489
Views
3
CrossRef citations to date
0
Altmetric
Review

Inactivation of faecal pathogens during faecal sludge composting: a systematic review

ORCID Icon, & ORCID Icon
Pages 150-174 | Received 29 May 2022, Accepted 11 Feb 2023, Published online: 12 Mar 2023

References

  • Manga M, Bartram J, Evans BE. Economic cost analysis of low-cost sanitation technology options in informal settlement areas (case study: Soweto, Johannesburg). Int J Hyg Environ Health. 2020;223(1):289–298, doi.org/10.1016/j.ijheh.2019.06.012..
  • Muoghalu C, Semiyaga S, Manga M. Faecal sludge emptying in Sub-Saharan Africa, South and Southeast Asia: A systematic review of emptying technology choices, challenges, and improvement initiatives. Frontiers in Environmental Science. 2023;11:158.
  • Peal A, Evans B, Ahilan S, et al. Estimating safely managed sanitation in urban areas; lessons learned from a global implementation of excreta-flow diagrams. Front Environ Sci. 2020;8(January):1–13. doi:10.3389/fenvs.2020.00001.
  • Manga M, Camargo-Valero MA, Anthonj C, et al. Fate of faecal pathogen indicators during faecal sludge composting with different bulking agents in tropical climate. Int J Hyg Environ Health. 2021;232:113670. doi:10.1016/j.ijheh.2020.113670.
  • Semiyaga S, Nakagiri A, Niwagaba CB, et al. Application of anaerobic digestion in decentralized faecal sludge treatment plants. In: Meghvansi NK, editor. Anaerobic biodigesters for human waste treatment. Singapore: Springer; 2020. p. 263–281.
  • Mensah YR, Kuffour RA, Baidoo PK, et al. The effect of different percentages of bulking agent (sawdust) on microbial quality of faecal sludge. Water Sci Technol. 2013;67(8):1728–1733.
  • Manga M, Kolsky P, Rosenboom JW, et al. Public health performance of sanitation technologies in Tamil Nadu, India: initial perspectives based on E. coli release. coli release. Int J Hyg Environ Health. 2022a;243:113987. doi:10.1016/j.ijheh.2022.113987.
  • Piceno YM, Pecora-Black G, Kramer S, et al. Bacterial community structure transformed after thermophilically composting human waste in Haiti. PLoS ONE. 2017;12(6):e0177626–19. doi:10.1371/journal.pone.0177626.
  • Capone D, Barker T, Cumming O, etal. Persistent Ascaris Transmission Is Possible in Urban Areas Even Where Sanitation Coverage Is High. Environmental Science & Technology. 2022;56(22):15969–15980. http://dx.doi.org/10.1021/acs.est.2c04667.
  • Muoghalu CC, Owusu PA, Lebu S, etal. Biochar as a novel technology for treatment of onsite domestic wastewater: A critical review. Front Environ Sci. 2023;11:103, http://dx.doi.org/10.3389/fenvs.2023.1095920.
  • Manga M. The feasibility of co-composting as an upscale treatment method for faecal sludge in urban Africa. In Department of Civil Engineering: Vol. PhD, 2017. Available from: http://etheses.whiterose.ac.uk/16997/.
  • García-Gómez A, Bernal MP, Roig A. Organic matter fractions involved in degradation and humification processes during composting. Compost Sci Util. 2005;13(2):127–135. doi:10.1080/1065657X.2005.10702229.
  • Gabhane J, William SP, Bidyadhar R, et al. Additives aided composting of green waste: effects on organic matter degradation, compost maturity, and quality of the finished compost. Bioresour Technol 2012;114:382–388. doi:10.1016/j.biortech.2012.02.040.
  • Kuhlman LR. Windrow composting of agricultural and municipal wastes. Resour Conserv Recycl. 1990;4(1–2):151–160. doi:10.1016/0921-3449(90)90039-7.
  • Naidoo D, Archer CE, Septien S, et al. Inactivation of Ascaris for thermal treatment and drying applications in faecal sludge. J Water, Sanit Hyg Dev. 2020;10(2):209–218.
  • Droffner ML, Brinton WF. Survival of E.coli and Salmonella populations in aerobic thermophilic composts as measured with DNA gene probes. Zentralbl Hyg Umweltmed = Int J Hyg Environ Med. 1995;197(5):387–397. http://europepmc.org/abstract/MED/8672222
  • Hay JC. Pathogen destruction and biosolids composting. BioCycle. 1996;37(6):67–76.
  • Tiquia SM, Tam NFY. Elimination of phytotoxicity during co-composting of spent pig-manure sawdust litter and pig sludge. Bioresour Technol 1998;65(1–2):43–49. doi:10.1016/S0960-8524(98)00024-8.
  • Oarga-Mulec A, Hanssen JF, Jenssen PD, et al. A comparison of various bulking materials as a supporting matrix in composting blackwater solids from vacuum toilets. J Environ Manage 2019;243:78–87. doi:10.1016/j.jenvman.2019.05.005.
  • Cofie O, Kone D, Rothenberger S, et al. Co-composting of faecal sludge and organic solid waste for agriculture: process dynamics. Water Res 2009;43(18):4665–4675. doi:10.1016/j.watres.2009.07.021.
  • Evans B, Fletcher LA, Camargo-Valero MA, et al. VeSV- value at the end of the sanitation value chain. In 53 p. : 29 fig., 17 tab. (Vol. 79165). International Water and Sanitation Centre (IRC) and University of Leeds, 2015.
  • Hashemi S, Boudaghpour S, Han M. Evaluation of different natural additives effects on the composting process of source separated feces in resource-oriented sanitation systems. Ecotoxicol Environ Saf 2019;185:109667. doi:10.1016/j.ecoenv.2019.109667.
  • Koné D, Cofie O, Zurbrügg C, et al. Helminth eggs inactivation efficiency by faecal sludge dewatering and co-composting in tropical climates. Water Res 2007;41:4397–4402. doi:10.1016/j.watres.2007.06.024.
  • Mengistu T, Gebrekidan H, Kibret K, et al. Comparative effectiveness of different composting methods on the stabilization, maturation and sanitization of municipal organic solid wastes and dried faecal sludge mixtures. Environ Syst Res. 2018;6(1):1–16.
  • Nakasaki K, Ohtaki A, Takemoto M, et al. Production of well-matured compost from night-soil sludge by an extremely short period of thermophilic composting. Waste Manage. 2011;31(3):495–501. doi:10.1016/j.wasman.2010.11.011.
  • Nartey EG, Amoah P, Ofosu-Budu GK, et al. Effects of co-composting of faecal sludge and agricultural wastes on tomato transplant and growth. Int J Recycl Org Waste Agric. 2017;6(1):23–36.
  • Thomas AR, Kranert M, Philip L. In-vessel co-composting – a rapid resource recovery option for septage treatment in Indian cities. J Water, Sanit Hyg Dev. 2018;8(4):688–697. doi:10.2166/washdev.2018.046.
  • Manga M, Evans BE, Ngasala TM, et al. Recycling of faecal sludge: nitrogen, carbon and organic matter transformation during Co-composting of faecal sludge with different bulking agents. Int J Environ Res Public Health. 2022b;19(17):10592. doi:10.3390/ijerph191710592.
  • Darimani HS, Ito R, Sossou SK, et al. Effect of post-treatment conditions on the inactivation rate of pathogenic bacteria after the composting process. Compost Sci. Util. 2015;23(3):164–173. doi:10.1080/1065657X.2015.1015082.
  • el Hayany B, el Fels L, Ouhdouch Y, et al. Fate of pathogenic microorganisms during lagooning sludge composting and exploration of bacteriophages as indicator of hygienization. Environ Technol Innov. 2021;21:101268.
  • Khadra A, Ezzariai A, Kouisni L, et al. Helminth eggs inactivation efficiency by sludge co-composting under arid climates. Int J Environ Health Res. 2021;31(5):530–537. doi:10.1080/09603123.2019.1671960.
  • Manga M, Camargo-Valero MA, Evans BE. Inactivation of viable Ascaris eggs during faecal sludge co-composting with chicken feathers and market waste. Desalin Water Treat-Sci Eng. 2019;163:347–357.
  • Manga M, Evans BE, Camargo-Valero MA, Horan NJ. Nitrogen evolution during co-composting of faecal sludge with chicken feathers and market waste. 13th IWA Specialized Conference on Small Water and Wastewater Systems (SWWS) and 5th IWA Specialized Conference on Resources-Oriented Sanitation (ROS); 14th–16 September 2016; 2016a.
  • Manga M, Evans BE, Camargo-Valero MA, et al. Effect of filter media thickness on the performance of sand drying beds used for faecal sludge management. Water Sci Technol. 2016b;74(12):2795–2806.
  • Strauch D. Occurrence of microorganisms pathogenic for Man and animals in source separated biowaste and compost – importance, control, limits, epidemiology. In: de Bertoldi M, Sequi P, Lemmes B, et al., editors. The science of composting. Dordrecht: Springer; 1996. p. 224–232.
  • United States Environmental Protection Agency (USEPA). Electronic Code of Federal Regulations, Title 40-Protection of Environment, Part 423-Steam Electric Power Generating Point Source Category. Appendix A to Part 423- 26, Priority Pollutants; 2013.
  • CCME. Guidelines for Compost Quality, PN1340. Winnipeg, Manitoba, Canada: Canadian Council of Ministers of the Environment (CCME); 2005.
  • DEFRA. Using animal by-products at compost and biogas sites; How to set up a compost or biogas site, UK and EU standards explained, an alternative treatment methods for animal by-products (ABPs). Guidance for the animal by-product industry. UK: Department for Environment, Food & Rural Affairs and Animal and Plant Health Agency; 2014.
  • Cabañas-Vargas DD, Ríos Ibarra Edl, Mena-Salas JP, et al. Composting used as a Low cost method for pathogen elimination in sewage sludge in Mérida, Mexico. Sustainability. 2013;5:3150–3158. doi:10.3390/su5073150.
  • Lo M, Sonko EM, Dieng D, et al. Co-compostage de boues de vidange domestiques avec des déchets maraîchers et des déchets de poissons à Dakar (Sénégal). Int J Biol Chem Sci. 2020;13(6):2914–2929. doi:10.4314/ijbcs.v13i6.38.
  • Bhamidimarri SMR, Pandey SP. Aerobic thermophilic composting of piggery solid wastes. Water Sci Technol. 1996;33(8):89–94. http://wst.iwaponline.com/content/ppiwawst/33/8/89.full.pdf
  • Jiang Y. Energy recovery and pathogen inactivation with dry co-digestion of food waste and pig manure, 2019.
  • Shah MD, Gupta AR, Vaidya RB. Production of high-quality compost from feather waste: A novel, cost-effective and sustainable approach for feather waste management and organic soil management. In: Ghosh SK, editor. Waste Management and Resource Efficiency. Singapore: Springer Nature; 2019. p. 533–542.
  • Troy SM, Nolan T, Kwapinski W, et al. Effect of sawdust addition on composting of separated raw and anaerobically digested pig manure. J Environ Manage 2012;111:70–77. doi:10.1016/j.jenvman.2012.06.035.
  • Berggren I, Albihn A, Johansson M. The effect of temperature on the survival of pathogenic bacteria and Ascaris suum in stored sewage sludge. In Waste Contaminants: Lifecycle and Entry Into Food Chain. 2014: 53–56. http://www.researchgate.net/publication/240635545
  • el Hayany B, el Glaoui GEM, Rihanni M, et al. Effect of dewatering and composting on helminth eggs removal from lagooning sludge under semi-arid climate. Environ Sci Pollu Res. 2018;25(11):10988–10996. doi:10.1007/s11356-017-1066-z.
  • Zhang D, Luo W, Li Y, et al. Performance of co-composting sewage sludge and organic fraction of municipal solid waste at different proportions. Bioresour Technol 2018;250:853–859. doi:10.1016/j.biortech.2017.08.136.
  • Mengist W, Soromessa T, Legese G. Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX. 2020;7:100777. doi:10.1016/j.mex.2019.100777.
  • Sprouse L, Liles A, Cronk R, etal. Interventions to address unsafe child feces disposal practices in the Asia-Pacific region: a systematic review. H2Open Journal. 2022;5(4):583–602. http://dx.doi.org/10.2166/h2oj.2022.137.
  • Anthonj C, Setty KE, Ezbakhe F, etal. A systematic review of water, sanitation and hygiene among Roma communities in Europe: Situation analysis, cultural context, and obstacles to improvement. Int J Hyg Environ Health. 2020;226:113506. http://dx.doi.org/10.1016/j.ijheh.2020.113506.
  • Strande L. The global situation. In: L Strande, M Ronteltap, D Brdjanovic, editors. FS Management- systems approach implementation and operation. London: IWA; 2014. p. 1–14.
  • Odey EA, Li Z, Zhou X, et al. Fecal sludge management in developing urban centers: a review on the collection, treatment, and composting. Environ Sci Pollut Res. 2017;24(30):23441–23452. doi:10.1007/s11356-017-0151-7.
  • Department of Health and Human Services. Surveillance of notifiable conditions in Victoria. Notified cases for Victoria as at 11 May 2018. Department of Human and Health Services. Victoria State Government; 2018.
  • Lepesteur M. A tool kit for inactivating pathogens during composting [Paper presentation]. 2nd national symposium on the beneficial Use of recycled organics, Brisbane, 2019.
  • Lepesteur M. Human and livestock pathogens and their control during composting. Crit Rev Environ Sci Technol. 2022;52(10):1639–1683.
  • Jones P, Martin M. A review of the literature on the occurrence and survival of pathogens of animals and humans in green compost (Research Report ISBN: 1-84405-063- 7). The Waste & Resources Action Programme [WRAP], The Old Academy, 2003.
  • Guardabassi L, Dalsgaard A, Sobsey M. Occurrence and survival of viruses in composted human faeces. Sustainable Urban Renewal & Wastewater Treatment. (Report No. 32). Danish Environmental Protection Agency, 2003.
  • Decrey L, Kazama S, Udert KM, et al. Ammonia as an In situ sanitizer: inactivation kinetics and mechanisms of the ssRNA virus MS2 by NH3. Environ Sci Technol 2015;49(2):1060–1067. doi:10.1021/es5044529.
  • Collick AS, Inglis S, Wright P, et al. Inactivation of ascaris suum in a biodrying compost system. J Environ Qual 2007;36(5):1528–1533.
  • Manga M, Evan B, Camargo-Valero MA, Horan N. The fate of helminth eggs during the Co-composting of faecal sludge with chicken feathers and market waste. 13th IWA specialized conference on small water and wastewater systems (SWWS) and 5th IWA specialized conference on resources-oriented sanitation (ROS); 14th–16 September 2016. Aegli Zoppiou, Athens – Greece; 2016c.
  • IWMI, KMA, KNUST & SANDEC. Co-composting of FS and solid waste for urban and peri-urban agriculture in kumasi, Ghana. Iwmi (international water management institute), Colombo, Sri Lanka, 2003.
  • Sidhu JPS, Toze SG. Human pathogens and their indicators in biosolids: a literature review. Environ Int. 2009;35(1):913–920. doi:10.1016/j.envint.2008.07.006.
  • Klein M, Brown L, Ashbolt NJ, et al. Inactivation of indicators and pathogens in cattle feedlot manures and compost as determined by molecular and culture assays. FEMS Microbiol Ecol 2011;77(1):200–210. doi:10.1111/j.1574-6941.2011.01098.x.
  • Zahedi A, Monis P, Gofton AW, et al. Cryptosporidium species and subtypes in animals inhabiting drinking water catchments in three states across Australia. Water Res 2018;134:327–340. doi:10.1016/j.watres.2018.02.005.
  • Stentiford E, de Bertoldi M. Composting process. In: Christensen TH, editor. Solid waste technology & management. Oxford: Blackwell Publishing Ltd; 2010. p. 513–532.
  • Obeng LA, Wright FW. The Co-composting of Domestic Solid and Human Wastes. Washington, D.C.: World Bank; 1987.
  • Vargas-García MC, Suárez-Estrella F, López MJ, et al. Microbial population dynamics and enzyme activities in composting processes with different starting materials. Waste Management. 2010;30(5):771–778.
  • Bari QH. Effect of different modes of aeration on composting of solid waste in a closed system. Hong Kong, China: The HKU Scholars Hub, The University of Hong Kong; 1999.
  • Himanen M, Hänninen K. Composting of bio-waste, aerobic and anaerobic sludges - effect of feedstock on the process and quality of compost. Bioresour Technol. 2011;102(3):2842–2852. doi:10.1016/j.biortech.2010.10.059.
  • Li YF, Hu SD, Chen JH, et al. Effects of biochar application in forest ecosystems on soil properties and greenhouse gas emissions: a review. J Soil Sediment. 2018;18:546–563. doi:10.1007/s11368-017-1906-y.
  • Banegas V, Moreno JL, Moreno JI, et al. Composting anaerobic and aerobic sewage sludges using two proportions of sawdust. Waste Manage. 2007;27(10):1317–1327. doi:10.1016/j.wasman.2006.09.008.
  • Diaz LF, de Bertoldi M, Bidlingmaier W, et al. Compost Science and technology. Elsevier. 2007: 1–364.
  • Haug RT. Compost engineering: Principles and practice. Chicago, USA: Technomic Publishing; 1980. p. 1–752.
  • Bernal MP, Alburquerque JA, Moral R. Composting of animal manures and chemical criteria for compost maturity assessment. Bioresour Technol. 2009;100(22):5444–5453.
  • Nolan T, Troy SM, Healy MG, et al. Characterization of compost produced from separated pig manure and a variety of bulking agents at low initial C/N ratios. Bioresour Technol. 2011;102(14):7131–7138.
  • Tiquia SM, Tam NFY. Characterization and composting of poultry litter in forced-aeration piles. Process Biochemis. 2002;37(8):869–880.
  • Adhikari BK, Barrington S, Martinez J, et al. Characterization of food waste and bulking agents for composting. Waste Manage. 2008;28(5):795–804. doi:10.1016/j.wasman.2007.08.018.
  • Scott JC. Health and agriculture in China – a fundamental approach to some of the problems of world hunger. London, UK: Faber and Faber Ltd; 1952.
  • Shuval HI, Gunnerson CG, Julius DS. Appropriate technology for water supply and sanitation. Washington, D.C: World Bank; 1981. p. 413–422.
  • Sossou SK, Hijikata N, Sou M, et al. Inactivation mechanisms of pathogenic bacteria in several matrixes during the composting process in a composting toilet. Environ Technol. 2014;35(5–8):674–680. doi:10.1080/09593330.2013.841268.
  • La Trobe BE, Ross WR. Forced aeration compositing recovers wastes. Water Environment & Technology. 1992;4(9):75–76.
  • Lombardo P. Septage composting [in Massachusetts]. Compost Science. 1977;18(6):12–14.
  • Scott JC. Health aspects of composting with night soil. In expert committee on environmental sanitation, 3rd session. World Health Organisation, 1953.
  • Manga M, Muoghalu C, Camargo-Valero MA, et al. Effect of turning frequency on the survival of fecal indicator microorganisms during aerobic composting of fecal sludge with sawdust. Int J Environ Res Public Health. 2023;20(3):2668. http://dx.doi.org/10.3390/ijerph20032668.
  • Finstein MS, Miller FC, Strom PF. Monitoring and evaluating composting process performance. J Water Pollut Control Feder. 1986;58(4):727–728.
  • Antunes LP, Martins LF, Pereira RV, et al. Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep. 2016;6:38915. doi:10.1038/srep38915.
  • Finstein MS, Morris ML. Advances in applied microbiology. Adv Appl Microbiol. 1975;19:113–151.
  • Wiley JS. Pathogen survival in composting municipal wastes. Water Pollut Control Feder. 1962;34(1):80–90.
  • Stentiford E. Composting and compost. Environ Sci Technol. 2013;37:187–204.
  • Nakasaki KSM, Kubota H. Effect of temperature on composting of sewage sludge. Applied and Environmental Microbiology. 1985;50(6):1526–1530.
  • Miyatake F, Iwabuchi K. Effect of compost temperature on oxygen uptake rate, specific growth rate and enzymatic activity of microorganisms in dairy cattle manure. Bioresour Technol 2006;97:961–965.
  • Wichuk KM, McCartney D. A review of the effectiveness of current time–temperature regulations on pathogen inactivation during composting. J Environ Eng Sci. 2007;6(5):573–586. doi:10.1139/S07-011.
  • Day M, Shaw K. Biological, chemical and physical processes of composting. In: Stofella PJ, Kahn BA, editors. Compost utilization in horticultural cropping systems. Boca, Raton: Lewis Publishers; 2001. p. 17–50.
  • Stern G. Pasteurisation of liquid digested sludge: Proceedings of the National Conference on Composting Municipal Sludge Management. Maryland, USA: Information Transfer Inc.; 1974.
  • Gaby WL. Evaluation of health hazards associated with solid waste/sewage sludge mixtures. Cincinnati, Ohio: National Environmental Research Center, Office of Research and Development, US Environmental Protection Agency; 1975.
  • de Bertoldi M, Rutili A, Citterio B, et al. Composting management: a new process control through O2 feedback. Waste Manag Res. 1988;6(3):239–259.
  • Turner C, Williams A, White R, et al. Inferring pathogen inactivation from the surface temperatures of compost heaps. Bioresour Technol. 2005;96(5):521–529.
  • USEPA. Environmental regulations and technology: control of pathogens and vector attraction in sewage sludge (including domestic septage) under 40 CFR part 503. Washington, DC: United States Environmental Protection Agency, Office of Research and Development; 1999.
  • Haug RT. The practical handbook of compost engineering. Florida, USA: CRC Press; 1993.
  • Strauch D. Composting of solid urban waste and land utilization of compost—a health risk. In: Zucconi F, De Bertoldi M, Coppola S, editors. Ercolano. Italy: La Buona Stampa; 1983. p. 1–36.
  • Burge WD, Cramer WN, Epstein W Destruction of pathogens in sewage sludge by composting. Transactions of the ASABE. 1978;21:510–514.
  • Wiley BB, Westerberg SC. Survival of human pathogens in composted sewage. Appl Microbiol. 1969;18(6):994–1001. http://aem.asm.org/content/18/6/994.abstract
  • Vinnerås B. Possibilities for sustainable nutrient recycling by faecal separation combined with urine diversion. Uppsala: Department of Agricultural Engineering, Swedish University of Agricultural Sciences. Doctoral thesis. 2002. agraria 353. ISSN: 1404-6249.
  • Déportes D, Benoit G, Zmirou Z, et al. Microbial disinfection capacity of municipal solid waste (MSW) composting. J Appl Microbiol 1998;85(2):238–246. doi:10.1046/j.1365-2672.1998.00484.x.
  • Ware SA. A survey of pathogen survival during municipal solid waste and manure treatment processes. In EPA-600/8-80-034. Municipal Environmental Research Laboratory Office of Research and Development, U.S. Environmental Protection Agency. 1980.
  • Ceustermans A, de Clercq D, Aertsen A, et al. Inactivation of Salmonella Senftenberg strain W 775 during composting of biowastes and garden wastes. J Appl Microbiol 2007;103(1):53–64. doi:10.1111/j.1365-2672.2006.03224.x.
  • Avery LM, Booth P, Campbell C, et al. Prevalence and survival of potential pathogens in source-segregated green waste compost. Sci Total Environ. 2012;431:128–138. doi:10.1016/j.scitotenv.2012.05.020.
  • Appiah-Effah E, Nyarko KB, Awuah E, et al. Rotary drum composter as a low cost method for the removal of Ascaris lumbricoides and Trichuris Trichiura in faecal sludge compost. Water Pract Technol. 2018;13(2):237–246. doi:10.2166/wpt.2018.018.
  • Niwagaba C, Nalubega M, Vinnerås B, et al. Bench-scale composting of source-separated human faeces for sanitation. Waste Manage. 2009;29(2):585–589. doi:10.1016/j.wasman.2008.06.022.
  • Steer AG, Windt CN. Composting and fate of Ascaris-lumbricoides ova. Water South Africa. 1978;4(3):129–133.
  • Bhaskaran Ghosh Roy BK, Sampathkumanan MA, Radhakrishnan I, et al. Studies on the survival of pathogens in night soil compost. Indian J Agric Sci. 1957;27(1):91.
  • Stone R. The shaoyang, China, night soil fertilizer reclamation plant. Sewage Work J. 1949;21(6):992.
  • Scharff JW. Composting- the safe conversion of village refuse and night soil into a valuable manure. J Malaya Branch, Brit Med Assn. 1940;4(1):126. Cited by Wiley, 1962.
  • Oarga Mulec A, Mihelič R, Walochnik J, et al. Composting of the solid fraction of blackwater from a separation system with vacuum toilets – effects on the process and quality. J Clean Prod. 2016;112:4683–4690. doi:10.1016/j.jclepro.2015.07.080.
  • Germer J, Boh MY, Schoeffler M, et al. Temperature and deactivation of microbial faecal indicators during small scale co-composting of faecal matter. Waste Manage. 2010;30(2):185–191. doi:10.1016/j.wasman.2009.09.030.
  • Pourcher AM, Morand P, Picard-Bonnaud F, et al. Decrease of enteric micro-organisms from rural sewage sludge during their composting in straw mixture. J Appl Microbiol. 2005;99(3):528–539. doi:10.1111/j.1365-2672.2005.02642.x.
  • Christensen KK, Carlsbæk M, Kron E. Strategies for evaluating the sanitary quality of composting. J Appl Microbiol 2002;92(6):1143–1158. doi:10.1046/j.1365-2672.2002.01648.x.
  • Vinnerås B, Björklund A, Jönsson H. Thermal composting of faecal matter as treatment and possible disinfection method–laboratory-scale and pilot-scale studies. Bioresour Technol. 2003;88(1):47–54.
  • Pereira-Neto JT, Stentiford EI, Smith Dv. Survival of faecal indicator micro-organisms in refuse/sludge composting using the aerated static pile system. Waste Manag Res. 1986;4(4):397–406. doi:10.1177/0734242X8600400158.
  • Mehl J, Kaiser J, Hurtado D, et al. Pathogen destruction and solids decomposition in composting latrines: study of fundamental mechanisms and user operation in rural Panama. J Water Health. 2011;9(1):187–199. doi:10.2166/wh.2010.138.
  • Russ C, Yanko WA. Factors affecting Salmonellae repopulationin composted sludges. Appl Environ Microbiol. 1981;41(3):597–602.
  • Preneta N, Kramer S, Magloire B, et al. Thermophilic co-composting of human wastes in Haiti. J Water Sanit Hyg Dev. 2013;3(4):649–654.
  • Youngquist CP, Mitchell SM, Cogger CG. Fate of antibiotics and antibiotic resistance during digestion and composting: A review. J Environ Qual. 2016;45(2):537–545.
  • Guan J, Wasty A, Grenier C, et al. Influence of temperature on survival and conjugative transfer of multiple antibiotic-resistant plasmids in chicken manure and compost microcosms. Poult Sci. 2007;86:610–613. doi:10.1093/ps/86.4.610. ps/86.4.610.
  • Sharma R, Larney FJ, Chen J, et al. Selected antimicrobial resistance during composting of manure from cattle administered Sub-therapeutic antimicrobials. J Environ Qual. 2009;38:567–575. doi:10.2134/jeq2007.0638.
  • Wang L, Gutek A, Grewal S, et al. Changes in diversity of cultured bacteria resistant to erythromycin and tetracycline in swine manure during simulated composting and lagoon storage. Lett Appl Microbiol. 2015;61:245–251. doi:10.1111/lam.12450.
  • Briancesco R, Coccia AM, Chiaretti G, et al. Assessment of microbiological and parasitological quality of composted wastes: health implications and hygienic measures. Waste Manag Res. 2008;26(2):196–202. doi:10.1177/0734242X07085064.
  • Brinton WF, Jr, Storms P, Blewett TC. Occurrence and levels of fecal indicators and pathogenic bacteria in market-ready recycled organic matter composts. J Food Prot 2009;72(2):332–339. doi:10.4315/0362-028X-72.2.332.
  • Chen Z, Kim J, Jiang X. Survival of Escherichia coli O157:H7 and Salmonella enterica in animal waste-based composts as influenced by compost type, storage condition and inoculum level. J Appl Microbiol 2018;124(5):1311–1323. doi:10.1111/jam.13719.
  • Duarte ER, Abr∼ao FO, Faria de Oliveira NJ, et al. Parasitological contamination in organic composts produced with sewage sludge. In: F Sebastian, G Einschlag, editors. Waste water – evaluation and management. Rijeka: Croatia InTech; 2011. p. 313–324.
  • Gessler F, Bohnel H. Persistence and mobility of a Clostridium botulinum spore population introduced to soil with spiked compost. FEMS Microbiol Ecol 2006;58(3):384–393. doi:10.1111/j.1574-6941.2006.00183.x.
  • Gibbs RA, Hu CJ, Sidhu J, et al. Risks associated with human pathogens in composted biosolids. Water TECH, Australian Water Wastewater Association; 1998, p. 1–12.
  • Grewal SK, Rajeev S, Sreevatsan S, et al. Persistence of mycobacterium avium subsp.paratuberculosis and other zoonotic pathogens during simulated composting, manure packing, and liquid storage of dairy manure. Appl Environ Microbiol 2006;72(1):565–574. doi:10.1128/AEM.72.1.565-574.2006. 2006.
  • Knoll KH. Influence of various composting processess on non-sporeforming pathogenic bacteria. international research group on refuse disposal. Informance Bulletin. 1963;19(1).
  • Meekings HJ, Stentiford EI, Lee DL. The effect of sewage sludge compost on the viability of the eggs of a parasitic nematode. Compost Sci Util 1996;4(2):46–54. doi:10.1080/1065657X.1996.10701829.
  • Paniel N, Rousseaux S, Gourland P, et al. Assessment of survival of listeria monocytogenes, Salmonella infantis and enterococcus faecalis artificially inoculated into experimental waste or compost. J Appli Microbiol. 2020;108(5):1797–1809.
  • de Bertoldi M, Vallini G, Pera A. The biology of composting: A review. Waste Management & Research. 1983;1(2):157–176.
  • Popat SC, Yates MV, Deshusses MA. Kinetics of inactivation of indicator pathogens during thermophilic anaerobic digestion. Water Res. 2010;44(20):5965–5972. doi:10.1016/j.watres.2010.07.045.
  • Darimani HS, Ito R, Maiga Y, et al. Effect of post-treatment conditions on the inactivation of helminth eggs (Ascaris suum) after the composting process. Environ Technol. 2016;37(8):920–928.
  • Nakagawa N, Otaki M, Oe H, Ishizaki K. Application of microbial risk assessment on the biotoilet in a residential house. Proceedings of future of urban wastewater systems decentralisation and reuse; 18–20 May; Xi’an, People’s Republic of China; 2005. p. 29–38.
  • Goel AK. Anthrax: a disease of biowarfare and public health importance. World J Clin Cases. 2015;3(1):20–33. doi:10.12998/wjcc.v3.i1.20.
  • Guo R, Li G, Jiang T, et al. Effect of aeration rate, C/N ratio and moisture content on the stability and maturity of compost. Bioresour Technol. 2012;112:171–178. doi:10.1016/j.biortech.2012.02.099.
  • Iqbal KM, Shafiq T, Ahmed K. Characterization of bulking agents and its effects on physical properties of compost. Bioresour Technol 2010;101(6):1913–1919. doi:10.1016/j.biortech.2009.10.030.
  • Jiang T, Schuchardt F, Li G, et al. Effect of C:N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the 38 M LEPESTEUR composting. J Environ Sci. 2011;23(10):1754–1760. doi:10.1016/S1001-0742(10)60591-8.
  • Rasapoor M, Nasrabadi T, Kamali M, et al. The effects of aeration rate on generated compost quality, using aerated static pile method. Waste Manag (New York, N.Y.). 2009;29(2):570–573. doi:10.1016/j.wasman.2008.04.012.
  • Kumar M, Ou YL, Lin JG. Co-composting of green waste and food waste at low C/N ratio. Waste Manage. 2010;30(4):602–609. doi:10.1016/j.wasman.2009.11.023. 2009.11.0602.
  • Lin C. A negative-pressure aeration system for composting food wastes. Bioresour Technol 2008;99:7651–7656. doi:10.1016/j.biortech.2008.01.078.
  • Yu H, Huang GH. Effect of sodium as a PH control amendment on the composting of food waste. Bioresour Technol 2009;100(6):2005–2011. doi:10.1016/j.biortech.2008.10.007.
  • Pandey PK, Cao W, Wang Y, et al. Simulating the effects of mesophilic anaerobic and aerobic digestions, lagoon system, and composting on pathogen inactivation. Ecol Eng. 2016;97:633–641. doi:10.1016/j.ecoleng.2016.10.047.
  • Munch B, Larsen HE, Aalbaeck B. Experimental studies on the survival of pathogenic and indicator bacteria in aerated and non-aerated cattle and pig slurry. Biol Wastes. 1987;22(1):49–65. doi:10.1016/0269-7483(87)90099-1.
  • Ravva SV, Sarreal CZ. Survival of Salmonella enterica in aerated and nonaerated wastewaters from dairy lagoons. Int J Environ Res Public Health. 2014;11(11):11249–11260. doi:10.3390/ijerph111111249.
  • Gajalakshmi S, Abbasi SA. Solid waste management by composting: State of the Art. Crit Rev Environ Sci Technol. 2008;38(5):311–400.
  • Liang C, Das KC, McClendon RW. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend. Bioresour Technol 2003;86(2):131–137. doi:10.1016/S0960-8524(02)00153-0.
  • Harvey AJD. Biodegradation of Bacillus anthracis endospores in compost [Master’s dissertation]. Lethbridge: University of Lethbridge. 2019.
  • Whanton DA. Ascaris Sp.: water loss during desiccation of embryonating eggs. Exp Parasitol 1979;48(3):398–340.
  • Stromberg BE. Environmental factors influencing transmission. Vet Parasitol 1997;72(3–4):247.
  • Sanguinetti GS, Tortul C, Garcia MC, et al. Investigating helminth eggs and Salmonella sp. in stabilization ponds treating septage. Water Sci Technol. 2005;51(12):239–224.
  • Wu H, Lai C, Zeng G, et al. The interactions of composting and biochar and their implications for soil amendment and pollution remediation: a review. Crit Rev Biotechnol 2017;37(6):754–764. doi:10.1080/07388551.2016.1232696.
  • Erickson MC, Liao J, Ma L, et al. Thermal and nonthermal factors affecting survival of Salmonella and Listeria monocytogenes in animal manure-based compost mixtures. J Food Prot 2014;77(9):1512–1518. doi:10.4315/0362-028X.JFP-14-111.
  • Arenas Jnr GJ, Donkersdot-Shouq SS. Survival of Ascaris suum in ammonia-treated wastewater sludges. Bioresour Technol 1985;59:195–198.
  • Zhang YC, Ronimus RS, Turner N, et al. Enumeration of thermophilic Bacillus species in composts and identification with a random amplification polymorphic DNA (RAPD) protocol. Syst Appl Microbiol 2002; 25(4): 618–626. https://doi.org/10.1078/07232020260517760
  • Burge WD, Colacicco D, Cramer WN. Criteria for achieving pathogen destruction during composting. J Water Pollut Control Fed. 1981;53(12):1683–1690.
  • Taylor JM, Sikora LJ, Tester CF, et al. Decomposition of sewage sludge compost in soil: II. Phosphorus and sulfur transformations. J Environment Qual. 1978;7(1):119–123.
  • Pecson BM, Barrios JA, Jiménez BE, et al. The effects of temperature, pH, and ammonia concentration on the inactivation of Ascaris eggs in sewage sludge. Water Research. 2007;41(13):2893–2902.
  • Sidhu J, Gibbs RA, Ho GE, et al. The role of indigenous microorganisms in suppression of Salmonella regrowth in composted biosolids. Water Res 2001;35(4):913–920. doi:10.1016/S0043-1354(00)00352-3.
  • Golueke CG. When is compost safe?. In: Bicycle, editor. The BioCycle guide to the art and science of composting. New York: The JG Press Inc; 1991. p. 14–41.
  • Puri AP, Dudley EG. Influence of indigenous eukaryotic microbial communities on the reduction of Escherichia coli O157:H7 in compost slurry. FEMS Microbiol Lett. 2010;313(2):148–154. doi:10.1111/j.1574-6968.2010.02141.x.
  • Schelke B, Choi Y, Baillie LW, et al. Caenorhabditis elegans predation on Bacillus anthracis: decontamination of spore contaminated soil with germinants and nematodes. Front Microbiol. 2018;8:2601.
  • Li H, Xu Y, Zheng X, et al. Optimising mixed aerobic and anaerobic composting process parameters for reducing bacterial pathogenicity in compost-derived products. J Environ Manage 2022;304(December 2021):114293. doi:10.1016/j.jenvman.2021.114293.
  • Larsen AG, Knochel S. Antimicrobial activity of food-related Penicillium sp. against pathogenic bacteria in laboratory media and a cheese model system. J Appl Microbiol 1997;83(1):111–119.
  • Rodríguez L, Cerrillo MI, García-Albiach V, et al. Domestic sewage sludge composting in a rotary drum reactor: Optimizing the thermophilic stage. J Environ Manage. 2020;112:284–291.
  • Hoitink HA, Keener HM. Science and engineering of composting: design, environmental, microbiological and utilization aspects. Columbus, Ohio: Ohio State University; 2020.
  • Drechsel P, Kunze D. Waste composting for urban and peri-urban agriculture ­closing the rural–urban nutrient cycle in sub-saharan Africa. New York, USA: CABI Publishing; 2001. p. 1–247.
  • Benedict AH, Epstein E, English JN. Municipal sludge composting technology evaluation. J Water Pollut Control Fed. 1986;58(4):279–289.
  • Fletcher LA, Stentiford EI, Hobbis PG, et al. Performance of tunnel composters fitted with heated walls. Proc Inst Civ Eng: Waste Resour. Manag. 2011;164(3):161–167.
  • Stentiford EI, Fletcher LA, Barton JR, et al. Performance of a prefabricated concrete tower composter. Proc Inst Civ Eng: Waste Resour. Manag. 2011;164(3):169–177.
  • Solano ML, Iriarte F, Ciria P, et al. Structure and environment: Performance characteristics of three aeration systems in the composting of sheep manure and straw. J Agric Eng Res. 2001;79(3):317–329.
  • Nell JH, Steer AG, van Rensburg PAJ. Hygienic quality of sewage sludge compost. Water Sci Technol, 1983;15(1):181–194. Available from: http://wst.iwaponline.com/content/ppiwawst/15/1/181.full.pdf.
  • Holmes JR. Practical waste management. New York, America: John Wiley & Sons; 1983. p. 1–584.
  • Smith WH. Utilizing composts in land management to recycle organics. In: de Bertoldi M, Sequi P, Lemmes B, et al., editors. The Science of Composting. Dordrecht: Springer Netherlands; 1996. p. 413–422.
  • Qin J, Li R, Raes J, et al. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65.
  • Epstein E. Industrial composting, environmantal engineering and facilities management. Florida, USA: CRC Press; 2011. p. 1–314.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.