3,792
Views
77
CrossRef citations to date
0
Altmetric
Articles

Slow sand filtration for water and wastewater treatment – a review

, &
Pages 47-58 | Received 07 Sep 2016, Accepted 26 Dec 2016, Published online: 24 Jan 2017

References

  • Visscher JT, Paramasivam R, Raman A. Slow sand filtration for community water supply: planning, design, construction, operation and maintenance. The Hague: International Reference Centre for Community Water Supply (IRC); 1987.
  • Truesdale GA, Birkbeck AE, Shaw D. A critical examination of some methods for further treatment of effluents from percolating filters. J Inst Sewage Purification. 1964;63:81–101.
  • WHO. Guidelines for drinking water quality. 4th ed. Geneva: Switzerland; 2011.
  • Amy G, Carlson K, Collins RM, et al. Integrated comparison of biofiltration in engineered versus natural systems. In: R Gimbel, JD Graham, MR Collins, editor. Mülheim: IWA; 2006. p. 3–11.
  • A toolkit for monitoring and evaluating household water treatment and safe storage programs. Geneva: WHO Press; 2012.
  • Clasen T. Scaling up household water treatment among low-income populations. Geneva: WHO Press; 2009.
  • Asano T, Burton F, Leverenz H, et al. Water reuse: issues, technologies, and applications. New York (NY): McGraw-Hill; 2007.
  • Ellis KV. Slow sand filtration as technique for the tertiary treatment of municipal sewages. Water Res. 1987;21:403–410. doi: 10.1016/0043-1354(87)90187-4
  • Andreakis AD, Christoular DB. On site filtration and subsurface disposal of domestic sewage. Environ Technol Lett. 1982;3:69–74.
  • Tyagi VK, Khan AA, Kazmi AA, et al. Slow sand filtration of UASB reactor effluent: a promising post treatment technique. Desalination. 2009;249:571–576. doi: 10.1016/j.desal.2008.12.049
  • Huisman L, Wood WE. Slow sand filtration. Geneva: World Health Organisation; 1974.
  • Keraita B, Drechsel P, Konradsen F, et al. Potential of simple filters to improve microbial quality of irrigation water used in urban vegetable farming in Ghana. J Environ Sci Heal A. 2008;43:749–755. doi: 10.1080/10934520801959948
  • Heller L, Vieira MBCM, AlvesBrito LL, et al. Desempenho da filtraçãolentaemareiasubmetida a cargas de pico de oocistos de cryptosporidium SP, bactérias e sólidos: umaavaliaçãoeminstalaçãopiloto [Performance of slow sand filtration submitted to peak loads of Cryptosporidium sp oocysts, bacteria and solid: an evaluation in pilot scale] Engenharia Sanitaria e Ambiental; 2006. Portuguese.
  • Neto RFM, Calijuri ML, de Csastro Carvalho I, et al. Rainwater treatment in airports using slow sand filtration followed by chlorination: efficiency and costs. Resour Conserv Rec. 2012;65:124–129. doi: 10.1016/j.resconrec.2012.06.001
  • Bahgat M, Dewedar A, Zayed A. Sand filters used for wastewater treatment: buildup and distribution of microorganisms. Water Res. 1999;33:1949–1955. doi: 10.1016/S0043-1354(98)00290-5
  • Ellis KV, Wood WE. Slow sand filtration. Crit Rev Env Sci. 1985;15:315–354. doi: 10.1080/10643388509381736
  • Fogel D, Isaac-Renton J, Guasparini R, et al. Removing Giardia and Cryptosporidium by slow sand filtration. J Am Water Works Assoc. 1993;85:77–84.
  • Haarhoff J, Cleasby JL. Biological and physical mechanisms in slow sand filtration. Slow sand filtration. New York (NY): American Society of Civil Engineers; 1991.
  • Keijola AM, Himberg K, Esala AL, et al. Removal of cyanobacterial toxins in water treatment processes: laboratory and pilot-scale experiments. Toxic Assess. 1988;3:643–656. doi: 10.1002/tox.2540030516
  • Bourne DG, Blakeley RL, Riddles P, et al. Biodegradation of the cyanobacterial toxin microcystin LR in natural water and biologically active slow sand filters. Water Res. 2006;40:1294–1302. doi: 10.1016/j.watres.2006.01.022
  • Nakhla G, Farooq S. Simultaneous nitrification–denitrification in slow sand filters. J Haz Mat. 2003;96:291–303. doi: 10.1016/S0304-3894(02)00219-4
  • Li Z, Hassan AA, Sahle-Demessie E, et al. Transport of nanoparticles with dispersant through biofilm coated drinking water sand filters. Water Res. 2013;47:6457–6466. doi: 10.1016/j.watres.2013.08.026
  • Elbana M, de Cartagena FR, Puig-Bargués J. Effectiveness of sand media filters for removing turbidity and recovering dissolved oxygen from a reclaimed effluent used for micro-irrigation. Agric Water Manage. 2012;111:27–33. doi: 10.1016/j.agwat.2012.04.010
  • Haig SJ, Quince C, Davies RL, et al. Replicating the microbial community and water quality performance of full-scale slow sand filters in laboratory-scale filters. Water Res. 2014;61:141–151. doi: 10.1016/j.watres.2014.05.008
  • Gaur RS, Cai L, Tuovinen OH, et al. Pretreatment of Turkey fat-containing wastewater in coarse sand and gravel/coarse sand bioreactors. Bioresour Technol. 2010;101:1106–1110. doi: 10.1016/j.biortech.2009.08.078
  • Ellis KV, Aydin ME. Penetration of solids and biological activity into slow sand filters. Water Res. 1995;29:1333–1341. doi: 10.1016/0043-1354(94)00229-Z
  • Elliott MA, DiGiano FA, Sobsey MD. Virus attenuation by microbial mechanisms during the idle time of a household slow sand filter. Water Res. 2011;45:4092–4102. doi: 10.1016/j.watres.2011.05.008
  • Cha Z, Lin CF, Cheng CJ, et al. Removal of oil and oil sheen from produced water by pressure-assisted ozonation and sand filtration. Chemosphere. 2010;78:583–590. doi: 10.1016/j.chemosphere.2009.10.051
  • Zheng X, Ernst M, Jekel M. Pilot-scale investigation on the removal of organic foulants in secondary effluent by slow sand filtration prior to ultrafiltration. Water Res. 2010;44:3203–3213. doi: 10.1016/j.watres.2010.02.038
  • Ahammed MM, Davra K. Performance evaluation of biosand filter modified with iron oxide-coated sand for household treatment of drinking water. Desalination. 2011;276:287–293. doi: 10.1016/j.desal.2011.03.065
  • Slavik I, Alexander J, Wolfgang U. Impact of backwashing procedures on deep bed filtration productivity in drinking water treatment. Water Res. 2013;47:6348–6357. doi: 10.1016/j.watres.2013.08.009
  • Katukiza AY, Ronteltap M, Niwagaba CB, et al. Grey water treatment in urban slums by a filtration system: optimisation of the filtration medium. J Environ Manage. 2014;146:131–141. doi: 10.1016/j.jenvman.2014.07.033
  • Young-Rojanschi C, Madramootoo C. Intermittent versus continuous operation of biosand filters. Water Res. 2014;49:1–10. doi: 10.1016/j.watres.2013.11.011
  • Casas ME, Bester K. Can those organic micro-pollutants that are recalcitrant in activated sludge treatment be removed from wastewater by biofilm reactors (slow sand filters)? J Sci Total Environ. 2015;506-507:315–322. doi: 10.1016/j.scitotenv.2014.10.113
  • Corral AF, Yenal U, Strickle R, et al. Comparison of slow sand filtration and microfiltration as pretreatments for inland desalination via reverse osmosis. Desalination. 2014;334:1–9. doi: 10.1016/j.desal.2013.11.034
  • Gilbert RG, Nakayama FS, Bucks DA, et al. Trickle irrigation: predominant bacteria in treated Colorado river water and biologically clogged emitters. Irrigation Sci. 1982;3:123–132. doi: 10.1007/BF00264855
  • Burt CM, Styles SW. Drip and micro irrigation design and management. San Luis Obispo (CA): Irrigation Training and Research Center (ITRC), California Polytechnic State University; 2007.
  • Darby J, Tchobanoglous G, Nor MA, et al. Shallow intermittent sand filtration: performance evaluation. Small Flows J. 1996;2:3–15.
  • Ives KJ. Deep bed filtration: theory and practice. FiltrSeparat. 1980;17:157–166.
  • Water Treatment: Principles and practices of water supply operations. 3rd ed. Denver: American Water Works Association.
  • Tebbutt THY. An investigation into tertiary treatment by rapid filtration. Water Res. 1971;5:81–92. doi: 10.1016/0043-1354(71)90123-0
  • Pitts DJ, Haman DZ, Smajstrla AG. Causes and prevention of emitter plugging in microirrigation system. Gainesville (FL): Bulletin 258, Florida Cooperative Extension Service, Institute of Food and Agriculture Science, University of Florida; 1990.
  • Langenbach K, Kusck P, Horn H, et al. Modeling of slow sand filtration for disinfection of secondary clarifier effluent. Water Res. 2010;44:159–166. doi: 10.1016/j.watres.2009.09.019
  • Eighmy TT, Spanos SK, Royce J, et al. Microbial activity in slow sand filters. In: Collins MR, Graham ND, editors. Denver: AWWA; 1994. p. 218–240.
  • Duncan A. The ecology of slow sand filters. In: Graham NJD, editor. Chichester: Ellis Horwood; 1988. p. 163–180.
  • Elliott MA, Stauber CE, Koksal F, et al. Reductions of E. coli, echovirus type 12 and bacteriophages in an intermittently operated household-scale slow sand filter. Water Res. 2008;42:2662–2670. doi: 10.1016/j.watres.2008.01.016
  • Adin A. Slow granular filtration for water reuse. Water Sci Tech W Sup. 2003;3:123–130.
  • Bellamy DW, Silverman PG, Hendricks WD, et al. Removing Giardia cysts with slow sand filtration. J Am Water Works Assoc. 1985;77:52–60.
  • Hendricks DW. Giardia cyst removal by slow sand. International Slow Sand Filtration Workshop; 1991 Oct 27–30; Durham, USA.
  • Aslan S, Cakici H. Biological denitrification of drinking water in a slow sand filter. J Haz Mat. 2007;148:253–258. doi: 10.1016/j.jhazmat.2007.02.012
  • Hendricks DW, Bellamy WD. Microorganism removals by slow sand filtration. In: Longdon GS, editor. New York (NY): American Society of Civil Engineers; 1991. p. 101–121.
  • Hijnen WAM, Schijven JF, Bonné P, et al. Elimination of viruses, bacteria and protozoan oocysts by slow sand filtration. Water Sci Technol. 2004;50:147–154.
  • Dullemont YJ, Schijven JF, Hijnen WAM, et al. Removal of microorganisms by slow sand filtration. In: Gimbel R, Graham NJD, Collins MR, editors. Recent progress in slow sand and alternative biofiltration processes. London: IWA; 2006.
  • Unger M, Collins MR. Assessing Escherichia coli removal in the schmutzdecke of slow-rate biofilters. J Am Water Works Assoc. 2008;100:60–73.
  • Campos LC, Su MFJ, Graham NJD, et al. Biomass development in slow sand filters. Water Res. 2002;36:4543–4551. doi: 10.1016/S0043-1354(02)00167-7
  • Wotton RS, Chaloner DT, Armitage PD. The colonisation, role in filtration and potential nuisance value of midges in slow sand filter beds. In: Graham N, Collins R, editor. London: Wiley; 1996. p. 149–159.
  • Hijosa-Valsero M, Matamoros V, Sidrach-Cardona R, et al. Influence of design, physico-chemical and environmental parameters on pharmaceuticals and fragrances removal by constructed wetlands. Water Sci Technol. 2011;63:2527–2534. doi: 10.2166/wst.2011.500
  • Matamoros V, Arias C, Brix H, et al. Preliminary screening of small-scale domestic wastewater treatment systems for removal of pharmaceutical and personal care products. Water Res. 2009;43:55–62. doi: 10.1016/j.watres.2008.10.005
  • Rittmann BE. Biological processes and organic micro-pollutants in treatment processes. J Sci Total Environ. 1985;47:99–113. doi: 10.1016/0048-9697(85)90322-5
  • Rodriguez MJ, Serodes J, Roy D. Formation and fate of haloacetic acids (HAAs) within the water treatment plant. Water Res. 2007;41:4222–4232. doi: 10.1016/j.watres.2007.05.048
  • Pell M, Nyberg F. Infiltration of wastewater in a newly started pilot sand-filter system: II. Development and distribution of the bacterial populations. J Environ Qual. 1989;18:457–462. doi: 10.2134/jeq1989.00472425001800040010x
  • Rodgers M, Mulqueen J, Healy MG. Surface clogging in an intermittent stratified sand filter. Soil SciSoc Am J. 2004;68:1827–1832. doi: 10.2136/sssaj2004.1827
  • Nakayama FS, Boman BJ, Pitts DJ. Microirrigation for crop production: design, operation, and management, developments in agricultural engineering. In: Lamm FR, Ayars JE, Nakayama FS, editor. Amsterdam: Elsevier; 2007. p. 389–430.
  • Sauer DK. Intermittent sand filtration of septic tank and aerobic unit effluents under field conditions [MS thesis]. Madison: University of Wisconsin; 1975.
  • Ruppe LM. Effects of dosing frequency on the performance of intermittently loaded packed bed wastewater filters [MS thesis]. Davis: University of California; 2005.
  • Cammarota MC, Freire DMG. A review on hydrolytic enzymes in the treatment of wastewater with high oil and grease content. Bioresour Technol. 2006;97:2195–2210. doi: 10.1016/j.biortech.2006.02.030
  • Leverenz HL, Tchobanoglous G, Darby JL. Clogging in intermittently dosed sand filters used for wastewater treatment. Water Res. 2009;43:695–705. doi: 10.1016/j.watres.2008.10.054
  • Hazen A. The filtration of public water supplies. London: Wiley; 1905.
  • Healy MG, Rodgers M, Mulqueen J. Treatment of dairy wastewater using constructed wetlands and intermittent sand filters. Bioresour Technol. 2007;98:2268–2281. doi: 10.1016/j.biortech.2006.07.036
  • Essandoh HMK, Tizaoui C, Mohamed MHA. Removal of dissolved organic carbon and nitrogen during simulated soil aquifer treatment. Water Res. 2013;47:3559–3572. doi: 10.1016/j.watres.2013.04.013
  • Kadam AM, Nemade PD, Oza GH, et al. Treatment of municipal wastewater using laterite-based constructed soil filter. Ecol Eng. 2009;35:1051–1061. doi: 10.1016/j.ecoleng.2009.03.008
  • Capra A, Scicolone B. Recycling of poor quality urban wastewater by drip irrigation systems. J Clean Prod. 2007;15:1529–1534. doi: 10.1016/j.jclepro.2006.07.032
  • Frank LC, Rhynus CP. The treatment of sewage from single homes and small communities. Washington (DC): United States Public Health Service; 1920.
  • Grantham GR, Emerson DL, Henry AK. Intermittent sand filter studies. Sewage Work J. 1949;21:1002–1015.
  • Furman TD, Calaway WT, Grantham GR. Intermittent sand filters – multiple loadings. Sewage Ind Waste. 1955;27:261–276.
  • Al-Adham SS. Tertiary treatment of municipal sewage via slow sand filtration [MS thesis]. Dhahran: King Fahd University of Petroleum & Minerals; 1989.
  • Muhammad N, Ellis K, Parr J, et al. Optimization of slow sand filtration. Reaching the unreached: challenges for the 21st century, 22nd WEDC Conference, New Delhi, India, 1996, p. 283–285.
  • Nkwonta O, Ochieng G. Roughing filter for water pre-treatment technology in developing countries: a review. Int J Phys Sci. 2009;4:455–463.
  • Khan Z, Farooqi R. Roughing filtration as an effective pre-treatment system for high turbidity water. Water Sci Technol. 2011;64:1419–1427. doi: 10.2166/wst.2011.317
  • Hsu JC, Lin CJ, Liao CH, et al. Removal of As (V) and As (III) by reclaimed iron-oxide coated sands. J Haz Mat. 2008;153:817–826. doi: 10.1016/j.jhazmat.2007.09.031
  • Welz PJ, le Roes-Hill M. Biodegradation of organics and accumulation of metabolites in experimental biological sand filters used for the treatment of synthetic winery wastewater: a mesocosm study. J Water Process Eng. 2014;3:155–163. doi: 10.1016/j.jwpe.2014.06.007
  • Farooq S, Al-Yousef AK. Slow sand filtration of secondary effluent. J Environ Eng. 1993;119:615–630. doi: 10.1061/(ASCE)0733-9372(1993)119:4(615)
  • Visvanathan C, Aim RB, Parameshwaran K. Membrane separation bioreactor for wastewater treatment. Crit Rev Env Sci. 2000;30:1–48. doi: 10.1080/10643380091184165
  • Ueda T, Hata K. Domestic wastewater treatment by a submerged membrane bioreactor with gravitational filtration. Water Res. 1999;33:2888–2892. doi: 10.1016/S0043-1354(98)00518-1
  • Fan Y, Li G, Wu L, et al. Treatment and reuse of toilet wastewater by an airlift external circulation membrane bioreactor. Process Biochem. 2006;41:1364–1370. doi: 10.1016/j.procbio.2006.01.023
  • Nitzsche KS, Weigold P, Lösekann-Behrens T, et al. Microbial community composition of a household sand filter used for arsenic, iron, and manganese removal from groundwater in Vietnam. Chemosphere. 2015;138:47–59. doi: 10.1016/j.chemosphere.2015.05.032
  • Weber-Shirk ML, Dick RI. Biological mechanisms in slow sand filters. J Am Water Works Assoc. 1997b;89:72–83.
  • Weber-Shirk ML, Chan KL. The role of aluminium in slow sand filtration. Water Res. 2007;41:4753–4756. doi: 10.1016/j.watres.2006.12.002
  • Weber-Shirk ML. Enhancing slow sand filter performance with an acid-soluble seston extract. Water Res. 2002;36:4753–4756. doi: 10.1016/S0043-1354(02)00212-9
  • Mahmood Q, Baig SA, Nawab B, et al. Development of low cost household drinking water treatment system for the earthquake affected communities in northern Pakistan. Desalination. 2011;273:316–320. doi: 10.1016/j.desal.2011.01.052
  • Palmateer G, Manz D, Jurkovic A, et al. Toxicant and parasite challenge of Manz intermittent slow sand filter. Environ Toxicol. 1999;14:217–225. doi: 10.1002/(SICI)1522-7278(199905)14:2<217::AID-TOX2>3.0.CO;2-L
  • Kennedy TJ, Hernandez EA, Morse AN, et al. Hydraulic loading rate effect on removal rates in a biosand filter: a pilot study of three conditions. Water Air Soil Pollut. 2012;223:4527–4537. doi: 10.1007/s11270-012-1215-4
  • Ahammed MM, Chaudhuri M. Sand-based filtration/adsorption media. J Water Supply Res Technol Aqua. 1996;45:67–71.
  • Chen J, Truesdail S, Lu F, et al. Long term evaluation of aluminum hydroxide sand for removal of bacteria from wastewater. Water Res. 1998;32:2171–2179. doi: 10.1016/S0043-1354(97)00427-2
  • Lukasi J, Cheng YF, Lu F, et al. Removal of microorganisms from water by columns containing sand coated with ferric and aluminium hydroxides. Water Res. 1999;33:769–777. doi: 10.1016/S0043-1354(98)00279-6
  • Scott TM, Sabo RC, Lukasik J, et al. Performance and cost-effectiveness of ferric and aluminum hydrous metal oxide coating on filter media to enhance virus removal. KONA Powder Part J. 2002;20:159–164. doi: 10.14356/kona.2002018
  • Kim SB, Park SJ, Lee CG, et al. Bacteria transport through goethite coated sand: effects of solution pH and coated sand content. Colloids Surf B Biointerfaces. 2008;63:236–242. doi: 10.1016/j.colsurfb.2007.12.003
  • Bauer R, Dizer H, Graeber I, et al. Removal of bacterial fecal indicators, coliphages and enteric adenoviruses from waters with high fecal pollution by slow sand filtration. Water Res. 2011;45:439–452. doi: 10.1016/j.watres.2010.08.047
  • Casas ME, Chhetri RK, Ooi G, et al. Biodegradation of pharmaceuticals in hospital wastewater by a hybrid biofilm and activated sludge system (Hybas). J Sci Total Environ. 2015;530-531:383–392. doi: 10.1016/j.scitotenv.2015.05.099
  • Srivastava NK, Majumder CB. Novel biofiltration methods for the treatment of heavy metals from industrial wastewater. J Haz Mat. 2008;151:1–8. doi: 10.1016/j.jhazmat.2007.09.101
  • Oyaro N, Juddy O, Murago ENM, et al. The contents of Pb, Cu, Zn and Cd in meat in Nairobi, Kenya. J Food Agric Environ. 2007;5:119–121.
  • Paulino AT, Minasse FAS, Guilherme MR, et al. Novel adsorbent based on silkworm chrysalides for removal of heavy metals from wastewaters. J Colloid Interface Sci. 2006;301:479–487. doi: 10.1016/j.jcis.2006.05.032
  • Berg M, Luzi S, Trang PTK, et al. Arsenic removal from groundwater by household sand filters: comparative field study, model calculations, and health benefits. Environ Sci Technol. 2006;40:5567–5573. doi: 10.1021/es060144z
  • Zhang Y, Yang M, Huang X. Arsenic (V) removal with a Ce(IV)-doped iron oxide adsorbent. Chemosphere. 2003;51:945–952. doi: 10.1016/S0045-6535(02)00850-0
  • Vaishya RC, Gupta SK. Arsenic removal from groundwater by iron impregnated sand. Environ Eng. 2003;129:89–92. doi: 10.1061/(ASCE)0733-9372(2003)129:1(89)
  • Muhammad N, Parr J, Smith MD, et al. Removal of heavy metals from storm and surface water by slow sand filtration: the importance of speciation. Urban Water J. 2005;2:33–37. doi: 10.1080/15730620500042320
  • Vaishya CR, Gupta KS. Modeling arsenic(V) removal from water by sulfate modified iron-oxide coated sand (SMIOCS). Sci Technol. 2004;39:645–666.
  • Zeng L. A method for preparing silica-containing iron (III) oxide adsorbents for arsenic removal. Water Res. 2003;37:4351–4358. doi: 10.1016/S0043-1354(03)00402-0
  • Katsoyiannis IA, Zouboulis AI. Removal of arsenic from contaminated water sources by sorption onto iron-oxide coated polymeric materials. Water Res. 2002;36:5141–5155. doi: 10.1016/S0043-1354(02)00236-1
  • Gupta VK, Saini VK, Jain N. Adsorption of As(III) from aqueous solutions by iron oxide-coated sand. J Colloid Interface Sci. 2005;288:55–60. doi: 10.1016/j.jcis.2005.02.054
  • Baker-Austin C, Wright MS, Stepanauskas R. Co-selection of antibiotic and metal resistance. TIM. 2006;14:176–182.
  • Scholl M, Harvey RW. Laboratory investigations on the role of sediment surface and ground water chemistry in transport of bacteria through a contaminated sandy aquifer. Environ Sci Technol. 1992;22:1410–1417. doi: 10.1021/es00031a020
  • Truesdail SE, Lukasik J, Farrah SR, et al. Analysis of bacterial deposition on metal hydr(oxide)-coated sand filter media. J Colloid Interface Sci. 1998;203:369–378. doi: 10.1006/jcis.1998.5541
  • Johannsen LL, Cederkvist K, Holm PE, et al. Aluminum Oxide–Coated sand for improved treatment of urban stormwater. J Environ Qual. 2016;45:720–727. doi: 10.2134/jeq2015.06.0287
  • Lukasik J, Farrah SR, Truesdail SE, et al. Adsorption of microorganisms to sand diatomaceous earth particles coated With metallic hydroxides. KONA Powder Part J. 1996;14:87–91. doi: 10.14356/kona.1996014

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.