biotechnol. 2005;25(3):113–152. doi: 10.1080/07388550500248571
  • Smerage GH, Teixeira AA. Dynamics of heat destruction of spores: a new view. J Ind Microbiol. 1993;12(3–5):211–220. doi: 10.1007/BF01584193
  • Rao HP, Kumar R, Raghavan BG, Subramanian VV, Sivasubramanian V. Application of phycoremediation technology in the treatment of wastewater from a leather-processing chemical manufacturing facility. Water SA. 2010;37:7–14.
  • Oswald WJ. Micro-algae and waste-water treatment. In: Borowitzka MA, Borowitzka LJ, editors. Micro-algal biotechnology. Cambridge: Cambridge University Press; 1998. p. 305–328.
  • Adel AS, Lalung J, Efaq AN, Ismail N. Removal of cephalexin antibiotic and heavy metals from pharmaceutical effluents using Bacillus subtilis strain. Expert Opin Environ Biol. 2015;4:2.
  • Gadd GM. Heavy metal accumulation by bacteria and other microorganisms. Experientia. 1990;46(8):834–839. doi: 10.1007/BF01935534
  • Morikawa M. Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species. J Biosci Bioeng. 2006;101(1):1–8. doi: 10.1263/jbb.101.1
  • Al-Gheethi AA, Lalung J, Efaq AN, Bala JD, Norli I. Removal of heavy metals and β-lactam antibiotics from sewage treated effluent by bacteria. Clean Technol Environ Policy. 2015;17(8):2101–2123. doi: 10.1007/s10098-015-0968-z
  • Rengefors K, Karlsson I, Hansson LA. Algal cyst dormancy: a temporal escape from herbivory. Proc R Soc B Biol Sci. 1998;265:1353–1358. doi: 10.1098/rspb.1998.0441
  • Sharma GK, Khan SA. Bioremediation of sewage wastewater using selective algae for manure production. Int J Environ Eng Manage. 2013;4(6):573–580.
  • Kothari R, Prasad R, Kumar V, Singh D. Production of biodiesel from microalgae Chlamydomonas polypyrenoideum grown on dairy industry wastewater. Bioresour Technol. 2013;144:499–503. doi: 10.1016/j.biortech.2013.06.116
  • Solovchenko A, Pogosyan S, Chivkunova O, et al. Phycoremediation of alcohol distillery wastewater with a novel Chlorella sorokiniana strain cultivated in a photobioreactor monitored on-line via chlorophyll fluorescence. Algal Res. 2014;6:234–241. doi: 10.1016/j.algal.2014.01.002
  • Shi J, Podola B, Melkonian M. Application of a prototype-scale Twin-Layer photobioreactor for effective N and P removal from different process stages of municipal wastewater by immobilized microalgae. Bioresour Technol. 2014;154:260–266. doi: 10.1016/j.biortech.2013.11.100
  • Ji F, Liu Y, Hao R, Li G, Zhou Y, Dong R. Biomass production and nutrients removal by a new microalgae strain Desmodesmus sp. in anaerobic digestion wastewater. Bioresour Technol. 2014;161:200–207. doi: 10.1016/j.biortech.2014.03.034
  • Azarpira H, Dhumal K, Pondhe G. Application of phycoremediation technology in the treatment of sewage water to reduce pollution load. Adv Environ Biol. 2014;5(7):2419–2423.
  • Pathak V, Kothari R, Chopra A, Singh D. Experimental and kinetic studies for phycoremediation and dye removal by Chlorella pyrenoidosa from textile wastewater. J Environ Manage. 2015;163:270–277. doi: 10.1016/j.jenvman.2015.08.041
  • Silva NFP, Gonçalves AL, Moreira FC, et al. Towards sustainable microalgal biomass production by phycoremediation of a synthetic wastewater: a kinetic study. Algal Res. 2015;11:350–358. doi: 10.1016/j.algal.2015.07.014
  • Mennaa FZ, Arbib Z, Perales JA. Urban wastewater treatment by seven species of microalgae and an algal bloom: biomass production, N and P removal kinetics and harvestability. Water Res. 2015;83:42–51. doi: 10.1016/j.watres.2015.06.007
  • Batista AP, Ambrosano L, Graça S, et al. Combining urban wastewater treatment with biohydrogen production – an integrated microalgae-based approach. Bioresour Technol. 2015;184:230–235. doi: 10.1016/j.biortech.2014.10.064
  • Caporgno MP, Taleb A, Olkiewicz M, et al. Microalgae cultivation in urban wastewater: nutrient removal and biomass production for biodiesel and methane. Algal Res. 2015;10:232–239. doi: 10.1016/j.algal.2015.05.011
  • Shen OH, Gong YP, Fang WZ, et al. Saline wastewater treatment by Chlorella vulgaris with simultaneous algal lipid accumulation triggered by nitrate deficiency. Bioresour Technol. 2015;193:68–75. doi: 10.1016/j.biortech.2015.06.050
  • Lim P, Ong S, Seng C. Simultaneous adsorption and biodegradation processes in sequencing batch reactor (SBR) for treating copper and cadmium-containing wastewater. Water Res. 2002;36(3):667–675. doi: 10.1016/S0043-1354(01)00257-3
  • Grima EM, Belarbi EH, Fernández FA, Medina AR, Chisti Y. Recovery of microalgal biomass and metabolites: process options and economics. Biotechnol Adv. 2003;20:491–515. doi: 10.1016/S0734-9750(02)00050-2
  • Barros AI, Gonçalves AL, Simões M, Pires JC. Harvesting techniques applied to microalgae: a review. Renew Sustain Energy Rev. 2015;41:1489–1500. doi: 10.1016/j.rser.2014.09.037
  • Ndikubwimana T, Zeng X, Liu Y, Chang JS, Lu Y. Harvesting of microalgae Desmodesmus sp. F51 by bioflocculation with bacterial bioflocculant. Algal Res. 2014;6:186–193. doi: 10.1016/j.algal.2014.09.004
  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F. Bioprospecting for hyper-lipid producing microalgal strains for sustainable biofuel production. Bioresour Technol. 2011;102(1):57–70. doi: 10.1016/j.biortech.2010.06.077
  • Sim TS, Goh A, Becker EW. Comparison of centrifugation, dissolved air flotation and drum filtration techniques for harvesting sewage-grown algae. Biomass. 1988;16:51–62. doi: 10.1016/0144-4565(88)90015-7
  • Heasman M, Diemar J, O’Connor W, Sushames T, Foulkes L. Development of extended shelf-life microalgae concentrate diets harvested by centrifugation for bivalve molluscs – a summary. Aquac Res. 2000;31:637–659. doi: 10.1046/j.1365-2109.2000.00492.x
  • Oliver RL, Ganf GG. Freshwater blooms. In: Whitton BA, Potts M, editors. The ecology of Cyanobacteria. Dordrecht (The Netherlands): Kluwer Academic; 2000. p. 149–194.
  • Christenson L, Sims R. Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol Adv. 2011;29:686–702. doi: 10.1016/j.biotechadv.2011.05.015
  • Pittman J, Dean A, Osundeko O. The potential of sustainable algal biofuel production using wastewater resources. Bioresour Technol. 2011;102:17–25. doi: 10.1016/j.biortech.2010.06.035
  • Brennan L, Owende P. Biofuels from microalgae – a review of technologies for production, processing, and extractions of biofuels and co-products. Renew Sustain Energy Rev. 2010;14:557–577. doi: 10.1016/j.rser.2009.10.009
  • Vandamme D, Foubert I, Muylaert K. Flocculation as a low-cost method for harvesting microalgae for bulk biomass production. Trends Biotechnol. 2013;31(4):233–239. doi: 10.1016/j.tibtech.2012.12.005
  • Tao DG, Salihon J. The optimisation of levels of the variables pH and concentration of ferric chloride for harvesting marine microalgae by flocculation. International Conference on Food Engineering and Biotechnology. IPCBEE; Vol. 9 (2011); 2011; IACSIT Press, Singapore.
  • Pragya N, Pandey KK, Sahoo P. A review on harvesting, oil extraction and biofuels production technologies from microalgae. Renew Sustain Energy Rev. 2013;24:159–171. doi: 10.1016/j.rser.2013.03.034
  • Kim SG, Choi A, Ahn CY, Park CS, Park YH, Oh HM. Harvesting of Spirulina platensis by cellular flotation and growth stage determination. Lett Appl Microbiol. 2005;40:190–194. doi: 10.1111/j.1472-765X.2005.01654.x
  • Chen YM, Liu JC, Ju YH. Flotation removal of algae from water. Colloid Surface B. 1998;12(1):49–55. doi: 10.1016/S0927-7765(98)00059-9
  • Phoochinda W, White DA. Removal of algae using froth flotation. Environ Technol. 2003;24(1):87–96. doi: 10.1080/09593330309385539
  • Liu JC, Chen YM, Ju YH. Separation of algal cells from water by column flotation. Separ Sci Technol. 1999;34(11):2259–2272. doi: 10.1081/SS-100100771
  • Garg S, Li Y, Wang L, Schenk PM. Flotation of marine microalgae: effect of algal hydrophobicity. Bioresour Technol. 2012;121:471–474. doi: 10.1016/j.biortech.2012.06.111
  • Hanotu J, Bandulasena H, Zimmerman W. Microflotation performance for algal separation. Biotechnol Bioeng. 2012;109:1663–1673. doi: 10.1002/bit.24449
  • Kurniawati H, Ismadji S, Liu J. Microalgae harvesting by flotation using natural saponin and chitosan. Bioresour Technol. 2014;166:429–434. doi: 10.1016/j.biortech.2014.05.079
  • Uduman N, Qi Y, Danquah MK, Forde GM, Hoadley A. Dewatering of microalgal cultures: a major bottleneck to algae-based fuels. J Renew Sustain Energy. 2010;2:012701–15. doi: 10.1063/1.3294480
  • David W. Water treatment unit processes: physical and chemical. New York: CRC Press, Taylor and Francis Group; 2006. Chapter 8, Flotation; p. 236–240.
  • Park J, Craggs R, Shilton AN. Wastewater treatment high rate algal ponds for biofuel production. Bioresour Technol. 2011;102:35–42. doi: 10.1016/j.biortech.2010.06.158
  • Harun R, Singh M, Forde G, Danquah M. Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sustain Energy. 2010;14:1037–1047. doi: 10.1016/j.rser.2009.11.004
  • Hadjoudja S, Deluchat V, Baudu M. Cell surface characterisation of Microcystis aeruginosa and Chlorella vulgaris. J Colloid Interface Sci. 2010;342:293–299. doi: 10.1016/j.jcis.2009.10.078
  • Wyatt NB, Gloe LM, Brady PV, et al. Critical conditions for ferric chloride-induced flocculation of freshwater algae. Biotechnol Bioeng. 2012;109:493–501. doi: 10.1002/bit.23319
  • Salim S, Bosma R, Vermue M, Wijiffels R. Harvesting of microalgae by bioflocculation. J Appl Phycol. 2011;23:849–855. doi: 10.1007/s10811-010-9591-x
  • Brostow W, Lobland HEH, Sagar Pal Singh RP. Polymeric flocculants for wastewater and industrial effluent treatment. J Mater Educ. 2009;31:157–166.
  • Prakash NB, Sockan V, Jayakaran P. Wastewater treatment by coagulation and flocculation. Int J Eng Sci Innov Technol. 2014;3(2):479–484.
  • Tripathy T, De BR. Flocculation: a new way to treat the wastewater. J Phy Sci. 2006;10:93–127.
  • Bolto B, Gregory J. Organic polyelectrolytes in water treatment. Water Res. 2007;41:2301–2324. doi: 10.1016/j.watres.2007.03.012
  • Sahu O, Chaudhari P. Review on chemical treatment of industrial waste water. J Appl Sci Environ Manage. 2013;17(2):241–257.
  • Mohtadi MF, Rao PN. Effect of temperature on flocculation of aqueous dispersions. Water Res. 1973;7(5):747–767. doi: 10.1016/0043-1354(73)90091-2
  • Fitzpatrick CS, Fradin E, Gregory J. Temperature effects on flocculation, using different coagulants. Water Sci Technol. 2004;50(12):171–175.
  • Surendhiran D, Vijay M. Study on flocculation efficiency for harvesting Nannochloropsis oculata for biodiesel production. Int J Chem Tech Res. 2013;5(4):1761–1769.
  • Liu J, Zhu Y, Tao Y, et al. Freshwater microalgae harvested via flocculation induced by pH decrease. Biotechnol Biofuels. 2013;6:98. doi: 10.1186/1754-6834-6-98
  • Vandamme D, Foubert I, Meesschaert B, Muylaert K. Flocculation of microalgae using cationic starch. J Appl Phycol. 2010;22:525–530. doi: 10.1007/s10811-009-9488-8
  • Anthony RJ, Ronald SC. Optimization of cationic amino starch synthesis using biogenic amines. Carbohydr Poly. 2013;98:1409–1415. doi: 10.1016/j.carbpol.2013.07.043
  • Cabirol N, Barragan E, Duran A, Noyola A. Effect of aluminium and sulphate on anaerobic digestion of sludge from wastewater enhanced primary treatment. Water Sci Technol. 2003;48:235–240.
  • De Godos I, Guzman HO, Soto R, et al. Coagulation/ flocculation-based removal of algal–bacterial biomass from piggery wastewater treatment. Bioresour Technol. 2011;102(2):923–927. doi: 10.1016/j.biortech.2010.09.036
  • Granados MR, Acién FG, Gómez C, Fernández-Sevilla JM, Grima EM. Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour Technol. 2012;118:102–110. doi: 10.1016/j.biortech.2012.05.018
  • Rashid N, Rehmana SU, Han JI. Rapid harvesting of freshwater microalgae using chitosan. Process Biochem. 2013;48:1107–1110. doi: 10.1016/j.procbio.2013.04.018
  • Vandamme D, Foubert I, Fraeye I, Meesschaert B, Muylaert K. Flocculation of Chlorella vulgaris induced by high pH: role of magnesium and calcium and practical implications. Bioresour Technol. 2012;105:114–119. doi: 10.1016/j.biortech.2011.11.105
  • Wu Z, Zhu Y, Huang W, et al. Evaluation of flocculation induced by pH increase for harvesting microalgae and reuse of flocculated medium. Bioresour Technol. 2012;110:496–502. doi: 10.1016/j.biortech.2012.01.101
  • Gorin KV, Sergeeva YE, Butylin VV, et al. Methods coagulation/flocculation and flocculation with ballast agent for effective harvesting of microalgae. Bioresour Technol. 2015;193:178–184. doi: 10.1016/j.biortech.2015.06.097
  • Salama ES, Kim JR, Ji MK, et al. Application of acid mine drainage for coagulation/flocculation of microalgal biomass. Bioresour Technol. 2015;186:232–237. doi: 10.1016/j.biortech.2015.03.078
  • Hamid ASH, Lananan F, Din WNS, Su SL. Harvesting microalgae, Chlorella sp. by bio-flocculation of Moringa oleifera seed derivatives from aquaculture wastewater phytoremediation. Int Biodeterior Biodegrad. 2014;95:270–275. doi: 10.1016/j.ibiod.2014.06.021
  • Guo SL, Zhao XQ, Wan C, et al. Characterization of flocculating agent from the self-flocculating microalga Scenedesmus obliquus AS-6-1 for efficient biomass harvest. Bioresour Technol. 2012;145:285–289. doi: 10.1016/j.biortech.2013.01.120
  • Wan C, Zhao XQ, Guo SL, Alam MA, Bai FW. Bioflocculant production from Solibacillus silvestries WO1 and its application in cost effective harvest of marine microalgae Nannochloris oceanica by flocculation. Bioresour Technol. 2013;135:207–212. doi: 10.1016/j.biortech.2012.10.004
  • Lee A, Lewis D, Ashman P. Energy requirements and economic analysis of full scale microbial flocculation system for microalgae harvesting. Chem Engineer Res Des. 2010;88:988–996. doi: 10.1016/j.cherd.2010.01.036
  • Zheng H, Gao Z, Yin J, Tang X, Ji X, Huang H. Harvesting of microalgae by flocculation with poly (γ-glutamic acid). Bioresour Technol. 2012;112:212–220. doi: 10.1016/j.biortech.2012.02.086
  • Prochazkova G, Kastanek P, Branyik T. Harvesting freshwater Chlorella vulgaris with flocculant derived from spent brewer’s yeast. Bioresour Technol. 2015;177:28–33. doi: 10.1016/j.biortech.2014.11.056
  • Vijayaraghavan G, Sivakumar T, Kumar AV. Application of plant based coagulants for waste water treatment. Int J Adv Eng Res Stud. 2011;1(1):88–92.
  • Vieira AMS, Vieira MF, Silva GF, Aroujo AA. Use of Moringa oleifera seed as a natural adsorbent for wastewater treatment. Water Air Soil Poll. 2010;206:273–281. doi: 10.1007/s11270-009-0104-y
  • Sotheeswaran S, Matakite M, Kanayathu K. Moringa oleifera and other local seeds in water purification in developing countries. Res J Chem Environ. 2011;15(2):135–138.
  • Teixeira CML, Kirsten FV, Teixeira PCN. Evaluation of Moringa oleifera seed flour as a flocculating agent for potential biodiesel producer microalgae. J Appl Phycol. 2012;24(3):557–563. doi: 10.1007/s10811-011-9773-1
  • Farid MS, Shariati A, Badakhshan A, Anvaripour B. Using nano-chitosan for harvesting microalga Nannochloropsis sp. Bioresour Technol. 2013;131:555–559. doi: 10.1016/j.biortech.2013.01.058
  • Letelier-Gordo CO, Holdt SL, De Francisci D, Karakashev DB, Angelidaki I. Effective harvesting of the microalgae Chlorella protothecoides via bioflocculation with cationic starch. Bioresour Technol. 2014;167:214–218. doi: 10.1016/j.biortech.2014.06.014
  • Gutiérrez R, Ferrer I, García J, Uggetti E. Influence of starch on microalgal biomass recovery, settleability and biogas production. Bioresour Technol. 2015;185:341–345. doi: 10.1016/j.biortech.2015.03.003
  • Banerjee C, Ghosh S, Sen G, Mishra S, Shukla P, Bandopadhyay R. Study of algal biomass harvesting using cationic guar gum from the natural plant source as flocculant. Carbohydrate Poly. 2013;92(1):675–681. doi: 10.1016/j.carbpol.2012.09.022
  • Gutiérrez R, Passos F, Ferrer I, Uggetti E, García J. Harvesting microalgae from wastewater treatment systems with natural flocculants: effect on biomass settling and biogas production. Algal Res. 2015;9:204–211. doi: 10.1016/j.algal.2015.03.010
  • Ahmad A, Yasin N, Derek C, Lim J. Microalgae as sustainable energy source for biodiesel production: a review. Renew Sustain Energy Rev. 2011;15:584–593. doi: 10.1016/j.rser.2010.09.018
  • Liu K, Qiao H, Lin A, Wang G. Immobilization of Chlorella sorokiniana GXNN 01 in alginate for removal of N and P from synthetic wastewater. Bioresour Technol. 2012;114:26–32. doi: 10.1016/j.biortech.2012.02.003
  • Liu Y, Rafailovich MH, Malal R, Cohn D, Chidambaram D. Engineering of bio-hybrid materials by electrospinning polymer-microbe fibers. Proc Nat Acad Sci USA. 2009;106(34):14201–14206. doi: 10.1073/pnas.0903238106
  • Lam M, Lee K. Microalgae biofuels: a critical review of issues, problems and the way forward. Biotechnol Adv. 2012;30:673–690. doi: 10.1016/j.biotechadv.2011.11.008
  • Zhang J, Hu B. A novel method to harvest microalgae via co-culture of filamentous fungi to form cell pellets. Bioresour Technol. 2012;114:529–535. doi: 10.1016/j.biortech.2012.03.054
  • Richmond A, Hu Q. Downstream processing of cell mass and products. In: Richmond A, Hu Q, editors. Handbook of microalgal culture: applied technology and biotechnology. 2nd ed. oxford: Wiley-Blackwell; 2013.
  • Matos C, Santos M, Nobre B, Gouveia L. Nannochloropsis sp. biomass recovery by electro-coagulation for biodiesel and pigment production. Bioresour Technol. 2013;134:219–226. doi: 10.1016/j.biortech.2013.02.034
  • Uduman N, Bourniquel V, Danquah M, Hoadley A. A parametric study of electrocoagulation as a recovery process of marine microalgae for biodiesel production. Chem Eng J. 2011;174:249–257. doi: 10.1016/j.cej.2011.09.012
  • Hu YR, Guo C, Xu L, et al. A magnetic separator for efficient microalgae harvesting. Bioresour Technol. 2014;158:388–391. doi: 10.1016/j.biortech.2014.02.120
  • Liu D, Li F, Zhang B. Removal of algal blooms in freshwater using magnetic polymer. Water Sci Technol. 2009;59(6):1085–1091. doi: 10.2166/wst.2009.046
  • Xu L, Chen G, Feng W. A simple and rapid harvesting method for microalgae by in-situ magnetic separation. Bioresour Technol. 2011;102:10047–10051. doi: 10.1016/j.biortech.2011.08.021
  • Yang L, Chen G, Shu C. pH-sensitive magnetic ion exchanger for protein separation. Ind Eng Chem Res. 2009;48(2):944–950. doi: 10.1021/ie800969q
  • Bosma R, Spronsen WA, Tramper J, Wijffels RH. Ultrasound, a new separation technique to harvest microalgae. J Appl Phycol. 2003;15:143–153. doi: 10.1023/A:1023807011027
  • Vinayak V, Manoylow M, Gateau-Helena K. Diatom milking: a review and new approaches. Marine Drugs. 2015;13:2629–2665. doi: 10.3390/md13052629
  • Zhang F, Cheng LF, Xu XH. Application of membrane dispersion for enhanced lipid milking from Botryococcus braunii FACHB 357. J Biotechnol. 2013;165:22–29. doi: 10.1016/j.jbiotec.2013.02.010
  • Hejazi M, Wijeffels R, Holwerda E. Milking microalga Dunaliella salina for β-carotene production in two-phase bioreactors. Biotechnol Bioeng. 2004;85:475–481. doi: 10.1002/bit.10914
  • Kleinegris DM, van Es MA, Janssen M, Brandenburg WA, Wijffels RH. Phase toxicity of dodecane on the microalga Dunaliella salina. J Appl Phycol. 2011;3(6):949–958. doi: 10.1007/s10811-010-9615-6
  • Williams P, Laurens L. Microalgae as biodiesel and biomass feedstocks: review and analysis of the biochemistry, energetics and economics. Energy Environ Sci. 2010;3(5):554–590. doi: 10.1039/b924978h
  • Arora R. Microbial technology: energy and environment. In: Arora R, editor. Microbial technology: energy and environment. New Delhi: Cabi; 2012. p. 1–15.
  • Munir NE, Sharif NA, Shagufta N, Saleem FA, Manzoor FA. Harvesting and processing of microalgae biomass fractions for biodiesel production (a review). Sci Technol Dev. 2013;32(3):235–243.
  • Guldhe A, Singh B, Rawat I, Ramluckan K, Bux F. Efficacy of drying and cell disruption techniques on lipid recovery from microalgae for biodiesel production. Fuel J. 2014;128:46–52. doi: 10.1016/j.fuel.2014.02.059
  • Balasubramanian R, Yen Doan T, Obbard J. Factors affecting cellular lipid extraction from marine microalgae. Chem Eng J. 2013;215:926–936.
  • Kumar KS, Dahms HU, Won EJ, Lee JS, Shin KH. Microalgae – a promising tool for heavy metal remediation. Ecotox Environ Safe. 2015;113:329–352. doi: 10.1016/j.ecoenv.2014.12.019
  • Kang HK, Salim HM, Akter N, et al. Effect of various forms of dietary Chlorella supplementation on growth performance, immune characteristics, and intestinal microflora population of broiler chickens. J Appl Poultry Res. 2013;22(1):100–108. doi: 10.3382/japr.2012-00622
  • Spolaore P, Joannis-Cassan C, Duran E, Isambert A. Commercial applications of microalgae. J Biosci Bioeng. 2006;101(2):87–96. doi: 10.1263/jbb.101.87
  • Priyadarshani I, Rath B. Commercial and industrial applications of micro algae – a review. J Algal Biomass Utln. 2012;3(4):89–100.
  • Al-Gheethi AA, Radin Maya Saphira RM, Efaq AN, Amir HK. Reduction of microbial risk associated with greywater utilized for irrigation. Water and health J. 2016;14(3):379–398. doi: 10.2166/wh.2015.220
  • Singh NK, Dhar DW. Microalgae as second generation biofuel. A review. Agro Sustain Dev. 2011;31:605–629. doi:10.1007/s13593-011-0018-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.