335
Views
4
CrossRef citations to date
0
Altmetric
Review

Bioremediation of dyes: a brief review of bioreactor performance

, &
Pages 83-128 | Received 16 Jul 2022, Accepted 11 Feb 2023, Published online: 05 Mar 2023

References

  • Thorat BN, Sonwani RK. Current technologies and future perspectives for the treatment of complex petroleum refinery wastewater: a review. Bioresour Technol. 2022;355:127263. doi:10.1016/j.biortech.2022.127263.
  • Pinheiro LRS, Gradíssimo DG, Xavier LP, et al. Degradation of Azo Dyes: bacterial potential for bioremediation. Sustain. 2022;14:1510. doi:10.3390/su14031510.
  • Samsami S, Mohamadi M, Sarrafzadeh MH, et al. Recent advances in the treatment of dye-containing wastewater from textile industries: overview and perspectives. Process Saf Environ Prot. 2020;143:138–163. doi:10.1016/j.psep.2020.05.034.
  • Ihsanullah I, Jamal A, Ilyas M, et al. Bioremediation of dyes: current status and prospects. J Water Process Eng. 2020;38; doi:10.1016/j.jwpe.2020.101680.
  • Tiwari H, Sonwani RK, Singh RS. A comprehensive evaluation of the integrated photocatalytic-fixed bed bioreactor system for the treatment of acid blue 113 dye. Bioresour Technol. 2022a;364:128037. doi:10.1016/j.biortech.2022.128037.
  • Mishra S, Maiti A. Effectual bio-decolourization of anthraquinone dye reactive blue-19 containing wastewater by Bacillus cohnii LAP217: process optimization. Biorem J. 2019;24:1–20. doi:10.1080/10889868.2019.1671793.
  • Sonwani RK, Swain G, Jaiswal RP, et al. Moving bed biofilm reactor with immobilized low-density polyethylene–polypropylene for Congo red dye removal. Environ Technol Innov. 2021;23:101558. doi:10.1016/j.eti.2021.101558.
  • Zubair M, Aziz HA, Ihsanullah I, et al. Enhanced removal of eriochrome black T from water using biochar/layered double hydroxide/chitosan hybrid composite: performance evaluation and optimization using BBD-RSM approach. Environ Res. 2022;209:112861. doi:10.1016/j.envres.2022.112861.
  • Lellis B, Zani Fávaro-Polonio C, Pamphile JA, et al. Effects of textile dyes on health and the environment and bioremediation potential of living organisms. biotechnol. Res Innov. 2019;3:275–290. doi:10.1016/j.biori.2019.09.001.
  • Al-Tohamy R, Ali SS, Li F, et al. A critical review on the treatment of dye-containing wastewater: ecotoxicological and health concerns of textile dyes and possible remediation approaches for environmental safety. Ecotoxicol Environ Saf. 2022;231; doi:10.1016/j.ecoenv.2021.113160.
  • Oladoye PO, Ajiboye TO, Omotola EO, et al. Methylene blue dye: toxicity and potential elimination technology from wastewater. Results Eng. 2022;16; doi:10.1016/j.rineng.2022.100678.
  • Islam T, Repon MR, Islam T, et al. Impact of textile dyes on health and ecosystem: a review of structure, causes, and potential solutions. Env Sci and Poll Res. 2022. doi:10.1007/s11356-022-24398-3
  • Kishor R, Purchase D, Saratale GD, et al. Ecotoxicological and health concerns of persistent coloring pollutants of textile industry wastewater and treatment approaches for environmental safety. J Environ Chem Eng. 2021;9:105012. doi:10.1016/j.jece.2020.105012.
  • Kumar A, Sharma G, Naushad M, et al. Bio-inspired and biomaterials-based hybrid photocatalysts for environmental detoxification: a review. Chem Eng J. 2020;382; doi:10.1016/j.cej.2019.122937.
  • Mani S, Bharagava RN. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev Environ Contam Toxicol. 2016;237:71–104. doi:10.1007/978-3-319-23573-8_4.
  • Sivarajasekar N, Baskar R. Adsorption of basic red 9 on activated waste Gossypium hirsutum seeds: process modeling, analysis and optimization using statistical design. J Ind Eng Chem. 2014;20:2699–2709. doi:10.1016/j.jiec.2013.10.058.
  • Ferraz ERA, Grando MD, Oliveira DP. The azo dye disperse orange 1 induces DNA damage and cytotoxic effects but does not cause ecotoxic effects in daphnia similis and vibrio fischeri. J Hazard Mater. 2011;192:628–633. doi:10.1016/j.jhazmat.2011.05.063.
  • Mansour HB, Ayed-Ajmi Y, Mosrati R, et al. Acid violet 7 and its biodegradation products induce chromosome aberrations, lipid peroxidation, and cholinesterase inhibition in mouse bone marrow. Environ Sci Pollut Res. 2010;17:1371–1378. doi:10.1007/s11356-010-0323-1.
  • Yaseen DA, Scholz M. Textile dye wastewater characteristics and constituents of synthetic effluents: a critical review. Int J Environ Sci Technol. 2019. doi:10.1007/s13762-018-2130-z.
  • Raza N, Rizwan M, Mujtaba G. Bioremediation of real textile wastewater with a microalgal-bacterial consortium: an eco-friendly strategy. Biomass Convers Biorefinery. 2022. doi:10.1007/s13399-022-03214-5.
  • Mehmood CT, Lu C, Maqbool T, et al. Molecular transformations of dissolved organic matter during UV/O3-assisted membrane filtration of UASB-treated real textile wastewater. Chemosphere. 2022;307; doi:10.1016/j.chemosphere.2022.136101.
  • Sivakumar D. Role of Lemna minor Lin. in treating the textile industry wastewater. Int J Mater Text Eng. 2014;8:208–212.
  • R Ananthashankar AG. Production, characterization and treatment of textile effluents: a critical review. J Chem Eng Process Technol. 2013;05:1–18. doi:10.4172/2157-7048.1000182.
  • Abid MF, Zablouk MA, Abid-Alameer AM. Experimental study of dye removal from industrial wastewater by membrane technologies of reverse osmosis and nanofiltration. J Environ Heal Sci Eng. 2012;9:1–9. doi:10.1186/1735-2746-9-17.
  • Vandevivere PC, Bianchi R, Verstraete W. Review: treatment and reuse of wastewater from the textile wet-processing industry: review of emerging technologies. J Chem Technol Biotechnol. 1998. doi:10.1002/(SICI)1097-4660(199808)72:4%3C289::AID-JCTB905%3E3.0.CO;2-%23.
  • Laing IG. The impact of effluent regulations on the dyeing industry. Rev Prog Color Relat Top. 1991;21:56–71. doi:10.1111/j.1478-4408.1991.tb00081.x.
  • Choudhary DMP, Saxena S. Efficiency of Wastewater Treatment At Saras Dairy Plant, Kota, Rajasthan, IJSART - 3. ISSN: 2395-1052; 2017.
  • Šíma J, Pocedič J, Hasal P. Decolorization of reactive orange 16 in rotating drum biological contactor. J Environ Chem Eng. 2016;4:4540–4548. doi:10.1016/j.jece.2016.10.010.
  • Kumar A, Subrahmanyam G, Mondal R, et al. Bio-remediation approaches for alleviation of cadmium contamination in natural resources. Chemosphere. 2021;268; doi:10.1016/j.chemosphere.2020.128855.
  • Crawford CB, Quinn B. The interactions of microplastics and chemical pollutants. Microplastic Pollut. 2017: 131–157. doi:10.1016/B978-0-12-809406-8.00006-2.
  • Hu H, Xu K. Physicochemical technologies for HRPs and risk control. High-Risk Pollut Wastewater. 2020: 169–207. doi:10.1016/B978-0-12-816448-8.00008-3.
  • Ihsanullah I, Bilal M, Jamal A. Recent developments in the removal of dyes from water by Starch-based adsorbents. Chem Rec. 2022;22:e202100312. doi:10.1002/tcr.202100312.
  • Zubair M, Ihsanullah I, Abdul Aziz H, et al. Sustainable wastewater treatment by biochar/layered double hydroxide composites: progress, challenges, and outlook. Bioresour Technol. 2021;319:124128. doi:10.1016/j.biortech.2020.124128.
  • Bilal M, Ihsanullah I, Hassan Shah MU, et al. Recent advances in the removal of dyes from wastewater using low-cost adsorbents. J Environ Manage. 2022;321:115981. doi:10.1016/j.jenvman.2022.115981.
  • Chatla A, Almanassra IW, Kochkodan V, et al. Efficient removal of Eriochrome Black T (EBT) Dye and chromium (Cr) by Hydrotalcite-Derived Mg-Ca-Al mixed metal oxide composite. Catalysts. 2022;12:1247. doi:10.3390/catal12101247/S1.
  • Rostam AB, Taghizadeh M. Advanced oxidation processes integrated by membrane reactors and bioreactors for various wastewater treatments: A critical review. J Environ Chem Eng. 2020;8:104566. doi:10.1016/j.jece.2020.104566.
  • Rasool K, Lee DS. Effect of ZnO nanoparticles on biodegradation and biotransformation of co-substrate and sulphonated azo dye in anaerobic biological sulfate reduction processes. Int Biodeterior Biodegrad. 2016;109:150–156. doi:10.1016/j.ibiod.2016.01.015.
  • Spennati F, Ricotti A, Mori G, et al. The role of cosubstrate and mixing on fungal biofilm efficiency in the removal of tannins. Environ Technol. 2020;41:3515–3523. doi:10.1080/09593330.2019.1615128.
  • Mallikarjuna C, Dash RR. A review on hydrodynamic parameters and biofilm characteristics of inverse fluidized bed bioreactors for treating industrial wastewater. J Environ Chem Eng. 2020;8:104233. doi:10.1016/j.jece.2020.104233.
  • Ji J, Kulshreshtha S, Kakade A, et al. Bioaugmentation of membrane bioreactor with Aeromonas hydrophila LZ-MG14 for enhanced malachite green and hexavalent chromium removal in textile wastewater. Int Biodeterior Biodegrad. 2020;150:104939. doi:10.1016/j.ibiod.2020.104939.
  • Sur DH, Mukhopadhyay M. Process parametric study for COD removal of electroplating industry effluent. 3 Biotech. 2018;8:1–10. doi:10.1007/s13205-017-1059-0.
  • Reddy S, Osborne J. An insight on the advancements of biological technologies in the bioremediation of textile effluents. Urban Water Journal. 2022;19:468–480. doi:10.1080/1573062X.2022.2030369.
  • Tiwari H, Singh RS. Biotechnological approaches for microbial treatment of textile wastewater and resource recovery: opportunities, challenges, and future perspectives. Microb Technol Wastewater Recycl Manag. 2022: 269–279. doi:10.1201/9781003231738-19/.
  • Singh A, Pal DB, Mohammad A, et al. Biological remediation technologies for dyes and heavy metals in wastewater treatment: New insight. Bioresour Technol. 2022;343; doi:10.1016/j.biortech.2021.126154.
  • Behera M, Nayak J, Banerjee S, et al. A review on the treatment of textile industry waste effluents towards the development of efficient mitigation strategy: An integrated system design approach. J Environ Chem Eng. 2021;9; doi:10.1016/j.jece.2021.105277.
  • Shi Y, Yang Z, Xing L, et al. Recent advances in the biodegradation of azo dyes. World J Microbiol Biotechnol. 2021;37; doi:10.1007/s11274-021-03110-6.
  • Routoula E, Patwardhan SV. Degradation of anthraquinone dyes from effluents: a review focusing on Enzymatic Dye degradation with industrial potential. Environ Sci Technol. 2020;54:647–664. doi:10.1021/acs.est.9b03737.
  • Katheresan V, Kansedo J, Lau SY. Efficiency of various recent wastewater dye removal methods: A review. J Environ Chem Eng. 2018;6:4676–4697. doi:10.1016/j.jece.2018.06.060.
  • Vikrant K, Giri BS, Raza N, et al. Recent advancements in bioremediation of dye: current status and challenges. Bioresour Technol. 2018;253:355–367. doi:10.1016/j.biortech.2018.01.029.
  • Wang SJ, Zhong JJ. Bioreactor engineering. Bioprocess Value-Added Prod from Renew Resour. 2007: 131–161. doi:10.1016/B978-044452114-9/50007-4.
  • Nzila A, Razzak SA, Zhu J. Bioaugmentation: An emerging strategy of industrial wastewater treatment for reuse and discharge. Int J Environ Res Public Health. 2016;13; doi:10.3390/ijerph13090846.
  • Galinha CF, Sanches S, Crespo JG. Membrane bioreactors. Fundam Model Membr Syst Membr Process Perform. 2018: 209–249. doi:10.1016/B978-0-12-813483-2.00006-X.
  • Jegatheesan V, Pramanik BK, Chen J, et al. Treatment of textile wastewater with membrane bioreactor: A critical review. Bioresour Technol. 2016;204:202–212. doi:10.1016/j.biortech.2016.01.006.
  • Belli TJ, Battistelli AA, Costa RE, et al. Evaluating the performance and membrane fouling of an electro-membrane bioreactor treating textile industrial wastewater. Int J Environ Sci Technol. 2019;16:6817–6826. doi:10.1007/s13762-019-02245-2.
  • Ravadelli M, Da Costa RE, Lobo-Recio MA, et al. Anoxic/oxic membrane bioreactor assisted by electrocoagulation for the treatment of azo-dye containing wastewater. J Environ Chem Eng. 2021;9:105286. doi:10.1016/j.jece.2021.105286.
  • Sathya U, Keerthi, Nithya M, et al. Evaluation of advanced oxidation processes (AOPs) integrated membrane bioreactor (MBR) for the real textile wastewater treatment. J Environ Manage. 2019;246:768–775. doi:10.1016/j.jenvman.2019.06.039.
  • Ashar A, Bhatti IA, Ashraf M, et al. Fe3+ @ ZnO/polyester based solar photocatalytic membrane reactor for abatement of RB5 dye. J Clean Prod. 2020;246:119010. doi:10.1016/j.jclepro.2019.119010.
  • Deveci EÜ, Dizge N, Yatmaz HC, et al. Integrated process of fungal membrane bioreactor and photocatalytic membrane reactor for the treatment of industrial textile wastewater. Biochem Eng J. 2016;105:420–427. doi:10.1016/j.bej.2015.10.016.
  • Aydiner C, Mert BK, Dogan EC, et al. Novel hybrid treatments of textile wastewater by membrane oxidation reactor: performance investigations, optimizations and efficiency comparisons. Sci Total Environ. 2019;683:411–426. doi:10.1016/j.scitotenv.2019.05.248.
  • Desa AL, Hairom NHH, Ng LY, et al. Industrial textile wastewater treatment via membrane photocatalytic reactor (MPR) in the presence of ZnO-PEG nanoparticles and tight ultrafiltration. Journal of Water Process Engineering. 2019;31:100872. doi:10.1016/j.jwpe.2019.100872.
  • Kertèsz S, Cakl J, Jiránková H. Submerged hollow fiber microfiltration as a part of hybrid photocatalytic process for dye wastewater treatment. Desalination. 2014;343:106–112. doi:10.1016/j.desal.2013.11.013.
  • Yurtsever A, Sahinkaya E, Aktaş Ö, et al. Performances of anaerobic and aerobic membrane bioreactors for the treatment of synthetic textile wastewater. Bioresour Technol. 2015;192:564–573. doi:10.1016/j.biortech.2015.06.024.
  • Yurtsever A, Calimlioglu B, Sahinkaya E. Impact of SRT on the efficiency and microbial community of sequential anaerobic and aerobic membrane bioreactors for the treatment of textile industry wastewater. Chem Eng J. 2017;314:378–387. doi:10.1016/j.cej.2016.11.156.
  • Berkessa YW, Yan B, Li T, et al. Treatment of anthraquinone dye textile wastewater using anaerobic dynamic membrane bioreactor: performance and microbial dynamics. Chemosphere. 2020;238:124539. doi:10.1016/j.chemosphere.2019.124539.
  • Bai YN, Wang XN, Zhang F, et al. High-rate anaerobic decolorization of methyl orange from synthetic azo dye wastewater in a methane-based hollow fiber membrane bioreactor. J Hazard Mater. 2020;388; doi:10.1016/j.jhazmat.2019.121753.
  • Sahinkaya E, Yurtsever A, Çınar Ö. Treatment of textile industry wastewater using dynamic membrane bioreactor: impact of intermittent aeration on process performance. Sep Purif Technol. 2017;174:445–454. doi:10.1016/j.seppur.2016.10.049.
  • Choerudin C, Arrahmah FI, Daniel JK, et al. Evaluation of combined anaerobic membrane bioreactor and downflow hanging sponge reactor for treatment of synthetic textile wastewater. J Environ Chem Eng. 2021;9:105276. doi:10.1016/j.jece.2021.105276.
  • Khouni I, Louhichi G, Ghrabi A. Assessing the performances of an aerobic membrane bioreactor for textile wastewater treatment: influence of dye mass loading rate and biomass concentration. Process Saf Environ Prot. 2020;135:364–382. doi:10.1016/j.psep.2020.01.011.
  • Cinperi NC, Ozturk E, Yigit NO, et al. Treatment of woolen textile wastewater using membrane bioreactor, nanofiltration and reverse osmosis for reuse in production processes. J Clean Prod. 2019;223:837–848. doi:10.1016/j.jclepro.2019.03.166.
  • Kozak M, Cırık K, Dolaz M, et al. Evaluation of textile wastewater treatment in sequential anaerobic moving bed bioreactor - aerobic membrane bioreactor. Process Biochem. 2021b;105:62–71. doi:10.1016/j.procbio.2021.03.013.
  • Zhou L, Zhao B, Ou P, et al. Core nitrogen cycle of biofoulant in full-scale anoxic & oxic biofilm-membrane bioreactors treating textile wastewater. Bioresour Technol. 2021;325:124667. doi:10.1016/j.biortech.2021.124667.
  • Zhang W, Liu F, Wang D, et al. Impact of reactor configuration on treatment performance and microbial diversity in treating high-strength dyeing wastewater: anaerobic flat-sheet ceramic membrane bioreactor versus upflow anaerobic sludge blanket reactor. Bioresour Technol. 2018;269:269–275. doi:10.1016/j.biortech.2018.08.126.
  • Yurtsever A, Çinar Ö, Sahinkaya E. Treatment of textile wastewater using sequential sulfate-reducing anaerobic and sulfide-oxidizing aerobic membrane bioreactors. J Memb Sci. 2016;511:228–237. doi:10.1016/j.memsci.2016.03.044.
  • Rondon H, El-Cheikh W, Boluarte IAR, et al. Application of enhanced membrane bioreactor (eMBR) to treat dye wastewater. Bioresour Technol. 2015;183:78–85. doi:10.1016/j.biortech.2015.01.110.
  • Friha I, Bradai M, Johnson D, et al. Treatment of textile wastewater by submerged membrane bioreactor: In vitro bioassays for the assessment of stress response elicited by raw and reclaimed wastewater. J Environ Manage. 2015;160:184–192. doi:10.1016/j.jenvman.2015.06.008.
  • Acikgoz C, Gül ÜD, Özan K, et al. Degradation of reactive blue by the mixed culture of aspergillus versicolor and rhizopus arrhizus in membrane bioreactor (MBR) system. Desalin Water Treat. 2016;57:3750–3756. doi:10.1080/19443994.2014.987173.
  • Sonwani RK, Jaiswal RP, Rai BN, et al. Moving bed biofilm reactor-(MBBR-) based advanced wastewater treatment technology for the removal of emerging contaminants. Development in Wastewater Treatment Research and Processes. 2022: 349–370. doi:10.1016/B978-0-323-85583-9.00020-X.
  • Mulinari J, de Andrade CJ, Brandão HdL, et al. Enhanced textile wastewater treatment by a novel biofilm carrier with adsorbed nutrients. Biocatal Agric Biotechnol. 2020;24; doi:10.1016/j.bcab.2020.101527.
  • Roy U, Das P, Bhowal A. Treatment of azo dye (Congo red) solution in fluidized bed bioreactor with simultaneous approach of adsorption coupled with biodegradation: optimization by response surface methodology and toxicity assay. Clean Technol Environ Policy. 2019;21:1675–1686. doi:10.1007/S10098-019-01736-7.
  • Setty YP. Multistage fluidized bed bioreactor for dye decolorization using immobilized polyurethane foam: A novel approach. Biochem Eng J. 2019;152:107368. doi:10.1016/j.bej.2019.107368.
  • Burghate SP, Ingole NW. Fluidized Bed biofilm reactor-A novel wastewater treatment reactor. Int J Res Environ Sci Technol. 2013;3:145–155.
  • Jaafari J, Mesdaghinia A, Nabizadeh R, et al. Influence of upflow velocity on performance and biofilm characteristics of anaerobic fluidized Bed reactor (AFBR) in treating high-strength wastewater. J Environ Heal Sci Eng. 2014;12:1–10. doi:10.1186/S40201-014-0139-X.
  • Karadag D, Köroʇlu OE, Ozkaya B, et al. A review on anaerobic biofilm reactors for the treatment of dairy industry wastewater. Process Biochem. 2015;50:262–271. doi:10.1016/j.procbio.2014.11.005.
  • Swain AK, Sahoo A, Jena HM, et al. Industrial wastewater treatment by Aerobic inverse fluidized Bed biofilm reactors (AIFBBRs): A review. J Water Process Eng. 2018. doi:10.1016/j.jwpe.2018.02.017.
  • Bello MM, Abdul Raman AA, Purushothaman M. Applications of fluidized bed reactors in wastewater treatment – A review of the major design and operational parameters. J Clean Prod. 2017;141:1492–1514. doi:10.1016/j.jclepro.2016.09.148.
  • Souza RR, Bresolin ITL, Bioni TL, et al. The performance of a three-phase fluidized bed reactor in treatment of wastewater with high organic load. Brazilian J. Chem Eng. 2004;21:219–227. doi:10.1590/S0104-66322004000200011.
  • Sur DH, Mukhopadhyay M. COD reduction of textile effluent in three-phase fluidized bed bioreactor using Pseudomonas aureofaciens and escherichia coli. 3 Biotech. 2017;7:1–11. doi:10.1007/S13205-017-0771-0.
  • Begum SS, Radha KV. Biodegradation kinetic studies on phenol in internal draft tube (inverse fluidized bed) biofilm reactor using pseudomonas fluorescens: performance evaluation of biofilm and biomass characteristics. Bioremediat J. 2013;17:264–277. doi:10.1080/10889868.2013.827622.
  • Haribabu K, Sivasubramanian V. Treatment of wastewater in fluidized Bed bioreactor using low density biosupport. Energy Procedia. 2014;50:214–221. doi:10.1016/j.egypro.2014.06.026.
  • Narayanan CM, Narayan V. Biological wastewater treatment and bioreactor design: a review. Sustain Environ Res. 2019;1:1–17. doi:10.1186/s42834-019-0036-1.
  • Lin Y-H, Lin W-F, Jhang K-N, et al. Adsorption with biodegradation for decolorization of reactive black 5 by Funalia trogii 200800 on a fly ash-chitosan medium in a fluidized bed bioreactor-kinetic model and reactor performance. Biodegrad. 2012;24:137–152. doi:10.1007/S10532-012-9565-6.
  • Moutaouakkil A, Blaghen M. Decolorization of the anthraquinone dye Cibacron Blue 3G-A with immobilized Coprinus cinereus in fluidized bed bioreactor. Prikl Biokhim Mikrobiol. 2011;47(1):66–72.
  • Andleeb S, Atiq N, Robson GD, et al. An investigation of anthraquinone dye biodegradation by immobilized Aspergillus flavus in fluidized bed bioreactor. Environmental Science and Pollution Research. 2012;19(5):1728–1737. http://doi.org/10.1007/s11356-011-0687-x.
  • Lin J, Zhang X, Li Z, et al. Biodegradation of Reactive blue 13 in a two-stage anaerobic/aerobic fluidized beds system with a Pseudomonas sp. isolate. Bioresource Technology. 2010;101(1):34–40. http://doi.org/10.1016/j.biortech.2009.07.037.
  • Zeroual Y, Kim BS, Yang MW, et al. Decolorization of some azo dyes by immobilized Geotrichum sp. biomass in fluidized bed bioreactor. Appl Biochem Biotechnol. 2007;142:307–316. doi:10.1007/s12010-007-0037-0.
  • Zahmatkesh M, Tabandeh F, Ebrahimi S. Biodegradation of reactive orange 16 by phanerochaete chrysosporium fungus: application in a fluidized bed bioreactor. J Environ Health Sci Eng. 2010;7:385-390.
  • Moutaouakkil A, Zeroual Y, Dzayri FZ, et al. Decolorization of Azo Dyes with Enterobacter agglomerans immobilized in different supports by using Fluidized Bed Bioreactor. Curr Microbiol. 2004;48:124–129. doi:10.1007/S00284-003-4143-0.
  • Tang K, Rosborg P, Rasmussen ES, et al. Impact of intermittent feeding on polishing of micropollutants by moving bed biofilm reactors (MBBR). J Hazard Mater. 2021;403:123536. doi:10.1016/j.jhazmat.2020.123536.
  • Vyrides I, Drakou EM, Ioannou S, et al. Biodegradation of bilge water: batch test under anaerobic and aerobic conditions and performance of three pilot aerobic Moving Bed Biofilm Reactors (MBBRs) at different filling fractions. J Environ Manage. 2018. doi:10.1016/j.jenvman.2018.03.086.
  • Wang S, Parajuli S, Sivalingam V, et al. Biofilm in moving Bed biofilm process for wastewater treatment. Bact Biofilms. 2019. doi:10.5772/intechopen.88520.
  • McQuarrie JP, Boltz JP. Moving Bed biofilm reactor technology: process applications, design, and performance. Water Environ Res. 2011;83:560–575. doi:10.2175/106143010X12851009156286.
  • Odegaard H, Rusten B, Westrum T. A new moving bed biofilm reactor - applications and results. Water Sci Technol. 1994;29:157–165. doi:10.2166/wst.1994.0757.
  • Barwal A, Chaudhary R. To study the performance of biocarriers in moving bed biofilm reactor (MBBR) technology and kinetics of biofilm for retrofitting the existing aerobic treatment systems : a review. Rev Environ Sci Bio/Technol. 2014;13:285–299. doi:10.1007/s11157-014-9333-7.
  • Kora E, Theodorelou D, Gatidou G, et al. Removal of polar micropollutants from domestic wastewater using a methanogenic – aerobic moving bed biofilm reactor system. Chem Eng J. 2020;382:122983. doi:10.1016/j.cej.2019.122983.
  • Asri M, Elabed S, Koraichi SI, et al. Biofilm-Based Systems for Industrial Wastewater Treatment 1767–1787; 2019. doi:10.1007/978-3-319-73645-7_137.
  • Sehar S, Naz I. Role of the biofilms in wastewater treatment. Microb Biofilms - Importance Appl. 2016. doi:10.5772/63499.
  • Eldyasti A, Nakhla G, Zhu J. Impact of calcium on biofilm morphology, structure, detachment and performance in denitrifying fluidized bed bioreactors (DFBBRs). Chem Eng J. 2013;232:183–195. doi:10.1016/j.cej.2013.07.084.
  • Gu Q, Sun T, Wu G, et al. Influence of carrier filling ratio on the performance of moving bed biofilm reactor in treating coking wastewater. Bioresour Technol. 2014;166:72–78. doi:10.1016/j.biortech.2014.05.026.
  • Walter M, Safari A, Ivankovic A, et al. Detachment characteristics of a mixed culture biofilm using particle size analysis. Chem Eng J. 2013;228:1140–1147. doi:10.1016/j.cej.2013.05.071.
  • Rusten B, Eikebrokk B, Ulgenes Y, et al. Design and operations of the Kaldnes moving bed biofilm reactors. Aquac Eng. 2006;34:322–331. doi:10.1016/j.aquaeng.2005.04.002.
  • di Biase A, Devlin TR, Kowalski MS, et al. Performance and design considerations for an anaerobic moving bed biofilm reactor treating brewery wastewater: impact of surface area loading rate and temperature. J Environ Manage. 2018;216:392–398. doi:10.1016/j.jenvman.2017.05.093.
  • Kozak M, Cirik K, Basak S. Treatment of textile wastewater using combined anaerobic moving bed biofilm reactor and powdered activated carbon-aerobic membrane reactor. J Environ Chem Eng. 2021a;9:105596. doi:10.1016/j.jece.2021.105596.
  • Pratiwi R, Notodarmojo S, Helmy Q. Decolourization of remazol black-5 textile dyes using moving bed bio-film reactor. IOP Conf Ser Earth Environ Sci. 2018;106; doi:10.1088/1755-1315/106/1/012089.
  • Castro FD, Bassin JP, Alves TLM, et al. Reactive Orange 16 dye degradation in anaerobic and aerobic MBBR coupled with ozonation: addressing pathways and performance. Int J Environ Sci Technol. 2021;18:1991–2010. doi:10.1007/s13762-020-02983-8.
  • Sonwani RK, Swain G, Giri BS, et al. Biodegradation of Congo red dye in a moving bed biofilm reactor: performance evaluation and kinetic modeling. Bioresour Technol. 2020;302:122811. doi:10.1016/j.biortech.2020.122811.
  • Dias NC, Bassin JP, Sant’Anna GL, et al. Ozonation of the dye Reactive Red 239 and biodegradation of ozonation products in a moving-bed biofilm reactor: revealing reaction products and degradation pathways. Int Biodeterior Biodegrad. 2019;144. doi:10.1016/j.ibiod.2019.104742.
  • Dias NC, Alves TLM, Azevedo DA, et al. Metabolization of by-products formed by ozonation of the azo dye reactive Red 239 in moving-bed biofilm reactors in series. Brazilian J Chem Eng. 2020;37:495–504. doi:10.1007/S43153-020-00046-6.
  • Ong C, Lee K, Chang Y. Biodegradation of mono azo dye-reactive orange 16 by acclimatizing biomass systems under an integrated anoxic-aerobic REACT sequencing batch moving bed biofilm reactor. J Water Process Eng. 2020. doi:10.1016/j.jwpe.2020.101268
  • Gong XB. Advanced treatment of textile dyeing wastewater through the combination of moving bed biofilm reactors and ozonation. Sep Sci Technol. 2016;51:1589–1597. doi:10.1080/01496395.2016.1165703.
  • Francis A, Sosamony KJ. Treatment of Pre-treated textile wastewater using moving Bed Bio-film reactor. Procedia Technol. 2016;24:248–255. doi:10.1016/j.protcy.2016.05.033.
  • Sen P, Nath A, Bhattacharjee C. Packed-Bed bioreactor and its application in dairy, food, and beverage industry. Curr Dev Biotechnol Bioeng Bioprocesses, Bioreact Control. 2017: 235–277. doi:10.1016/B978-0-444-63663-8.00009-4.
  • Swathi D, Sabumon PC, Trivedi A. Simultaneous decolorization and mineralization of high concentrations of methyl orange in an anoxic up-flow packed bed reactor in denitrifying conditions. J Water Process Eng. 2021;40:101813. doi:10.1016/j.jwpe.2020.101813.
  • Lin Y. Biodegradation of 2,4-Dichlorophenol by Mixed Culture in an Aerobic Fixed- Biofilm Process—Kinetic Model and Reactor Performance; 2015. doi:10.1089/ees.2014.0482.
  • Swain G, Singh S, Sonwani RK, et al. Removal of Acid Orange 7 dye in a packed bed bioreactor: process optimization using response surface methodology and kinetic study. Bioresour Technol Reports. 2021;13:100620. doi:10.1016/j.biteb.2020.100620.
  • Hermann KL, Costa TM, Helm CV, et al. Discoloration of rhodamine b dye by white-rot fungi in solid bleached sulfate paperboard coated with polyethylene terephthalate: scale-up into non-sterile packed-bed bioreactor. J Environ Chem Eng. 2020;8; doi:10.1016/j.jece.2020.103685.
  • Sonwani RK, Giri BS, Das T, et al. Biodegradation of fluorene by neoteric LDPE immobilized Pseudomonas pseudoalcaligenes NRSS3 in a packed bed bioreactor and analysis of external mass transfer correlation. Process Biochem. 2019;77:106–112. doi:10.1016/j.procbio.2018.11.015.
  • Arikan EB, Isik Z, Bouras HD, et al. Investigation of immobilized filamentous fungi for treatment of real textile industry wastewater using up flow packed bed bioreactor. Bioresour Technol Reports. 2019;7:100197. doi:10.1016/j.biteb.2019.100197.
  • Abu Talha M, Goswami M, Giri BS, et al. Bioremediation of Congo red dye in immobilized batch and continuous packed bed bioreactor by brevibacillus parabrevis using coconut shell bio-char. Bioresour Technol. 2018;252:37–43. doi:10.1016/j.biortech.2017.12.081.
  • Bharti V, Vikrant K, Goswami M, et al. Biodegradation of methylene blue dye in a batch and continuous mode using biochar as packing media. Environ Res. 2019. doi:10.1016/j.envres.2019.01.051.
  • Sondhi S, Kaur R, Kaur S, et al. Immobilization of laccase-ABTS system for the development of a continuous flow packed bed bioreactor for decolorization of textile effluent. Int J Biol Macromol. 2018;117:1093–1100. doi:10.1016/j.ijbiomac.2018.06.007.
  • Zolfaghari P, Aghbolaghy M, Karimi A, et al. Continuous degradation of an organic pollutant using heterogeneous magnetic biocatalyst and CFD analysis of the process. Process Saf Environ Prot. 2019;121:338–348. doi:10.1016/j.psep.2018.11.004.
  • Jaibiba P, Vignesh SN, Hariharan S. Working principle of typical bioreactors. Bioreactors. INC; 2020. doi:10.1016/B978-0-12-821264-6.00010-3.
  • Sedighi M, Karimi A, Vahabzadeh F. Involvement of ligninolytic enzymes of Phanerochaete chrysosporium in treating the textile effluent containing Astrazon Red FBL in a packed-bed bioreactor. J Hazard Mater. 2009;169:88–93. doi:10.1016/j.jhazmat.2009.03.070.
  • Goswami M, Chaturvedi P, Kumar Sonwani R, et al. Application of Arjuna (Terminalia arjuna) seed biochar in hybrid treatment system for the bioremediation of Congo red dye. Bioresour Technol. 2020;307:123203. doi:10.1016/j.biortech.2020.123203.
  • Tiwari H, Sonwani RK, Singh RS. Biodegradation and detoxification study of triphenylmethane dye (Brilliant Green) in a recirculating packed-bed bioreactor by bacterial consortium. Environ Technol. 2022b: 1–42. doi:10.1080/09593330.2022.2131469.
  • Montañez-Barragán B, Sanz-Martín JL, Gutiérrez-Macías P, et al. Azo dyes decolorization under high alkalinity and salinity conditions by Halomonas sp. in batch and packed bed reactor. Extremophiles. 2020;24:239–247. doi:10.1007/s00792-019-01149-w.
  • Bharti V, Shahi A, Geed SR, et al. Biodegradation of reactive orange 16 (RO-16) dye in packed bed bioreactor using seeds of Ashoka and Casuarina as packing medium. Indian J Biotechnol. 2017;16:216–221.
  • Mohamed H, Mohamed H, Mostefa T, et al. Simultaneous biodegradation of methylene blue and phenol by Trametes hirsuta in batch and packed bed reactors. Res J Chem Environ,. 2019;23:106–115.
  • Bilal M, Iqbal HMN, Hussain Shah SZ, et al. Horseradish peroxidase-assisted approach to decolorize and detoxify dye pollutants in a packed bed bioreactor. J Environ Manage. 2016;183:836–842. doi:10.1016/j.jenvman.2016.09.040.
  • Chen CY, Wang GH, Tseng IH, et al. Analysis of bacterial diversity and efficiency of continuous removal of Victoria Blue R from wastewater by using packed-bed bioreactor. Chemosphere. 2016. doi:10.1016/j.chemosphere.2015.11.061.
  • Padmanaban VC, Geed SRR, Achary A, et al. Kinetic studies on degradation of Reactive Red 120 dye in immobilized packed bed reactor by Bacillus cohnii RAPT1. Bioresour Technol. 2016;213:39–43. doi:10.1016/j.biortech.2016.02.126.
  • García-Martínez Y, Bengoa C, Stüber F, et al. Biodegradation of acid orange 7 in an anaerobic–aerobic sequential treatment system. Chem Eng Process - Process Intensif. 2015;94:99–104. doi:10.1016/j.cep.2014.12.011.
  • Devi S, Murugappan A, Rajesh Kannan R. Textile dye wastewater treatment using freshwater algae in packed-bed reactor: modeling. Desalin Water Treat. 2016;57:17995–18002. doi:10.1080/19443994.2015.1085910.
  • Chen CY, Yen SH, Chung YC. Combination of photoreactor and packed bed bioreactor for the removal of ethyl violet from wastewater. Chemosphere. 2014;117:494–501. doi:10.1016/j.chemosphere.2014.08.069.
  • Anjaneya O, Shrishailnath SS, Guruprasad K, et al. Decolourization of Amaranth dye by bacterial biofilm in batch and continuous packed bed bioreactor. Int Biodeterior Biodegrad. 2013. doi:10.1016/j.ibiod.2013.01.006.
  • Lang W, Sirisansaneeyakul S, Ngiwsara L, et al. Characterization of a new oxygen-insensitive azoreductase from Brevibacillus laterosporus TISTR1911: toward dye decolorization using a packed-bed metal affinity reactor. Bioresour Technol. 2013;150:298–306. doi:10.1016/j.biortech.2013.09.124.
  • de los Cobos-Vasconcelos D, Ruiz-Ordaz N, Galíndez-Mayer J, et al. Aerobic biodegradation of a mixture of sulfonated azo dyes by a bacterial consortium immobilized in a two-stage sparged packed-bed biofilm reactor. Eng Life Sci. 2012;12:39–48. doi:10.1002/elsc.201000227.
  • Ganesan B, Mayakrishnan K, Venkatesaprabhu, et al. Biosorption studies and kinetics on textile effluent treatment using Packed Bed reactor. J Bioremediation Biodegrad. 2014;5(5):1–5. doi:10.4172/2155-6199.1000233.
  • Srikanlayanukul M, Kitwechkun W, Watanabe T, et al. Decolorization of orange II by immobilized thermotolerant white rot fungus coriolus versicolor RC3 in packed-bed bioreactor. Biotechnology. 2008;7:280–286. doi:10.3923/biotech.2008.280.286.
  • Mezohegyi G, Kolodkin A, Castro UI, et al. Effective anaerobic decolorization of azo dye acid orange 7 in continuous upflow packed-bed reactor using biological activated carbon system. Ind Eng Chem Res. 2007;46:6788–6792. doi:10.1021/ie061692O.
  • Kasinath A, Novotný Č, Svobodová K, et al. Decolorization of synthetic dyes by Irpex lacteus in liquid cultures and packed-bed bioreactor. Enzyme Microb Technol. 2003;32:167–173. doi:10.1016/S0141-0229(02)00279-X.
  • Senan RC, Shaffiqu TS, Roy JJ, et al. Aerobic degradation of a mixture of azo dyes in a packed bed reactor having bacteria-coated laterite pebbles. Biotechnol Prog. 2003;19:647–651. doi:10.1021/bp020103G.
  • Pereira CAA, Nava MR, Walter JB, et al. Application of zero valent iron (ZVI) immobilized in Ca-Alginate beads for C.I. Reactive Red 195 catalytic degradation in an air lift reactor operated with ozone. J Hazard Mater. 2021;401:123275. doi:10.1016/j.jhazmat.2020.123275.
  • Kadic E, Heindel TJ. Airlift bioreactors. In: An introduction to bioreactor hydrodynamics and Gas-liquid mass transfer. John Wiley & Sons, Inc; 2014. p. 168–208. doi:10.1002/9781118869703.ch8.
  • Aragão MS, Menezes DB, Ramos LC, et al. Mycoremediation of vinasse by surface response methodology and preliminary studies in air-lift bioreactors. Chemosphere. 2020;244:125432. doi:10.1016/j.chemosphere.2019.125432.
  • Cozma P, Gavrilescu M. Airlift reactors: applications in wastewater treatment. Environ Eng Manag J. 2012;11:1505–1515. doi:10.30638/eemj.2012.189.
  • Guieysse B, Quijano G, Muñoz R. 2.16 airlift bioreactors, second Edi. ed, comprehensive biotechnology. Second Edition Elsevier BV. 2011: 199–212. doi:10.1016/B978-0-08-088504-9.00095-7.
  • Cozma P, Cozma M. Airlift reactors: hydrodynamics, mass transfer and applications in environmental remediation. Environ Eng Manag J. 2010;9:681–702. doi:10.30638/eemj.2010.093.
  • Mendoza Martnez AM, Escamilla Silv EM. Airlift bioreactors: hydrodynamics and rheology application to secondary metabolites production. Mass Transf - Adv Sustain Energy Environ Oriented Numer Model. 2013. doi:10.5772/53711.
  • Zhang H, Lv Y, Liu F, et al. Degradation of C.I. Acid Orange 7 by ultrasound enhanced ozonation in a rectangular air-lift reactor. Chem Eng J. 2008;138:231–238. doi:10.1016/j.cej.2007.06.031.
  • Das S, Mahalingam H. Novel immobilized ternary photocatalytic polymer film based airlift reactor for efficient degradation of complex phthalocyanine dye wastewater. J Hazard Mater. 2020;383; doi:10.1016/j.jhazmat.2019.121219.
  • Rawat JM, Bhandari A, Raturi M, et al. Agrobacterium rhizogenes mediated hairy root cultures: A promising approach for production of useful metabolites. New Futur Dev Microb Biotechnol Bioeng Microb Second Metab Biochem Appl. 2019: 103–118. doi:10.1016/B978-0-444-63504-4.00008-6.
  • Prado Barragán LA, Figueroa JJB, Rodríguez Durán LV, et al. Fermentative production methods. Biotransformation Agric. Waste By-Products Food, Feed. Fibre, Fuel Econ. 2016: 189–217. doi:10.1016/B978-0-12-803622-8.00007-0.
  • Ammar SH, Ibrahim Elaibi A, Mohammed IS. Core/shell Fe3O4@Al2O3-PMo magnetic nanocatalyst for photocatalytic degradation of organic pollutants in an internal loop airlift reactor. J Water Process Eng. 2020;37; doi:10.1016/j.jwpe.2020.101240.
  • Hamood-ur-Rehman M, Dahman Y, Ein-Mozaffari F. Investigation of mixing characteristics in a packed-bed external loop airlift bioreactor using tomography images. Chem Eng J. 2012;213:50–61. doi:10.1016/j.cej.2012.09.106.
  • Rodríguez Couto S, Rodríguez A, Paterson RRM, et al. Laccase activity from the fungus Trametes hirsuta using an air-lift bioreactor. Lett Appl Microbiol. 2006;42:612–616. doi:10.1111/j.1472-765X.2006.01879.x.
  • Sodaneath H, Lee JI, Yang SO, et al. Decolorization of textile dyes in an air-lift bioreactor inoculated with Bjerkandera adusta OBR105. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. 2017;52:1099–1111. doi:10.1080/10934529.2017.1340753.
  • Teerapatsakul C, Parra R, Keshavarz T, et al. Repeated batch for dye degradation in an airlift bioreactor by laccase entrapped in copper alginate. Int Biodeterior Biodegrad. 2017;120:52–57. doi:10.1016/j.ibiod.2017.02.001.
  • Balla W, Essadki AH, Gourich B, et al. Electrocoagulation/electroflotation of reactive, disperse and mixture dyes in an external-loop airlift reactor. J Hazard Mater. 2010;184:710–716. doi:10.1016/j.jhazmat.2010.08.097.
  • Chisti Y, Moo-Young M. Bioreactors. Encycl Phys Sci Technol. 2003: 247–271. doi:10.1016/B0-12-227410-5/00067-3.
  • Pérez-Cadena R, García-Esquivel Y, Castañeda-Cisneros YE, et al. Biological decolorization of Amaranth dye with Trametes polyzona in an airlift reactor under three airflow regimes. Heliyon. 2020;6; doi:10.1016/j.heliyon.2020.e05857.
  • Sierra-Solache RE, Muro C, Maciel A, et al. Water recovery from textile wastewater treatment by encapsulated cells of Phanerochaete chrysosporium and ultrafiltration system. Biologia (Bratisl). 2020;75:1717–1729. doi:10.2478/s11756-020-00466-2.
  • González-Ramírez DF, Muro-Urista CR, Arana-Cuenca A, et al. Enzyme production by immobilized Phanerochaete chrysosporium using airlift reactor. Biol. 2014;69:1464–1471. doi:10.2478/s11756-014-0453-x.
  • Garcia-Ochoa F, Santos VE, Gomez E. Stirred tank bioreactors. Comprehensive Biotechnology. 2011: 179–198. doi:10.1016/B978-0-08-088504-9.00108-2.
  • Zhong JJ. Bioreactor engineering. Comprehensive Biotechnology. 2011: 165–177. doi:10.1016/B978-0-08-088504-9.00097-0.
  • Sadhasivam S, Savitha S, Swaminathan K, et al. Biosorption of RBBR by Trichoderma harzianum WL1 in stirred tank and fluidized bed reactor models. J Taiwan Inst Chem Eng. 2010;41:326–332. doi:10.1016/j.jtice.2009.09.005.
  • Liu E, Wilkins MR. Process optimization and scale-up production of fungal aryl alcohol oxidase from genetically modified Aspergillus nidulans in stirred-tank bioreactor. Bioresour Technol. 2020;315:123792. doi:10.1016/j.biortech.2020.123792.
  • Nemati M, Webb C. Immobilized cell bioreactors. Compr Biotechnol. 2011: 331–346. doi:10.1016/B978-0-08-088504-9.00100-8.
  • Roque T, Delettre J, Hardy N, et al. The impact of fluid-dynamic stress in stirred tank bioreactors on the synthesis of cellulases by Trichoderma reesei at the intracellular and extracellular levels. Chem Eng Sci. 2021. doi:10.1016/j.ces.2020.116353.
  • Zhang X, Wen Y, Yang ST. Modes of Culture/Animal Cells, in: Comprehensive Biotechnology, 285–302; 2011. doi:10.1016/B978-0-08-088504-9.00033-7.
  • Ruscasso F, Cavello I, Butler M, et al. Biodegradation and detoxification of reactive orange 16 by Candida sake 41E. Bioresour Technol Reports. 2021;15:100726. doi:10.1016/j.biteb.2021.100726.
  • Laraib Q, Shafique M, Jabeen N, et al. Luffa cylindrica immobilized with Aspergillus terreus QMS-1 : an efficient and cost-effective strategy for the removal of Congo Red using Stirred Tank Reactor. Pol J Microbiol. 2021;69:193–203. doi:10.33073/pjm-2020-022.
  • Ibrahim S, Yu G, Li Y. Efficient treatment of recalcitrant textile wastewater using two – phase mesophilic anaerobic process : bio – hythane production and decolorization improvements 515–523; 2020. doi:10.1007/s10163-019-00944-z.
  • Khelifi E, Gannoun H, Touhami Y, et al. Aerobic decolourization of the indigo dye-containing textile wastewater using continuous combined bioreactors. J Hazard Mater. 2008;152:683–689. doi:10.1016/j.jhazmat.2007.07.059.
  • Farabegoli G, Chiavola A, Rolle E, et al. Decolorization of reactive Red 195 by a mixed culture in an alternating anaerobic – aerobic sequencing batch reactor. Biochem Eng J. 2010;52:220–226. doi:10.1016/j.bej.2010.08.014.
  • Ghosh A, Ghosh M, Sreekrishnan TR. Bioremediation of chromium complex dyes and treatment of sludge generated during the process. Int Biodeterior Biodegrad. 2017;119:448–460. doi:10.1016/j.ibiod.2016.08.013.
  • Khan MR, Deb TK, Sony SY, et al. Treatment of Textile Dyes by Bio-chemical Process in Stirred Tank Sequencing Batch Bioreactor (STSBBR) C, 83–87; 2012. doi:10.3329/jce.v27i2.17808.
  • Khehra MS, Saini HS, Sharma DK, et al. Biodegradation of azo dye C.I. acid Red 88 by an anoxic - Aerobic sequential bioreactor. Dye Pigment. 2006;70:1–7. doi:10.1016/j.dyepig.2004.12.021.
  • Mohanty S, Dafale N, Rao NN. Microbial decolorization of reactive black-5 in a two-stage anaerobic-aerobic reactor using acclimatized activated textile sludge. Biodegradation. 2006;17:403–413. doi:10.1007/s10532-005-9011-0.
  • Sponza DT, Mustafa I. Reactor performances and fate of aromatic amines through decolorization of Direct Black 38 dye under anaerobic / aerobic sequentials. Process Biochem. 2005;40:35–44. doi:10.1016/j.procbio.2003.11.030.
  • Teresa D. Anaerobic / aerobic treatment of a simulated textile wastewater. Sep and Purification Technol. 2008;60:64–72. doi:10.1016/j.seppur.2007.07.043.
  • Pörtner R, Faschian R. Design and operation of fixed-Bed bioreactors for immobilized bacterial culture. Grow Handl Bact Cult. 2019. doi:10.5772/intechopen.87944.
  • Lazar A. Immobilization of animal cells in fixed bed bioreactors department of biotechnology. Biotech. Advances. 1991; 9:411–424.
  • De Oliveira Cruz FS, Nascimento MA, Puiatti GA, et al. Textile effluent treatment using a fixed bed reactor using bimetallic Fe/Ni nanoparticles supported on chitosan spheres. J Environ Chem Eng. 2020;8; doi:10.1016/j.jece.2020.104133.
  • Beltrán-Flores E, Sarrà M, Blánquez P. Pesticide bioremediation by Trametes versicolor: application in a fixed-bed reactor, sorption contribution and bioregeneration. Sci Total Environ. 2021;794:148386. doi:10.1016/j.scitotenv.2021.148386.
  • Chaturvedi A, Rai BN, Singh RS, et al. Comparative toxicity assessment using plant and luminescent bacterial assays after anaerobic treatments of dyeing wastewater in a recirculating fixed bed bioreactor. J Environ Chem Eng. 2021;9:1–9. doi:10.1016/j.jece.2021.105466.
  • Rathour R, Jain K, Madamwar D, et al. Performance and biofilm-associated bacterial community dynamics of an upflow fixed-film microaerophilic-aerobic bioreactor system treating raw textile effluent. J Clean Prod. 2021;295; doi:10.1016/j.jclepro.2021.126380.
  • Agrawal K, Verma P. Column bioreactor of immobilized Stropharia sp. ITCC 8422 on natural biomass support of L. cylindrica for biodegradation of anthraquinone violet R. Bioresour Technol Reports. 2019. doi:10.1016/j.biteb.2019.100345.
  • Kurade MB, Waghmode TR, Xiong JQ, et al. Decolorization of textile industry effluent using immobilized consortium cells in upflow fixed bed reactor. J Clean Prod. 2019. doi:10.1016/j.jclepro.2018.12.218.
  • Kulkarni AN, Watharkar AD, Rane NR, et al. Decolorization and detoxification of dye mixture and textile effluent by lichen Dermatocarpon vellereceum in fixed bed upflow bioreactor with subsequent oxidative stress study. Ecotoxicol Environ Saf. 2018;148:17–25. doi:10.1016/j.ecoenv.2017.10.001.
  • Kurade MB, Waghmode TR, Patil SM, et al. Monitoring the gradual biodegradation of dyes in a simulated textile effluent and development of a novel triple layered fixed bed reactor using a bacterium-yeast consortium. Chem Eng J. 2017;307:1026–1036. doi:10.1016/j.cej.2016.09.028.
  • Ottoni C, Simões MF, Fernandes S, et al. High laccase expression by Trametes versicolor in a simulated textile effluent with different carbon sources and PHs. Int J Environ Res Public Health. 2016;13; doi:10.3390/ijerph13080778.
  • Saratale RG, Saratale GD, Govindwar SP, et al. Exploiting the efficacy of Lysinibacillus sp. RGS for decolorization and detoxification of industrial dyes, textile effluent and bioreactor studies. J Environ Sci Heal - Part A Toxic/Hazardous Subst Environ Eng. 2015;50:176–192. doi:10.1080/10934529.2014.975536.
  • Balapure K, Bhatt N, Madamwar D. Mineralization of reactive azo dyes present in simulated textile waste water using down flow microaerophilic fixed film bioreactor. Bioresour Technol. 2015;175:1–7. doi:10.1016/j.biortech.2014.10.040.
  • Hosseini Koupaie E, Alavi Moghaddam MR, Hashemi SH. Evaluation of integrated anaerobic/aerobic fixed-bed sequencing batch biofilm reactor for decolorization and biodegradation of azo dye acid Red 18: comparison of using two types of packing media. Bioresour Technol. 2013;127:415–421. doi:10.1016/j.biortech.2012.10.003.
  • Medina-Moreno SA, Pérez-Cadena R, Jiménez-González A, et al. Modeling wastewater biodecolorization with reactive blue 4 in fixed bed bioreactor by Trametes subectypus: biokinetic, biosorption and transport. Bioresour Technol. 2012;123:452–462. doi:10.1016/j.biortech.2012.06.097.
  • Enayatizamir N, Tabandeh F, Rodríguez-Couto S, et al. Biodegradation pathway and detoxification of the diazo dye reactive black 5 by Phanerochaete chrysosporium. Bioresour Technol. 2011;102:10359–10362. doi:10.1016/j.biortech.2011.08.130.
  • Saratale RG, Saratale GD, Chang JS, et al. Decolorization and degradation of reactive Azo Dyes by fixed Bed bioreactors containing immobilized cells of Proteus vulgaris NCIM-2027. Biotechnol Bioprocess Eng. 2011;16:830–842. doi:10.1007/s12257-010-0468-2.
  • Saratale GD, Saratale RG, Chang JS, et al. Fixed-bed decolorization of reactive blue 172 by Proteus vulgaris NCIM-2027 immobilized on Luffa cylindrica sponge. Int Biodeterior Biodegrad. 2011. doi:10.1016/j.ibiod.2011.01.012.
  • Enayatzamir K, Alikhani HA, Rodríguez Couto S. Simultaneous production of laccase and decolouration of the diazo dye Reactive Black 5 in a fixed-bed bioreactor. J Hazard Mater. 2009;164:296–300. doi:10.1016/j.jhazmat.2008.08.032.
  • González-Gutiérrez LV, González-Alatorre G, Escamilla-Silva EM. Proposed pathways for the reduction of a reactive azo dye in an anaerobic fixed bed reactor. World J Microbiol Biotechnol. 2009;25:415–426. doi:10.1007/s11274-008-9906-0.
  • Sandhya S, Swaminathan K. Kinetic analysis of treatment of textile wastewater in hybrid column upflow anaerobic fixed bed reactor. Chem Eng J. 2006;122:87–92. doi:10.1016/j.cej.2006.04.006.
  • Sandhya S, Padmavathy S, Swaminathan K, et al. Microaerophilic-aerobic sequential batch reactor for treatment of azo dyes containing simulated wastewater. Process Biochem. 2005;40:885–890. doi:10.1016/j.procbio.2004.02.015.
  • Georgiou D, Hatiras J, Aivasidis A. Microbial immobilization in a two-stage fixed-bed-reactor pilot plant for on-site anaerobic decolorization of textile wastewater. Enzyme Microb Technol. 2005;37:597–605. doi:10.1016/j.enzmictec.2005.03.019.
  • Rodríguez Couto S, Sanromán MA, Hofer D, et al. Stainless steel sponge: A novel carrier for the immobilisation of the white-rot fungus trametes hirsuta for decolourization of textile dyes. Bioresour Technol. 2004;95:67–72. doi:10.1016/j.biortech.2003.05.002.
  • Moldes D, Rodríguez Couto S, Cameselle C, et al. Study of the degradation of dyes by MnP of phanerochaete chrysosporium produced in a fixed-bed bioreactor. Chemosphere. 2003;51:295–303. doi:10.1016/S0045-6535(02)00406-X.
  • Courtens ENP, Boon N, De Clippeleir H, et al. Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation. Bioresour Technol. 2014;155:182–188. doi:10.1016/j.biortech.2013.12.108.
  • Li N, Zeng W, Yang Y, et al. Oxygen mass transfer and post-denitrification in a modified rotating drum biological contactor. Biochem Eng J. 2019;144:48–56. doi:10.1016/j.bej.2019.01.008.
  • Mizyed AG. Review on application of rotating biological contactor in removal of various pollutants from effluent. Technium BioChemMed. 2021;2:41–61.
  • Cortez S, Teixeira P, Oliveira R, et al. Rotating biological contactors: A review on main factors affecting performance. Rev Environ Sci Biotechnol. 2008;7:155–172. doi:10.1007/s11157-008-9127-x.
  • Madamwar D, Tiwari O, Jain K. Mapping of Research Outcome on Remediation of Dyes, Dye Intermediates; 2019.
  • Tomaszewski M, Pypeć K, Zgórska A, et al. Toxicity analysis of coke wastewater treated in a rotating biological contactor and a membrane bioreactor. Environ Biotechnol. 2015;11:34–40. doi:10.14799/ebms252.
  • Skybová T, Přibyl M, Hasal P. Mathematical model of decolourization in a rotating disc reactor. Biochem Eng J. 2015;93:151–165. doi:10.1016/j.bej.2014.09.010.
  • Hewawasam C, Matsuura N, Maharjan N, et al. Oxygen transfer dynamics and nitrification in a novel rotational sponge reactor. Biochem Eng J. 2017;128:162–167. doi:10.1016/j.bej.2017.09.021.
  • Sirianuntapiboon S. Treatment of wastewater containing Cl2 residue by packed cage rotating biological contactor (RBC) system. Bioresour Technol. 2006;97:1735–1744. doi:10.1016/j.biortech.2005.07.030.
  • Gopi Kiran M, Pakshirajan K, Das G. A new application of anaerobic rotating biological contactor reactor for heavy metal removal under sulfate reducing condition. Chem Eng J. 2017;321:67–75. doi:10.1016/j.cej.2017.03.080.
  • Pakshirajan K, Kheria S. Continuous treatment of coloured industry wastewater using immobilized Phanerochaete chrysosporium in a rotating biological contactor reactor. J Environ Manage. 2012;101:118–123. doi:10.1016/j.jenvman.2012.02.008.
  • Ravi R, Sarayu K, Sandhya S, et al. Rotating biological contactors. Air Pollut Prev Control Bioreact Bioenergy. 2013: 207–220. doi:10.1002/9781118523360.ch9.
  • Chern JM, Chou SR, Shang CS. Effects of impurities on oxygen transfer rates in diffused aeration systems. Water Res. 2001;35:3041–3048. doi:10.1016/S0043-1354(01)00031-8.
  • Israni SH, Koli SS, Patwardhan AW, et al. Phenol degradation in rotating biological contactors. J Chem Technol Biotechnol. 2002;77:1050–1057. doi:10.1002/jctb.677.
  • Ramsay J, Shin M, Wong S, et al. Amaranth decoloration by Trametes versicolor in a rotating biological contacting reactor. J Ind Microbiol Biotechnol. 2006;33:791–795. doi:10.1007/s10295-006-0117-0.
  • Axelsson J, Nilsson U, Terrazas E, et al. Decolorization of the textile dyes reactive Red 2 and reactive blue 4 using Bjerkandera sp. Strain BOL 13 in a continuous rotating biological contactor reactor. Enzyme Microb Technol. 2006;39:32–37. doi:10.1016/j.enzmictec.2005.09.006.
  • Karapinar Kapdan I, Kargi F. Biological decolorization of textile dyestuff containing wastewater by coriolus versicolor in a rotating biological contactor. Enzyme Microb Technol. 2002;30:195–199. doi:10.1016/S0141-0229(01)00468-9.
  • Novotný Č, Trošt N, Šušla M, et al. The use of the fungus Dichomitus squalens for degradation in rotating biological contactor conditions. Bioresour Technol. 2012;114:241–246. doi:10.1016/j.biortech.2012.03.080.
  • Šíma J, Pocedič J, Roubíčková T, et al. Rotating drum biological contactor and its application for textile dyes decolorization. Procedia Eng. 2012;42:1579–1586. doi:10.1016/j.proeng.2012.07.551.
  • Vairavel P, Murty VR. Decolorization of Congo red dye in a continuously operated rotating biological contactor reactor. Desalin Water Treat. 2020;196:299–314. doi:10.5004/dwt.2020.25931.
  • Yuan H, Chen L, Cao Z, et al. Enhanced decolourization efficiency of textile dye Reactive Blue 19 in a horizontal rotating reactor using strips of BNC-immobilized laccase: optimization of conditions and comparison of decolourization efficiency. Biochem Eng J. 2020. doi:10.1016/j.bej.2020.107501.
  • Priya A, Nagan S, Rajeswari M, et al. Rotating biological contactor for the treatment of textile industry wastewater. Int J Adv Engg Tech. 2001;7:209–213.
  • Malachova K, Rybkova Z, Sezimova H, et al. Biodegradation and detoxification potential of rotating biological contactor (RBC) with irpex lacteus for remediation of dye-containing wastewater. Water Res. 2013;47:7143–7148. doi:10.1016/j.watres.2013.07.050.
  • Pakshirajan K, Singh S. Decolorization of synthetic wastewater containing azo dyes in a batch-operated rotating biological contactor reactor with the immobilized fungus phanerochaete chrysosporium. Ind Eng Chem Res. 2010;49:7484–7487. doi:10.1021/ie1007079.
  • Goyal R, Sreekrishnan TR, Khare M, et al. Experimental study on color removal from textile industry wastewater using the rotating biological contactor. Pract Period Hazardous, Toxic, Radioact Waste Manag. 2010;14:240–245. doi:10.1061/ASCEHZ.1944-8376.0000038.
  • Abraham TE, Senan RC, Shaffiqu TS, et al. Bioremediation of textile azo dyes by an aerobic bacterial consortium using a rotating biological contactor. Biotechnol Prog. 2003;19:1372–1376. doi:10.1021/bp034062f.
  • Tavčar M, Svobodová K, Kuplenk J, et al. Biodegradation of azo dye RO16 in different reactors by immobilized irpex lacteus. Acta Chim Slov. 2006;53:338–343.
  • Ge Y, Yan L, Qinge K. Effect of environment factors on dye decolorization by P. sordida ATCC90872 in a aerated reactor. Process Biochem. 2004;39:1401–1405. doi:10.1016/S0032-9592(03)00273-5.
  • Coughlin MF, Kinkle BK, Bishop PL. High performance degradation of azo dye acid orange 7 and sulfanilic acid in a laboratory scale reactor after seeding with cultured bacterial strains. Water Res. 2003;37:2757–2763. doi:10.1016/S0043-1354(03)00069-1.
  • Kreye S, Stahn R, Nawrath K, et al. A novel scale-down mimic of perfusion cell culture using sedimentation in an automated microbioreactor (SAM). Biotechnol Prog. 2019;35; doi:10.1002/btpr.2832.
  • Fink M, Cserjan-Puschmann M, Reinisch D, et al. High-throughput microbioreactor provides a capable tool for early stage bioprocess development. Sci Rep. 2021;11:1–10. doi:10.1038/s41598-021-81633-6.
  • Ravindran S, Singh P, Nene S, et al. Microbioreactors and perfusion bioreactors for microbial and mammalian cell culture. Biotechnol Bioeng. 2019: 1–13. doi:10.5772/intechopen.83825.
  • Prado RC, Borges ER. Microbioreactors as engineering tools for bioprocess development. Brazilian J Chem Eng. 2018;35:1163–1182. doi:10.1590/0104-6632.20180354s20170433.
  • Dajic A, Mihajlovic M, Mandic-Rajcevic S, et al. Improvement of the textile industry wastewater decolorization process using capillary microreactor technology. Int J Environ Res. 2019;13:213–222. doi:10.1007/S41742-018-0162-3.
  • Jovanovic J. Liquid-liquid microreactors for phase transfer catalysis; 2017. doi:10.6100/IR719772.
  • Lladó Maldonado S, Panjan P, Sun S, et al. A fully online sensor-equipped, disposable multiphase microbioreactor as a screening platform for biotechnological applications. Biotechnol Bioeng. 2019;116:65–75. doi:10.1002/bit.26831.
  • Hemmerich J, Noack S, Wiechert W, et al. Microbioreactor systems for accelerated bioprocess development. Biotechnol J. 2018;13:1700141. doi:10.1002/biot.201700141.
  • Krull R, Lladó-Maldonado S, Lorenz T, et al. Microbioreactors. Microsystems Pharmatechnology Manip. Fluids, Part Droplets, Cells. 2016: 99–152. doi:10.1007/978-3-319-26920-7_4.
  • Adrio JL, Demain AL. Microbial enzymes: tools for biotechnological processes. Biomolecules. 2014;4:117–139. doi:10.3390/biom4010117.
  • Erickson B, Nelson JE, Winters P. Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol J. 2012;7:176–185. doi:10.1002/biot.201100069.
  • Perez-Pinera P, Han N, Cleto S, et al. Synthetic biology and microbioreactor platforms for programmable production of biologics at the point-of-care. Nat Commun. 2016;7:1–10. doi:10.1038/ncomms12211.
  • Dietzel A. Microsystems for pharmatechnology: Manipulation of fluids, particles, droplets, and cells, Microsystems for Pharmatechnology: Manipulation of Fluids, Particles, Droplets, and Cells; 2016. doi:10.1007/978-3-319-26920-7.
  • Hegab HM, ElMekawy A, Stakenborg T. Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics. 2013;7; doi:10.1063/1.4799966.
  • Mohammed Redha Z, Abdulla Yusuf H, Amin R, et al. The study of photocatalytic degradation of a commercial azo reactive dye in a simple design reusable miniaturized reactor with interchangeable TiO2 nanofilm. Arab J Basic Appl Sci. 2020;27:287–298. doi:10.1080/25765299.2020.1800163.
  • Suhadolnik L, Pohar A, Novak U, et al. Continuous photocatalytic, electrocatalytic and photo-electrocatalytic degradation of a reactive textile dye for wastewater-treatment processes: batch, microreactor and scaled-up operation. J Ind Eng Chem. 2019;72:178–188. doi:10.1016/j.jiec.2018.12.017.
  • Talaiekhozani A, Reza Mosayebi M, Fulazzaky MA, et al. Combination of TiO2 microreactor and electroflotation for organic pollutant removal from textile dyeing industry wastewater. Alexandria Eng J. 2020;59:549–563. doi:10.1016/j.aej.2020.01.052.
  • Tapia-Tlatelpa T, Trull J, Romeral L. In situ decolorization monitoring of textile dyes for an optimized UV-LED/TiO2 reactor. Catalysts. 2019;9:1–15. doi:10.3390/catal9080669.
  • Dayı B, Onac C, Kaya A, et al. New Type biomembrane: transport and biodegradation of reactive textile Dye. ACS Omega. 2020;5:9813–9819. doi:10.1021/acsomega.9B04433.
  • Faryadi M, Rahimi M, Akbari M. Process modeling and optimization of Rhodamine B dye ozonation in a novel microreactor equipped with high frequency ultrasound wave. Korean J Chem Eng. 2016;33:922–933. doi:10.1007/s11814-015-0188-6.
  • Castro FD, Bassin JP, Dezotti M. Treatment of a simulated textile wastewater containing the reactive orange 16 azo dye by a combination of ozonation and moving-bed biofilm reactor: evaluating the performance, toxicity, and oxidation by-products. Environmental Science and Pollution Research. 2016;24:6307–6316. doi:10.1007/s11356-016-7119-x.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.