1,503
Views
1
CrossRef citations to date
0
Altmetric
Environmental Technology Reviews research in support of the UN SDGs and the European Commission's Horizon Missions

Upcycling agricultural and plastic waste for sustainable construction: a review

, ORCID Icon, , ORCID Icon & ORCID Icon
Pages 37-59 | Received 31 Jul 2021, Accepted 08 Jan 2023, Published online: 30 Jan 2023

References

  • Tiseo I. Global waste generation – statistics & facts, Statista. 2022 April 28. Available from: https://www.statista.com/topics/4983/waste-generation-worldwide/#topicHeader__wrapper
  • Modani PO, Vyawahare MR. Utilization of bagasse ash as a partial replacement of fine aggregate in concrete. Procedia Eng. 2013;51:25–29. DOI:10.1016/j.proeng.2013.01.007
  • Ramesh T, Prakash R, Shukla KK. Life cycle energy analysis of buildings: an overview. Energy Build. 2010;42:1592–1600. DOI:10.1016/j.enbuild.2010.05.007
  • Zabalza Bribián I, Valero Capilla A, Aranda Usón A. Life cycle assessment of building materials: comparative analysis of energy and environmental impacts and evaluation of the eco-efficiency improvement potential. Build Environ. 2011;46:1133–1140. DOI:10.1016/j.buildenv.2010.12.002
  • Sana Mehraj S, Bhat G, Mehraj Balkhi H, et al. Cement factories and human health. Int J Curr Res Rev. 2013;5:47–53.
  • Skinder BM, Sheikh AQ, Pandit AK, et al. Effect of brick kiln emissions on commonly used vegetables of Kashmir valley. Food Sci Nutr. 2015;3:604–611. DOI:10.1002/fsn3.252
  • Chen C, Habert G, Bouzidi Y, et al. Environmental impact of cement production: detail of the different processes and cement plant variability evaluation. J Clean Prod. 2010;18:478–485. DOI:10.1016/j.jclepro.2009.12.014
  • Devi KS, Lakshmi VV, Alakanandana A. Impacts of cement industry on environment – an overview. Asia Pacific J Res I. 2018: 156–161. DOI:10.3945/ajcn.110.003483
  • Choi YW, Moon DJ, Kim YJ, et al. Characteristics of mortar and concrete containing fine aggregate manufactured from recycled waste polyethylene terephthalate bottles. Constr Build Mater. 2009;23:2829–2835. DOI:10.1016/j.conbuildmat.2009.02.036
  • Segetin M, Jayaraman K, Xu X. Harakeke reinforcement of soil-cement building materials: manufacturability and properties. Build Environ. 2007;42:3066–3079. DOI:10.1016/j.buildenv.2006.07.033
  • Oyinlola M, Whitehead T, Abuzeinab A, et al. Bottle house: a case study of transdisciplinary research for tackling global challenges. Habitat Int. 2018;79:18–29. DOI:10.1016/j.habitatint.2018.07.007
  • Ahmad W, Ahmad A, Ostrowski KA, et al. A scientometric review of waste material utilization in concrete for sustainable construction. Case Stud Constr Mater. 2021;15:e00683.
  • Sandanayake M, Bouras Y, Haigh R, et al. Current sustainable trends of using waste materials in concrete – a decade review. Sustainability. 2020;12:9622.
  • Li X, Qin D, Hu Y, et al. A systematic review of waste materials in cement-based composites for construction applications. J Build Eng. 2022;45:103447.
  • Ede AN, Ige A. Optimal polypropylene fiber content for improved compressive and flexural strength of concrete. IOSR J Mech Civ Eng. 2014;11:129–135.
  • Asadi I, Shafigh P, Hassan ZFBA, et al. Thermal conductivity of concrete – a review. J Build Eng. 2018;20:81–93.
  • Lim SF, Matu SU. Utilization of agro-wastes to produce biofertilizer. Int J Energy Environ Eng. 2015;6:31–35. DOI:10.1007/s40095-014-0147-8
  • Mahawar N, Goyal P, Lakhiwal S, et al. Agro waste: a new eco-friendly energy resource. Int Res J Environ Sci Int Sci Congr Assoc. 2015;4:47–49. DOI:10.7251/AGSY1203393S
  • Raut SP, Ralegaonkar RV, Mandavgane SA. Development of sustainable construction material using industrial and agricultural solid waste: A review of waste-create bricks. Constr Build Mater. 2011;25:4037–4042. DOI:10.1016/j.conbuildmat.2011.04.038
  • Adefila A, Abuzeinab A, Whitehead T, et al. Bottle house: utilising appreciative inquiry to develop a user acceptance model. Built Environ Proj Asset Manag. 2020. DOI:10.1108/BEPAM-08-2019-0072
  • Sathiparan N, De Zoysa HTSM. The effects of using agricultural waste as partial substitute for sand in cement blocks. J Build Eng. 2018;19:216–227. DOI:10.1016/j.jobe.2018.04.023
  • Bakatovich A, Davydenko N, Gaspar F. Thermal insulating plates produced on the basis of vegetable agricultural waste. Energy Build. 2018;180:72–82. DOI:10.1016/j.enbuild.2018.09.032
  • Buratti C, Moretti E, Belloni E, et al. Thermal and acoustic performance evaluation of new basalt fiber insulation panels for buildings. Energy Procedia. 2015;78:303–308. DOI:10.1016/j.egypro.2015.11.648
  • Binici H, Aksogan O, Demirhan C. Mechanical, thermal and acoustical characterizations of an insulation composite made of bio-based materials. Sustain Cities Soc. 2016;20:17–26. DOI:10.1016/j.scs.2015.09.004
  • Abiola OS, Kupolati WK, Sadiku ER, et al. Utilisation of natural fibre as modifier in bituminous mixes: a review. Constr Build Mater. 2014;54:305–312. DOI:10.1016/j.conbuildmat.2013.12.037
  • Darsana P, Abraham R, Joseph A, et al. Development of coir-fibre cement composite roofing tiles. Procedia Technol. 2016;24:169–178. DOI:10.1016/j.protcy.2016.05.024
  • Lopez Hurtado P, Rouilly A, Vandenbossche V, et al. A review on the properties of cellulose fibre insulation. Build Environ. 2016;96:170–177. DOI:10.1016/j.buildenv.2015.09.031
  • Hansen KK, Rode C, de EJ, et al. Experimental investigation of the hygrothermal performance of insulation materials. In: Proc. Perform. Exter. Envel. Whole Build. Viii, Proc. Performance of Exterior Envelopes of Whole Buildings Viii, Dec 2–7, 2001, Clearwater Beach, Florida, 2001, Clearwater Beach, Florida, 200; 2001.
  • Danso H, Martinson DB, Ali M, et al. Physical, mechanical and durability properties of soil building blocks reinforced with natural fibres. Constr Build Mater. 2015;101:797–809. DOI:10.1016/j.conbuildmat.2015.10.069
  • El-Sayed SA, Mostafa ME-S. Estimation of thermal and kinetic parameters of sugarcane bagasse and cotton stalks dust layers from Hot surface ignition tests. Combust Sci Technol. 2016;188:1655–1673. DOI:10.1080/00102202.2016.1193495
  • Rodríguez NJ, Yáñez-Limón M, Gutiérrez-Miceli FA, et al. Assessment of coconut fibre insulation characteristics and its use to modulate temperatures in concrete slabs with the aid of a finite element methodology. Energy Build. 2011;43:1264–1272. DOI:10.1016/j.enbuild.2011.01.005
  • Jawaid M, Saba N, Alothman OY, et al. Thermal conductivity behavior of oil palm/jute fibre-reinforced hybrid composites. In: AIP Conf. Proc., AIP Publishing LLC; 2017. p. 30007.
  • Meriam JL, Kraige LG, Bolton JN. Engineering mechanics: dynamics. Hoboken: John Wiley & Sons; 2020.
  • Khedari J, Watsanasathaporn P, Hirunlabh J. Development of fibre-based soil-cement block with low thermal conductivity. Cem Concr Compos. 2005;27:111–116. DOI:10.1016/j.cemconcomp.2004.02.042
  • Bentchikou M, Guidoum A, Scrivener K, et al. Effect of recycled cellulose fibres on the properties of lightweight cement composite matrix. Constr Build Mater. 2012;34:451–456. DOI:10.1016/J.CONBUILDMAT.2012.02.097
  • Taallah B, Guettala A, Guettala S, et al. Mechanical properties and hygroscopicity behavior of compressed earth block filled by date palm fibers. Constr Build Mater. 2014;59:161–168. DOI:10.1016/J.CONBUILDMAT.2014.02.058
  • Wei L, Chai SX, Zhang HY, et al. Mechanical properties of soil reinforced with both lime and four kinds of fiber. Constr Build Mater. 2018;172:300–308. DOI:10.1016/j.conbuildmat.2018.03.248
  • Sujatha ER, Selsia Devi S. Reinforced soil blocks: viable option for low cost building units. Constr Build Mater. 2018;189:1124–1133. DOI:10.1016/j.conbuildmat.2018.09.077
  • Islam MS, Ahmed SJ. Influence of jute fiber on concrete properties. Constr Build Mater. 2018;189:768–776. DOI:10.1016/j.conbuildmat.2018.09.048
  • Kammoun Z, Trabelsi A. Development of lightweight concrete using prickly pear fibres. Constr Build Mater. 2019;210:269–277. DOI:10.1016/j.conbuildmat.2019.03.167
  • Jirawattanasomkul T, Ueda T, Likitlersuang S, et al. Effect of natural fibre reinforced polymers on confined compressive strength of concrete. Constr Build Mater. 2019;223:156–164. DOI:10.1016/j.conbuildmat.2019.06.217
  • Turgut P, Murat Algin H. Limestone dust and wood sawdust as brick material. Build Environ. 2007;42:3399–3403. DOI:10.1016/j.buildenv.2006.08.012
  • Muntohar AS. Engineering characteristics of the compressed-stabilized earth brick. Constr Build Mater. 2011;25:4215–4220. DOI:10.1016/j.conbuildmat.2011.04.061
  • Villamizar MCN, Araque VS, Reyes CAR, et al. Effect of the addition of coal-ash and cassava peels on the engineering properties of compressed earth blocks. Constr Build Mater. 2012;82:276–286. DOI:10.1016/j.conbuildmat.2012.04.056
  • Rahman ME, Muntohar AS, Pakrashi V, et al. Self compacting concrete from uncontrolled burning of rice husk and blended fine aggregate. Mater Des. 2014;55:410–415. DOI:10.1016/j.matdes.2013.10.007
  • Alsalami ZHA, Harith IK, Dhahir MK. Utilization of dates palm kernel in high performance concrete. J Build Eng. 2018;20:166–172. DOI:10.1016/j.jobe.2018.07.015
  • Kazmi SMS, Munir MJ, Patnaikuni I, et al. Thermal performance enhancement of eco-friendly bricks incorporating agro-wastes. Energy Build. 2018;158:1117–1129. DOI:10.1016/j.enbuild.2017.10.056
  • Ozturk S, Sutcu M, Erdogmus E, et al. Influence of tea waste concentration in the physical, mechanical and thermal properties of brick clay mixtures. Constr Build Mater. 2019;217:592–599. DOI:10.1016/j.conbuildmat.2019.05.114
  • Yang EI, Yi ST, Leem YM. Effect of oyster shell substituted for fine aggregate on concrete characteristics: part I. Fundamental properties. Cem Concr Res. 2005;35:2175–2182. DOI:10.1016/j.cemconres.2005.03.016
  • Shafana T, Venkatasubramani R. A study on the mechanical properties of concrete with partial replacement of fine aggregate with sugarcane bagasse ash. Int J Adv Struct Geotech Eng. 2014;3:34–39.
  • Shah SN, Mo KH, Yap SP, et al. Lightweight foamed concrete as a promising avenue for incorporating waste materials: a review. Resour Conserv Recycl. 2021;164:105103. DOI:10.1016/J.RESCONREC.2020.105103
  • Drzyzga O, Prieto A. Plastic waste management, a matter for the ‘community’. Microb Biotechnol. 2019;12:66–68.
  • Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Sci Adv. 2017;3:e1700782. DOI:10.1126/sciadv.1700782
  • Jambeck JR, Geyer R, Wilcox C, et al. Plastic waste inputs from land into the ocean. Science. 2015;347:768–771.
  • Rochman CM, Browne MA, Halpern BS, et al. Classify plastic waste as hazardous. Nature. 2013;494:169–171.
  • Babaremu KO, Okoya SA, Hughes E, et al. Sustainable plastic waste management in a circular economy. Heliyon. 2022;8:e09984. DOI:10.1016/J.HELIYON.2022.E09984
  • Oyinlola MA, Whitehead T. Recycling of plastics for low cost construction. Eds: Saleem Hashmi, Imtiaz Ahmed Choudhury, Encyclopedia of Renewable and Sustainable Materials, Pages 555-560, ISBN 9780128131961, https://doi.org/10.1016/B978-0-12-803581-8.11523-1. Elsevier; 2019.
  • Awoyera PO, Adesina A. Plastic wastes to construction products: status, limitations and future perspective. Case Stud Constr Mater. 2020;12:e00330. DOI:10.1016/j.cscm.2020.e00330
  • Kou SCC, Lee G, Poon CSS, et al. Properties of lightweight aggregate concrete prepared with PVC granules derived from scraped PVC pipes. Waste Manag. 2009;29:621–628. DOI:10.1016/j.wasman.2008.06.014
  • Akinwumi II, Domo-Spiff AH, Salami A. Marine plastic pollution and affordable housing challenge: shredded waste plastic stabilized soil for producing compressed earth bricks. Case Stud Constr Mater. 2019;11:e00241. DOI:10.1016/j.cscm.2019.e00241
  • Kim B, Wisniewski J, Baker T, et al. Behaviour of sand-filled plastic bottled clay panels for sustainable homes. J Build Eng. 2019;26:100895. DOI:10.1016/j.jobe.2019.100895
  • Messahel B, Onyenokporo N, Beizaee A, et al. Thermal characterisation of composite walls made from waste materials. In: JP Meyer, editor. Proc. 16th Int. Conf. Heat Transf. Fluid Mech. Thermodyn. HEFAT. 2022. p. 959–963.
  • Awoyera PO, Olalusi OB, Ekpe CO. Plastic fiber-strengthened interlocking bricks for load bearing applications. Innov Infrastruct Solut. 2021;6:111. DOI:10.1007/s41062-021-00495-z
  • Mounanga P, Gbongbon W, Poullain P, et al. Proportioning and characterization of lightweight concrete mixtures made with rigid polyurethane foam wastes. Cem Concr Compos. 2008;30:806–814. DOI:10.1016/j.cemconcomp.2008.06.007
  • Ruiz-Herrero JL, Velasco Nieto D, López-Gil A, et al. Mechanical and thermal performance of concrete and mortar cellular materials containing plastic waste. Constr Build Mater. 2016;104:298–310. DOI:10.1016/j.conbuildmat.2015.12.005
  • Binici H, Aksogan O, Bodur MN, et al. Thermal isolation and mechanical properties of fibre reinforced mud bricks as wall materials. Constr Build Mater. 2007;21:901–906. DOI:10.1016/J.CONBUILDMAT.2005.11.004
  • Mohammadhosseini H, Alyousef R, Abdul Shukor Lim NH, et al. Waste metalized film food packaging as low cost and ecofriendly fibrous materials in the production of sustainable and green concrete composites. J Clean Prod. 2020;258:120726. DOI:10.1016/J.JCLEPRO.2020.120726
  • Mohammadhosseini H, Alyousef R. Towards sustainable concrete composites through waste valorisation of plastic food trays as low-cost fibrous materials. Sustainability. 2021;13:2073.
  • Awoyera PO, Olalusi OB, Iweriebo N. Physical, strength, and microscale properties of plastic fiber-reinforced concrete containing fine ceramics particles. Materialia. 2021;15:100970. DOI:10.1016/j.mtla.2020.100970
  • Frigione M. Recycling of PET bottles as fine aggregate in concrete. Waste Manag. 2010;30:1101–1106. DOI:10.1016/j.wasman.2010.01.030
  • Rahmani E, Dehestani M, Beygi MHA, et al. On the mechanical properties of concrete containing waste PET particles. Constr Build Mater. 2013;47:1302–1308. DOI:10.1016/j.conbuildmat.2013.06.041
  • Saikia N, De Brito J. Mechanical properties and abrasion behaviour of concrete containing shredded PET bottle waste as a partial substitution of natural aggregate. Constr Build Mater. 2014;52:236–244. DOI:10.1016/j.conbuildmat.2013.11.049
  • Saxena R, Siddique S, Gupta T, et al. Impact resistance and energy absorption capacity of concrete containing plastic waste. Constr Build Mater. 2018;176:415–421. DOI:10.1016/j.conbuildmat.2018.05.019
  • Fraternali F, Ciancia V, Chechile R, et al. Experimental study of the thermo-mechanical properties of recycled PET fiber-reinforced concrete. Compos Struct. 2011;93:2368–2374. 2019 February 9. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0263822311001097
  • She W, Zheng Z, Zhang Q, et al. Predesigning matrix-directed super-hydrophobization and hierarchical strengthening of cement foam. Cem Concr Res. 2020;131:106029. DOI:10.1016/J.CEMCONRES.2020.106029
  • Adesina A. Overview of the influence of waste materials on the thermal conductivity of cementitious composites, clean. Eng Technol. 2021;2:100046. DOI:10.1016/J.CLET.2021.100046
  • Hannawi K, Prince W, Kamali-Bernard S. Effect of thermoplastic aggregates incorporation on physical, mechanical and transfer behaviour of cementitious materials. Waste Biomass Valorization. 2010;1:251–259.