102
Views
1
CrossRef citations to date
0
Altmetric
Articles

Rheological properties of anaerobic sludge

&
Pages 199-208 | Received 04 Nov 2013, Accepted 04 Nov 2017, Published online: 06 Dec 2017

References

  • Forster-Carneiro T, Perez M, Romero LI, et al. Dry-thermophilic anaerobic digestion of organic fraction of the municipal solid waste: focusing on the inoculum sources. Bioresour Technol. 2007;98:3195–3203. doi: 10.1016/j.biortech.2006.07.008
  • Bolzonella D, Pavan P, Mace S, et al. Dry anaerobic digestion of differently sorted organic municipal solid waste: a full-scale experience. Water Sci Technol. 2006;53:23–32. doi: 10.2166/wst.2006.232
  • Battistoni P, Pava G, Cecchi F, et al. Rheology of sludge from semi-dry anaerobic digestion of municipal solid waste. Environ Technol. 1991;12:897–905. doi: 10.1080/09593339109385084
  • Everaers R, Sukumaran SK, Grest GS, et al. Rheology and microscopic topology of entangled polymeric liquids. Science. 2004;303:823–826. doi: 10.1126/science.1091215
  • Mori M, Seyssiecq I, Roche N. Rheological measurements of sewage sludge for various solids concentrations and geometry. Process Biochem. 2006;41:1656–1662. doi: 10.1016/j.procbio.2006.03.021
  • Dak M, Verma RC, Jaaffrey SNA. Effect of temperature and concentration on rheological properties of “Kesar” mango juice. J Food Eng. 2007;80:1011–1015. doi: 10.1016/j.jfoodeng.2006.08.011
  • Spinosa L, Lotito V. A simple method for evaluating sludge yield stress. Adv Environ Res. 2003;7:655–659. doi: 10.1016/S1093-0191(02)00041-2
  • Wolny L, Wolski P, Zawieja I. Rheological parameters of dewatered sewage sludge after conditioning. Desalination. 2008;222:382–387. doi: 10.1016/j.desal.2007.01.175
  • Eshtiaghi N, Yap SD, Markis F, et al. Clear model fluids to emulate the rheological properties of thickened digested sludge. Water Res. 2012;46:3014–3022. doi: 10.1016/j.watres.2012.03.003
  • Baudez JC, Markis F, Eshtiaghi N, et al. The rheological behaviour of anaerobic digested sludge. Water Res. 2011;45:5675–5680. doi: 10.1016/j.watres.2011.08.035
  • Baudez JC, Gupta RK, Eshtiaghi N, et al. Digested sludge rheology: similarities with soft glassy materials. Chemeca 2011: engineering a better world; 2011 September 18–21; Sydney Hilton Hotel, NSW, Australia, p. 2084.
  • Battistoni P, Fava G, Stanzini C, et al. Feed characteristics and digester operative conditions as parameters affecting the rheology of digested municipal solid wastes. Water Sci Technol. 1993;27:37–45.
  • Barnes HA. The yield stress – a review or ‘παντα ρει’ – everything flows? J Nonnewton Fluid Mech. 1999;81:133–178. doi: 10.1016/S0377-0257(98)00094-9
  • Gustavsson K, Oppelstrup J. Consolidation of concentrated suspensions – numerical simulations using a two-phase fluid model. Comput Vis Sci. 2000;3:39–45. doi: 10.1007/s007910050050
  • Haldenwang R, Sutherland APN, Fester VG, et al. Sludge pipe flow pressure drop prediction using composite power-law friction factor-Reynolds number correlations based on different non-Newtonian Reynolds numbers. Water SA. 2012;38:615–622. doi: 10.4314/wsa.v38i4.17
  • Khongnakorn W, Mori M, Vachoud L, et al. Rheological properties of sMBR sludge under unsteady state conditions. Desalination. 2010;250:824–828. doi: 10.1016/j.desal.2008.11.050
  • Tixier N, Guibaud G, Baudu M. Determination of some rheological parameters for the characterization of activated sludge. Bioresour Technol. 2003;90:215–220. doi: 10.1016/S0960-8524(03)00109-3
  • Wilén B-M, Jin B, Lant P. The influence of key chemical constituents in activated sludge on surface and flocculating properties. Water Res. 2003;37:2127–2139. doi: 10.1016/S0043-1354(02)00629-2
  • Valioulis I. Relationship between settling, dewatering and rheological properties of activated sludge [Master of Science thesis]. New York (NY): Cornell University; 1980.
  • Chaari F, Racineux G, Poitou A, et al. Rheological behavior of sewage sludge and strain-induced dewatering. Rheol Acta. 2003;42:273–279.
  • Coussot P, Ancey C. Rheophysical classification of concentrated suspensions and granular pastes. Phys Rev E. 1999;59:4445–4457. doi: 10.1103/PhysRevE.59.4445
  • Mu Y, Yu HQ, Chen XH. Rheological and fractal characteristics of granular sludge in an upflow anaerobic reactor. Water Res. 2006;40:3596–3602. doi: 10.1016/j.watres.2006.05.041
  • Seyssiecq I, Ferrasse J-H, Roche N. State-of-the-art: rheological characterisation of wastewater treatment sludge. Biochem Eng J. 2003;16:41–56. doi: 10.1016/S1369-703X(03)00021-4
  • Tixier N, Guibaud G, Baudu M. Towards a rheological parameter for activated sludge bulking characterisation. Enzyme Microb Technol. 2003;33:292–298. doi: 10.1016/S0141-0229(03)00124-8
  • Novarino D, Santagata E, Dalmazzo D, et al. Rheological characterization of sludge coming from a wastewater treatment plant. Am J Environ Sci. 2010;6:329–337. doi: 10.3844/ajessp.2010.329.337
  • Eshtiaghi N, Baudez J, Slatter P., et al. Rheological behaviour of anaerobic digested sludge: impact of concentration and temperature, in AD 13: Recovering (bio) Resources for the World. International Water Association (IWA). Santiago de Compostela, Spain. 2013; p.1–4.
  • Baroutian S, Eshtiaghi N, Gapes DJ., et al. Rheology of a primary and secondary sewage sludge mixture: dependency on temperature and solid concentration. Bioresour Technol. 2013;140:227–233. doi: 10.1016/j.biortech.2013.04.114
  • Madoni P, Davoli D, Gibin G. Survey of filamentous microorganisms from bulking and foaming activated-sludge plants in Italy. Water Res. 2000;34:1767–1772. doi: 10.1016/S0043-1354(99)00352-8
  • Pevere A, Guibaud G, van Hullebusch E, et al. Viscosity evolution of anaerobic granular sludge. Biochem Eng J. 2006;27:315–322. doi: 10.1016/j.bej.2005.08.008
  • Forster CF. The rheological and physico-chemical characteristics of sewage sludges. Enzyme Microb Technol. 2002;30:340–345. doi: 10.1016/S0141-0229(01)00487-2
  • Shih W-H, Shih WY, Kim S-I, et al. Scaling behavior of the elastic properties of colloidal gels. Phys Rev A. 1990;42:4772. doi: 10.1103/PhysRevA.42.4772
  • Dieudé-Fauvel E, Héritier P, Chanet M, et al. Modelling the rheological properties of sludge during anaerobic digestion in a batch reactor by using electrical measurements. Water Res. 2014;51:104–112. doi: 10.1016/j.watres.2013.12.018
  • Farno E, Parthasarathy R, Baudez J, et al. Effect of thermal history on municipal digested sludge rheology: experimental and modeling. Challenging tomorrow, engineers Australia. Brisbane, Australia; 2013; p. 1–6.
  • Fubin Y, Zifu L, Huanhuan M, et al. Experimental study on rheological characteristics of high solid content sludge and it is mesophilic anaerobic digestion. J Renew Sustain Energy. 2013;5:043117. doi: 10.1063/1.4816814
  • Ayol A, Filibeli A, Dentel S. Evaluation of conditioning responses of thermophilic-mesophilic anaerobically and mesophilic aerobically digested biosolids using rheological properties. Water Sci Technol. 2006;54:23–31. doi: 10.2166/wst.2006.543
  • Moeller G, Torres LG. Rheological characterization of primary and secondary sludges treated by both aerobic and anaerobic digestion. Bioresour Technol. 1997;61:207–211. doi: 10.1016/S0960-8524(97)00061-8
  • Yasuda K, Armstrong R, Cohen R. Shear flow properties of concentrated solutions of linear and star branched polystyrenes. Rheol Acta. 1981;20:163–178. doi: 10.1007/BF01513059
  • Grant Allen D, Robinson CW. Measurement of rheological properties of filamentous fermentation broths. Chem Eng Sci. 1990;45:37–48. doi: 10.1016/0009-2509(90)87078-7
  • Canet W, Alvarez MD, Fernández C, et al. Comparisons of methods for measuring yield stresses in potato puree: effect of temperature and freezing. J Food Eng. 2005;68:143–153. doi: 10.1016/j.jfoodeng.2004.05.039
  • Bonn D, Denn MM., et al. Materials science. Yield stress fluids slowly yield to analysis. Science. 2009;324:1401–1402. doi: 10.1126/science.1174217
  • Pevere A, Guibaud G, van Hullebusch E, et al. Identification of rheological parameters describing the physico-chemical properties of anaerobic sulphidogenic sludge suspensions. Enzyme Microb Technol. 2007;40:547–554. doi: 10.1016/j.enzmictec.2006.05.010
  • Barnes HA. Thixotropy – a review. J Nonnewton Fluid Mech. 1997;70:1–33. doi: 10.1016/S0377-0257(97)00004-9
  • Schramm G, Haake G. A practical approach to rheology and rheometry. Karlsruhe: Haake; 1994.
  • Battistoni P., et al. Pre-treatment, measurement execution procedure and waste characteristics in the rheology of sewage sludges and the digested organic fraction of municipal solid wastes. Water Sci Technol. 1997;36:33–41.
  • Dolz M, González F, Delegido J, et al. A time-dependent expression for thixotropic areas. Application to Aerosil 200 hydrogels. J Pharm Sci. 2000;89:790–797. doi: 10.1002/(SICI)1520-6017(200006)89:6<790::AID-JPS11>3.0.CO;2-2
  • Yen P-S, Chen L, Chien C, et al. Network strength and dewaterability of flocculated activated sludge. Water Res. 2002;36:539–550. doi: 10.1016/S0043-1354(01)00260-3
  • Labanda J, Llorens J., et al. A structural model for thixotropy of colloidal dispersions. Rheol Acta. 2005;45:305–314. doi: 10.1007/s00397-005-0035-5
  • Perret D, Locat J, Martignoni P. Thixotropic behavior during shear of a fine-grained mud from Eastern Canada. Eng Geol. 1996;43:31–44. doi: 10.1016/0013-7952(96)00031-2
  • Gamota D, Filisko F. Dynamic mechanical studies of electrorheological materials: moderate frequencies. J Rheol. 1991;35:399–425. doi: 10.1122/1.550221
  • Mujumdar A, Beris AN, Metzner AB. Transient phenomena in thixotropic systems. J Nonnewton Fluid Mech. 2002;102:157–178. doi: 10.1016/S0377-0257(01)00176-8
  • Acierno D, La Mantia F, Marrucci G, et al. A non-linear viscoelastic model with structure-dependent relaxation times: I. basic formulation. J Nonnewton Fluid Mech. 1976;1:125–146. doi: 10.1016/0377-0257(76)80012-2
  • Winter HH, Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point. J Rheol. 1986;30:367–382. doi: 10.1122/1.549853
  • Chambon F, Winter HH. Linear viscoelasticity at the gel point of a crosslinking PDMS with imbalanced stoichiometry. J Rheol. 1987;31:683–697. doi: 10.1122/1.549955
  • Watanabe H. Viscoelasticity and dynamics of entangled polymers. Prog Polym Sci. 1999;24:1253–1403. doi: 10.1016/S0079-6700(99)00029-5
  • Waigh TA. Microrheology of complex fluids. Rep Prog Phys. 2005;68:685–742. doi: 10.1088/0034-4885/68/3/R04
  • Forster CF., et al. Bound water in sewage sludges and its relationship to sludge surfaces and sludge viscosities. J Chem Technol Biotechnol. 1983;33:76–84. doi: 10.1002/jctb.280330107
  • Novak JT, Sadler ME, Murthy SN. Mechanisms of floc destruction during anaerobic and aerobic digestion and the effect on conditioning and dewatering of biosolids. Water Res. 2003;37:3136–3144. doi: 10.1016/S0043-1354(03)00171-4
  • Abolle A, Kouakou L, Planche H. The viscosity of diesel oil and mixtures with straight vegetable oils: palm, cabbage palm, cotton, groundnut, copra and sunflower. Biomass Bioenergy. 2009;33:1116–1121. doi: 10.1016/j.biombioe.2008.01.012
  • Goodrum JW, Geller DP, Adams TT. Rheological characterization of animal fats and their mixtures with# 2 fuel oil. Biomass Bioenergy. 2003;24:249–256. doi: 10.1016/S0961-9534(02)00136-8
  • El-Mashad HM, van Loon WK, Zeeman G, et al. Rheological properties of dairy cattle manure. Bioresour Technol. 2005;96:531–535. doi: 10.1016/j.biortech.2004.06.020
  • Katsiris N, Kouzeli-Katsiri A. Bound water content of biological sludges in relation to filtration and dewatering. Water Res. 1987;21:1319–1327. doi: 10.1016/0043-1354(87)90004-2
  • Liao B, Allen D, Droppo I, et al. Bound water content of activated sludge and its relationship to solids retention time, floc structure, and surface properties. Water Environ Res. 2000;72:722–730. doi: 10.2175/106143000X138346
  • Edelhoch H, OsborneJrJC. The thermodynamic basis of the stability of proteins, nucleic acids, and membranes. Adv Protein Chem. 1976;30:183–250. doi: 10.1016/S0065-3233(08)60480-5
  • Lee DJ, Hsu YH., et al. Fast freeze/thaw treatment on excess activated sludges: floc structure and sludge dewaterability. Environ Sci Technol. 1994;28:1444–1449. doi: 10.1021/es00057a011
  • Jabbarzadeh A, Atkinson J, Tanner R. Effect of molecular shape on rheological properties in molecular dynamics simulation of star, H, comb, and linear polymer melts. Macromol. 2003;36:5020–5031. doi: 10.1021/ma025782q
  • Higgins MJ, Novak JT. Characterization of exocellular protein and its role in bioflocculation. Journal of Environ Eng. 1997;123:479–485. doi: 10.1061/(ASCE)0733-9372(1997)123:5(479)
  • Tixier N, Guibaud G, Baudu M. Effect of pH and ionic environment changes on interparticle interactions affecting activated sludge flocs: a rheological approach. Environ Technol. 2003;24:971–978. doi: 10.1080/09593330309385635
  • Tanner RI. The changing face of rheology. J Nonnewton Fluid Mech. 2009;157:141–144. doi: 10.1016/j.jnnfm.2008.11.007
  • Squires TM, Mason TG., et al. Fluid mechanics of microrheology. Annu Rev Fluid Mech. 2009;42:413–438. doi: 10.1146/annurev-fluid-121108-145608
  • Xu J, Viasnoff V, Wirtz D. Compliance of actin filament networks measured by particle-tracking microrheology and diffusing wave spectroscopy. Rheol Acta. 1998;37:387–398. doi: 10.1007/s003970050125
  • Dasgupta B, Tee S-Y, Crocker J, et al. Microrheology of polyethylene oxide using diffusing wave spectroscopy and single scattering. Phys Rev E. 2002;65:051505.
  • Kusumi A, Sako Y, Yamamoto M., et al. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys J. 1993;65:2021–2040. doi: 10.1016/S0006-3495(93)81253-0
  • Saxton MJ, Jacobson K. Single-particle tracking: applications to membrane dynamics. Annu Rev Biophys Biomol Struct. 1997;26:373–399. doi: 10.1146/annurev.biophys.26.1.373
  • Mason TG. Estimating the viscoelastic moduli of complex fluids using the generalized Stokes–Einstein equation. Rheol Acta. 2000;39:371–378. doi: 10.1007/s003970000094
  • Wirtz D. Particle-tracking microrheology of living cells: principles and applications. Annu Rev Biophys. 2009;38:301–326. doi: 10.1146/annurev.biophys.050708.133724
  • Lee JY, Hwang JW, Jung HW, et al. Fast dynamics and relaxation of colloidal drops during the drying process using multispeckle diffusing wave spectroscopy. Langmuir. 2013;29:861–866. doi: 10.1021/la3046059
  • dos Santos Z, Pereira M, Fonseca J., et al. Rheology and dynamic light scattering of octa-ethyleneglycol-monododecylether/chitosan solutions. Carbohydr Polym. 2013;98:321–330. doi: 10.1016/j.carbpol.2013.05.092
  • Fong EJ, Sharma Y, Fallica B, et al. Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum. Ann Biomed Eng. 2013;41:837–846. doi: 10.1007/s10439-012-0721-2
  • Wagner M, Rubio P, Bastian H. The molecular stress function model for polydisperse polymer melts with dissipative convective constraint release. J Rheol. 2001;48:1387–1412. doi: 10.1122/1.1413503
  • Verbeeten WMH, Peters GWM, Baaijens FPT. Differential constitutive equations for polymer melts: the extended Pom–Pom model. J Rheol. 2001;45:823–843. doi: 10.1122/1.1380426
  • Baaijens F, Selen SH, Baaijens HP, et al. Viscoelastic flow past a confined cylinder of a low density polyethylene melt. J Nonnewton Fluid Mech. 1997;68:173–203. doi: 10.1016/S0377-0257(96)01519-4
  • Bogaerds AC, Verbeeten WM, Peters GW, et al. 3D viscoelastic analysis of a polymer solution in a complex flow. Comput Methods Appl Mech Eng. 1999;180:413–430. doi: 10.1016/S0045-7825(99)00176-0
  • Ren J, Krishnamoorti R. Nonlinear viscoelastic properties of layered-silicate-based intercalated nanocomposites. Macromolecules. 2003;36:4443–4451. doi: 10.1021/ma020412n
  • Kaye A. College of Aeronautics, Cranfield, Note, 1962.
  • Bernstein B, Kearsley E, Zapas L. A study of stress relaxation with finite strain. Rubber Chem Technol. 1965;38:76–89. doi: 10.5254/1.3535640
  • Papanastasiou A, Scriven L, Macosko C. An integral constitutive equation for mixed flows: viscoelastic characterization. J Rheol. 1983;27:387–410. doi: 10.1122/1.549712
  • Giesekus H. A simple constitutive equation for polymer fluids based on the concept of deformation-dependent tensorial mobility. J Nonnewton Fluid Mech. 1982;11:69–109. doi: 10.1016/0377-0257(82)85016-7
  • McLeish T, Larson R. Molecular constitutive equations for a class of branched polymers: The pom-pom polymer. J Rheol. 1998;42:81. doi: 10.1122/1.550933
  • Verbeeten WM, Peters GW, Baaijens F. Viscoelastic analysis of complex polymer melt flows using the extended Pom–Pom model. J Nonnewton Fluid Mech. 2002;108:301–326. doi: 10.1016/S0377-0257(02)00136-2
  • Bogaerds AC, Grillet AM, Peters GW, et al. Stability analysis of polymer shear flows using the extended Pom–Pom constitutive equations. J Nonnewton Fluid Mech. 2002;108:187–208. doi: 10.1016/S0377-0257(02)00130-1
  • Oishi C, Martins F, Tome MF, et al. Numerical solution of the extended Pom-Pom model for viscoelastic free surface flows. J Nonnewton Fluid Mech. 2011;166:165–179. doi: 10.1016/j.jnnfm.2010.11.001
  • Denn MM. Fifty years of non-Newtonian fluid dynamics. AIChE J. 2004;50:2335–2345. doi: 10.1002/aic.10357
  • Metzner A, Reed J. Flow of non-Newtonian fluids – correlation of the laminar, transition, and turbulent – flow regions. AIChE J. 1955;1:434–440. doi: 10.1002/aic.690010409
  • Kozicki W, Chou C, Tiu C. Non-Newtonian flow in ducts of arbitrary cross-sectional shape. Chem Eng Sci. 1966;21:665–679. doi: 10.1016/0009-2509(66)80016-7
  • Delplace F, Leuliet J. Generalized Reynolds number for the flow of power law fluids in cylindrical ducts of arbitrary cross-section. Chem Eng J and Biochem Eng J. 1995;56:33–37. doi: 10.1016/0923-0467(94)02849-6
  • Rudman M, Blackburn HM, Graham LJW, et al. Turbulent pipe flow of shear-thinning fluids. J Nonnewton Fluid Mech. 2004;118:33–48. doi: 10.1016/j.jnnfm.2004.02.006
  • Slatter P. The role of rheology in the pipelining of mineral slurries. Miner Process Extr Metall Rev. 2000;20:281–300. doi: 10.1080/08827509908962478
  • Güzel B, Frigaard I, Martinez DM. Predicting laminar–turbulent transition in Poiseuille pipe flow for non-Newtonian fluids. Chem Eng Sci. 2009;64:254–264. doi: 10.1016/j.ces.2008.10.011
  • Rudman M, Blackburn HM. Direct numerical simulation of turbulent non-Newtonian flow using a spectral element method. Appl Math Model. 2006;30:1229–1248. doi: 10.1016/j.apm.2006.03.005
  • Slatter P. The turbulent flow of non-Newtonian slurries in pipe. Proceedings of 8th international conference on transport and sedimentation of solid particles, Prague, paper A, 1995, p. 1995.
  • Joseph DD, Yang BH. Friction factor correlations for laminar, transition and turbulent flow in smooth pipes. Physica D. 2010;239:1318–1328. doi: 10.1016/j.physd.2009.09.026
  • McKeon BJ, Zagarola MV, Smits AJ. A new friction factor relationship for fully developed pipe flow. J Fluid Mech. 2005;538:429. doi: 10.1017/S0022112005005501
  • García F, García R, Padrino JC, et al. Power law and composite power law friction factor correlations for laminar and turbulent gas–liquid flow in horizontal pipelines. Int J Multiphase Flow. 2003;29:1605–1624. doi: 10.1016/S0301-9322(03)00139-3
  • Heywood N. Pipeline design for non-settling slurries. Slurry handling: design of solid liquid systems. New York (NY): Elsevier Applied Science; 1991, p. 125–165.
  • Garcia F, García R, Joseph D. Composite power law holdup correlations in horizontal pipes. Int J Multiph Flow. 2005;31:1276–1303. doi: 10.1016/j.ijmultiphaseflow.2005.07.007
  • Wang J, Joseph D, Patankar N, et al. Bi-power law correlations for sediment transport in pressure driven channel flows. Int J Multiph Flow. 2003;29:475–494. doi: 10.1016/S0301-9322(02)00152-0

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.