647
Views
67
CrossRef citations to date
0
Altmetric
Reviews

Rhizobacteria and phytoremediation of heavy metals

, , , , , , , , & show all
Pages 112-119 | Received 29 Jun 2016, Accepted 06 Nov 2016, Published online: 22 Nov 2016

References

  • Khan MS, Zaidi A, Wani PA, et al. Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett. 2009;7:1–19. doi: 10.1007/s10311-008-0155-0
  • Kabata-Pendias A, Galczynska B, Dudka S. Baseline zinc content of soils and plants in Poland. Environ Geochem Health. 1989;11:19–24. doi: 10.1007/BF01772068
  • Chaney R, Li Y, Brown S, et al. Improving metal hyperaccumulator wild plants to develop commercial phytoextraction systems: approaches and progress . In: Terry N, Gary S, Banuelos, editors. Phytoremediation of contaminated soil and water London: CRC Press, Taylor & Francis Group; 2000. p. 129–158.
  • Lasat MM. Phytoextraction of toxic metals. J Environ Qual. 2002;31:109–120. doi: 10.2134/jeq2002.1090
  • Naees M, Ali Q, Shahbaz M, et al. Role of rhizobacteria in phytoremediation of heavy metals: an overview. Int Res J Plant Sci. 2011;2:220–232.
  • Zameer M, Tabassum B, Ali Q, et al. Role of PGPR to improve potential growth of tomato under saline condition: an overview. Life Sci J. 2015;12:54–62.
  • Quartacci M, Argilla A, Baker A, et al. Phytoextraction of metals from a multiply contaminated soil by Indian mustard. Chemosphere. 2006;63:918–925. doi: 10.1016/j.chemosphere.2005.09.051
  • Garbisu C, Allica J, Barrutia O, et al. Phytoremediation: a technology using green plants to remove contaminants from polluted areas. Rev Environ Health. 2002;17:173–188. doi: 10.1515/REVEH.2002.17.3.173
  • Zhuang X, Chen J, Shim H, et al. New advances in plant growth-promoting rhizobacteria for bioremediation. Environ Int. 2007;33:406–413. doi: 10.1016/j.envint.2006.12.005
  • Jing Y, He Z, Yang X. Effects of pH, organic acids, and competitive cations on mercury desorption in soils. Chemosphere. 2007;69:1662–1669. doi: 10.1016/j.chemosphere.2007.05.033
  • Amin A, Latif Z. Phytotoxicity of Hg and its detoxification through microorganisms in soil. Adv Life Sci. 2015;2:98–105.
  • Giller KE, Witter E, McGrath SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem. 1998;30:1389–1414. doi: 10.1016/S0038-0717(97)00270-8
  • Mengoni A, Barzanti R, Gonnelli C, et al. Characterization of nickel-resistant bacteria isolated from serpentine soil. Environ Microbiol. 2001;3:691–698. doi: 10.1046/j.1462-2920.2001.00243.x
  • Delorme T, Gagliardi J, Angle J, et al. Influence of the zinc hyperaccumulator Thlaspi caerulescens J. & C. Presl. and the nonmetal accumulator Trifolium pratense L. on soil microbial populations. Can J Microbiol. 2001;47:773–776. doi: 10.1139/cjm-47-8-773
  • Abou-Shanab RA, Angle JS, Delorme TA, et al. Rhizobacterial effects on nickel extraction from soil and uptake by Alyssum murale. New Phytol. 2003;158:219–224. doi: 10.1046/j.1469-8137.2003.00721.x
  • Whiting SN, de Souza MP, Terry N. Rhizosphere bacteria mobilize Zn for hyperaccumulation by Thlaspi caerulescens. Environ Sci Technol. 2001;35:3144–3150. doi: 10.1021/es001938v
  • Zhu Y, Zayed A, Qian J, et al. Phytoaccumulation of trace elements by wetland plants: II. Water hyacinth. J Environ Qual. 1999;28:339–344. doi: 10.2134/jeq1999.00472425002800010042x
  • Glick BR. The enhancement of plant growth by free-living bacteria. Can J Microbiol. 1995;41:109–117. doi: 10.1139/m95-015
  • Elsgaard L, Petersen SO, Debosz K. Effects and risk assessment of linear alkylbenzene sulfonates in agricultural soil. 1. Short-term effects on soil microbiology. Environ Toxicol Chem. 2001;20:1656–1663. doi: 10.1002/etc.5620200806
  • Filip Z. International approach to assessing soil quality by ecologically related biological parameters. Agricul Ecosys Environ. 2002;88:169–174. doi: 10.1016/S0167-8809(01)00254-7
  • He Z-L, Yang X-E. Role of soil rhizobacteria in phytoremediation of heavy metal contaminated soils. J Zhejiang Uni Sci B. 2007;8:192–207.
  • Zameer M, Mahmood S, Mushtaq Z, et al. Detection of bacterial load in drinking water samples by 16s rRNA ribotyping and RAPD analysis. Adv Life Sci. 2015;2:135–141.
  • Hansda A, Kumar V, Anshumali A, et al. Phytoremediation of heavy metals contaminated soil using plant growth promoting rhizobacteria (PGPR): a current perspective. Recent Res Sci Technol. 2014;6:1–13.
  • Welbaum GE, Sturz AV, Dong Z, et al. Managing soil microorganisms to improve productivity of agro-ecosystems. Critical Rev Plant Sci. 2004;23:175–193. doi: 10.1080/07352680490433295
  • Belimov A, Kunakova A, Gruzdeva E. Influence of soil pH on the interaction of associative bacteria with barley. Microbiol. 1998;67:463–469.
  • Imsande J. Iron, sulfur, and chlorophyll deficiencies: a need for an integrative approach in plant physiology. Physiol Plantarum. 1998;103:139–144. doi: 10.1034/j.1399-3054.1998.1030117.x
  • Glick BR, Penrose DM, Li J. A model for the lowering of plant ethylene concentrations by plant growth-promoting bacteria. J Theo Biol. 1998;190:63–68. doi: 10.1006/jtbi.1997.0532
  • Kloepper JW, Lifshitz R, Zablotowicz RM. Free-living bacterial inocula for enhancing crop productivity. Trends Biotechnol. 1989;7:39–44. doi: 10.1016/0167-7799(89)90057-7
  • Glick BR, Karaturovíc DM, Newell PC. A novel procedure for rapid isolation of plant growth promoting pseudomonads. Can J Microbiol. 1995;41:533–536. doi: 10.1139/m95-070
  • Glick BR, Patten CL, Holguin G, et al. Biochemical and genetic mechanisms used by plant growth promoting bacteria. World Sci. 1999;1:276.
  • Patten CL, Glick BR. Bacterial biosynthesis of indole-3-acetic acid. Can J Microbiol. 1996;42:207–220. doi: 10.1139/m96-032
  • Kanazawa K, Higuchi K, Nishizawa N-K, et al. Nicotianamine aminotransferase activities are correlated to the phytosiderophore secretions under Fe-deficient conditions in Gramineae. J Exp Bot. 1994;45:1903–1906. doi: 10.1093/jxb/45.12.1903
  • Wallace A, Wallace G, Cha J. Some modifications in trace metal toxicities and deficiencies in plants resulting from interactions with other elements and chelating agents – the special case of iron. J Plant Nutri. 1992;15:1589–1598. doi: 10.1080/01904169209364424
  • Bar-Ness E, Chen Y, Hadar Y, et al. Siderophores of Pseudomonas putida as an iron source for dicot and monocot plants. Plant Soil. 1991;130:231–241. doi: 10.1007/BF00011878
  • Loper JE, Henkels MD. Utilization of heterologous siderophores enhances levels of iron available to Pseudomonas putida in the rhizosphere. Appl Environ Microbiol. 1999;65:5357–5363.
  • Hall JA, Peirson D, Ghosh S, et al. Root elongation in various agronomic crops by the plant growth promoting rhizobacterium Pseudomonas putida GR12-2. Isr J Plant Sci. 1996;44:37–42. doi: 10.1080/07929978.1996.10676631
  • Penrose DM, Glick BR. Levels of ACC and related compounds in exudate and extracts of canola seeds treated with ACC deaminase-containing plant growth-promoting bacteria. Can J Microbiol. 2001;47:368–372. doi: 10.1139/w01-014
  • Khan MU, Hayat MQ. Phytochemical analyses for antibacterial activity and therapeutic compounds of Convolvulus arvensis L., collected from the salt range of Pakistan. Adv Life Sci. 2015;2:83–90.
  • Dar A, Saleem F, Ahmad M, et al. Characterization and efficiency assessment of PGPR for enhancement of rice (Oryza sativa L.) yield. Adv Life Sci. 2014;2:38–45.
  • Tariq M, Ali Q, Khan A, et al. Yield potential study of Capsicum annuum L. under the application of PGPR. Adv Life Sci. 2014;1:202–207.
  • Huang Y, Tao S. The role of arbuscular mycorrhiza on change of heavy metal speciation in rhizosphere of maize in wastewater irrigated agriculture soil. J Environ Sci. 2005;17:276–280.
  • Blake RC, Choate DM, Bardhan S, et al. Chemical transformation of toxic metals by a Pseudomonas strain from a toxic waste site. Environ Toxicol Chem. 1993;12:1365–1376. doi: 10.1002/etc.5620120806
  • Pierson III LS, Thomashow LS. Cloning and heterologous expression of the phenazine biosynthetic locus from Pseudomonas aureofaciens 30–84. Mol Plant-Microbe Interact. 1992;5:330–339. doi: 10.1094/MPMI-5-330
  • Lemanceau P, Bakker P, De Kogel WJ, et al. Effect of pseudobactin 358 production by Pseudomonas putida WCS358 on suppression of Fusarium wilt of carnations by nonpathogenic Fusarium oxysporum Fo47. Appl Environ Microbiol. 1992;58:2978–2982.
  • Shan MA, Tahira F, Shafique M, et al. Estimation of different biochemical intensities in drinking water from eastern region of Lahore city. Adv Life Sci. 2015;2:131–134.
  • Khan JA, Afroz S, Arshad HMI, et al. Biochemical basis of resistance in rice against bacterial leaf blight disease caused by Xanthomonas oryzae pv. oryzae. Adv Life Sci. 2014;1:181–190.
  • Hussain T. Pakistan at the verge of potential epidemics by multi-drug resistant pathogenic bacteria. Adv Life Sci. 2015;2:46–47.
  • Velazhahan R, Samiyappan R, Vidhyasekaran P. Relationship between antagonistic activities of Pseudomonas fluorescens isolates against Rhizoctonia solarii and their production of lytic enzymes [Beziehungen zwischen antagonistischer Aktivität von Pseudomonas fluorescens-isolaten gegen Rhizoctonia sotaní und ihrer Produktion lytischer enzyme]. Zeitschrift für Pflanzenkrankheiten und Pflanzenschutz [J Plant Dis Prot.]. 1999;106:244–250.
  • Leggett JE, Epstein E. Kinetics of sulfate absorption by barley roots. Plant Physiol. 1956;31:222. doi: 10.1104/pp.31.3.222
  • Ahemad M, Kibret M. Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Uni-Sci. 2014;26:1–20. doi: 10.1016/j.jksus.2013.05.001
  • Braud A, Jézéquel K, Vieille E, et al. Changes in extractability of Cr and Pb in a polycontaminated soil after bioaugmentation with microbial producers of biosurfactants, organic acids and siderophores. Water, Air, Soil Pollut: Focus. 2006;6:261–279. doi: 10.1007/s11267-005-9022-1
  • Fischerová Z, Tlustoš P, Száková JP, et al. A comparison of phytoremediation capability of selected plant species for given trace elements. Environ Pollut. 2006;144:93–100. doi: 10.1016/j.envpol.2006.01.005
  • Lena Q, Rao G. Heavy metals in the environment. J Environ Qual. 1997;26:264.
  • Hutchinson TC, Symington MS. Persistence of metal stress in a forested ecosystem near Sudbury, 66 years after closure of the O’Donnell roast bed. J Geochem Explor. 1997;58:323–330. doi: 10.1016/S0375-6742(96)00067-2
  • Nies DH. Microbial heavy metal resistance. Appl Microbiol Biotechnol. 1999;51:730–750. doi: 10.1007/s002530051457
  • Rajkumar M, Freitas H. Effects of inoculation of plant-growth promoting bacteria on Ni uptake by Indian mustard. Bioresour Technol. 2008;99:3491–3498. doi: 10.1016/j.biortech.2007.07.046
  • Haferburg G, Kothe E. Microbes and metals: interactions in the environment. J Basic Microbiol. 2007;47:453–467. doi: 10.1002/jobm.200700275
  • Roane TM, Pepper IL. Microorganisms and metal pollution. In: Maier RM, Pepper IL, Gerba CB, editors. Environmental microbiology. London: Academic Press; 2000; p. 55.
  • Ranjard L, Nazaret S, Cournoyer B. Freshwater bacteria can methylate selenium through the thiopurine methyltransferase pathway. Appl Environ Microbiol. 2003;69:3784–3790. doi: 10.1128/AEM.69.7.3784-3790.2003
  • Lovley DR, Holmes, DE, Nevin, KP. Dissimilatory Fe (iii) and Mn (iv) reduction. Adv Microb Physiol. 2004;49:219–286. doi: 10.1016/S0065-2911(04)49005-5
  • Carrillo-Castañeda G, Juárez Muñoz J, Ramón Peralta-Videa J, et al. Plant growth-promoting bacteria promote copper and iron translocation from root to shoot in alfalfa seedlings. J Plant Nutri. 2002;26:1801–1814. doi: 10.1081/PLN-120023284
  • Dimkpa C, Svatoš A, Merten D, et al. Hydroxamate siderophores produced by Streptomyces acidiscabies E13 bind nickel and promote growth in cowpea (Vigna unguiculata L.) under nickel stress. Can J Microbiol. 2008;54:163–172. doi: 10.1139/W07-130
  • Burd GI, Dixon DG, Glick BR. Plant growth-promoting bacteria that decrease heavy metal toxicity in plants. Can J Microbiol. 2000;46:237–245. doi: 10.1139/w99-143
  • Ma Y, Rajkumar M, Freitas H. Isolation and characterization of Ni mobilizing PGPB from serpentine soils and their potential in promoting plant growth and Ni accumulation by Brassica spp. Chemosphere. 2009;75:719–725. doi: 10.1016/j.chemosphere.2009.01.056

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.