227
Views
1
CrossRef citations to date
0
Altmetric
Review

A critical review of mineral substrates used as filter media in subsurface constructed wetlands: costs as a selection criterion

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 251-271 | Received 09 Nov 2021, Accepted 20 Mar 2023, Published online: 17 Apr 2023

References

  • Populationpyramid. (consultado 25 de febrero de 2019). ONU, 2019. Available from: https://www.populationpyramid.net/es/mundo/2019/
  • United Nations Water. The United Nations World Water Development Report 2017: wastewater the untapped resource; 2017.
  • Van Bruggen AH, Goss EM, Havelaar A, et al. One health-cycling of diverse microbial communities as a connecting force for soil, plant, animal, human and ecosystem health. Sci Total Environ. 2019;664:927–937.
  • Vera A, Andrade C, Flores E, et al. Removal of nutrients and organic matter in a constructed wetland, in function of the development of the macrophyte Typha dominguensis Pers. Rev Téc Facul Ing. Univ Zulia. 2010;33(2):145–152.
  • Stefanakis AI. The role of constructed wetlands as green infrastructure for sustainable urban water management. Sustainability. 2019;11(24):6981.
  • Ponis ST, Ntalla A Prácticas y enfoques de gestión de crisis: conocimientos de las principales crisis de la cadena de suministro. Procedia economía y finanzas. 2016;39:668–673.
  • Khan S, Nawab J, Waqas M. Constructed wetlands: a clean-green technology for degradation and detoxification of industrial wastewaters. In: Bioremediation of industrial waste for environmental safety. Singapore: Springer Nature; 2020. p. 127–163.
  • Landa-Acuña D, Acosta RAS, Cutipa EH, et al. Bioremediation: A Low-cost and clean-green technology for environmental management. In: Microbial bioremediation & biodegradation. Singapore: Springer Nature; 2020. p. 153–171.
  • Marín-Muñiz JL. Humedales construidos en México para el tratamiento de aguas residuales, producción de plantas ornamentales y reuso del agua. Agroproductividad. 2017;10(5):90–95.
  • Zurita F, Belmont MA, De Anda J, et al. Seeking a way to promote the use of constructed wetlands for domestic wastewater treatment in developing countries. Water Sci Technol. 2011;63(4):654–659.
  • García-García P, Ruelas Monjardin L, Marin-Muñiz JL. Constructed wetlands: a solution to wáter quality issues in Mexico? Water Policy. 2016;18(3):654–669.
  • Lovera A, Bonilla C, Hidalgo J. Efecto neutralizador del extracto acuoso de Dracontium loretense (jergón sacha) sobre la actividad letal del veneno de Bothrops atrox. Revista Peruana Medicina Experimental Salud Pública. 2006;23(3):177–181.
  • Vymazal J, Kropfelova L. Wastewater treatment in constructed wetlands with horizontal sub-surface flow. In: Environmental pollution, 14. Heidelberg: Springer science & business media; 2008, p. 566.
  • Andrade M, Camacho A, Delgadillo O, et al. Depuración de aguas residuales por medio de humedales artificiales. Serie técnica. Centro Agua de la UMSS. Bolivia. 2010; 115 p.
  • Masi F, Rizzo A, Regelsberger M. The role of constructed wetlands in a new circular economy, resource oriented, and ecosystem services paradigm. J Environ Manag. 2018;216:275–284.
  • Molinos-Senante M, Gómez T, Garrido-Baserba M, et al. Assessing the sustainability of small wastewater treatment systems: A composite indicator approach. Sci Total Environ. 2014;497:498–498.
  • Arteaga-Cortez VM, Quevedo-Nolasco A, del Valle-Paniagua DH, et al. State of art: A current review of the mechanisms that make the artificial wetlands for the removal of nitrogen and phosphorus. Tecnol Cien Agua. 2019;10(5):319–342.
  • Wang Y, Cai Z, Sheng S, et al. Comprehensive evaluation of substrate materials for contaminants removal in constructed wetlands. Sci Total Environ. 2020;701:134736.
  • Badiou P, Page B, Ross L. A comparison of water quality and greenhouse gas emissions in constructed wetlands and conventional retention basins with and without submerged macrophyte management for storm water regulation. Ecol Eng. 2019;127:292–301.
  • Avellán T, Gremillion P. Constructed wetlands for resource recovery in developing countries. Renewable Sustainable Energy Rev. 2019;99:42–57.
  • Zhang XB, Liu P, Yang YS, et al. Phytoremediation of urban wasterwater by model wetlandswith ornamental hydrophytes. J Environ Sci. 2006;19:902–909.
  • Sandoval L, Zamora-Castro SA, Vidal-Álvarez M, et al. Role of wetland plants and Use of ornamental flowering plants in constructed wetlands for wastewater treatment: A review. Applied Sciences. 2019a;9(4):685.
  • Frers C. El uso de plantas acuáticas para el tratamiento de aguas residuales. Observ Medioambiental. 2008;11:301–305.
  • Arias CA, Brix H. Humedales artificiales para el tratamiento de aguas residuales. Ciencia e Ing Neogranad. 2016;13(1):17–24.
  • García J, Corzo A. Depuración con humedales construidos. Guía práctica de diseño, construcción y explotación de sistemas de humedales de flujo subsuperficial. Departamento de Ingeniería Hidráulica, Marítima y Ambiental de la Universidad Politécnica de Catalunya, 108; 2008.
  • Kadlec RH, Knight RL. Tratamiento de los Humedales. Florida: CRC Press; 1996.
  • Coles B, Coles JM. People of the wetlands: bogs, bodies and lake dwellers. New York: Thames & Hudson; 1989.
  • Arias García J, Gómez Zotano. La planificación y gestión de los humedales de Andalucía en el marco del Convenio Ramsar. 2015.
  • García JA, Paredes D, Cubillos JA. Effect of plants and the combination of wetland treatment type systems on pathogen removal in tropical climate conditions. Ecol Eng. 2013;58:57–62.
  • Mitsch WJ, Gosselink J. Wetlands. 5th ed. New York: John Wiley and Sons Inc; 2015, 27 p.
  • Hernandez ME. Humedales ornamentales con participación comunitaria para el saneamiento de aguas municipales en Mexico. Rev Int Desarrollo Region Sustentable. 2016;1(2):1–12.
  • Means MM, Ahn C, Noe GB. Planting richness affects the recovery of vegetation and soil processes in constructed wetlands following disturbance. Sci Total Environ. 2017;579:1366–1378.
  • Matamoros V, Rodríguez Y, Bayona JM. Mitigation of emerging contaminants by full-scale horizontal flow constructed wetlands fed with secondary treated wastewater. Ecol Eng. 2017;99:222–227.
  • Qijun CSWZK. Macrophytes in artificial wetland. J Lake Science. 2002;14(2):179–184.
  • Borin M. Fitodepurazione: Soluzioni per il trattamento dei relui con le piante. Bologna: Edagricole; 2003; p. 197.
  • Wallace S, Knight R. Small scale constructed wetland treatment systems: Feasibility, Design Criteria, and O&M Requirements, Water Environment Research Foundation: Alexandria, Virginia; 2006, p. 350.
  • Kadlec R, Wallace S. Treatment wetlands. Boca Raton: Taylor & Francis Group; 2009, p. 1016.
  • Vymazal J. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia. 2011;674(1):133–156.
  • Merino-Solís ML, Villegas E, de Anda J, et al. The effect of the hydraulic retention time on the performance of an ecological wastewater treatment system: An anaerobic filter with a constructed wetland. Water (Basel). 2015;7(3):1149–1163.
  • Belmont M, Cantellano E, Thomps S, et al. Treatment of domestic wasterwater in a pilot-scale natural treatment system in central Mexico. Ecol Eng. 2004;23:299–311.
  • Montealegre B. Evaluación de dos géneros de plantas del orden Zingiberales en humedales construidos para mejorar la calidad del agua del río Sordo y su efecto en la emisión de gases invernadero [Doctoral dissertation]. Tesis de la Universidad Veracruzana-Xalapa, Veracruz México; 2010.
  • Galindo-Zetina M. Emisión de gases invernadero, remoción de contaminantes y crecimiento de plantas ornamentales en humedales construidos para el tratamiento de aguas residuales (Tesis de licenciatura). Instituto Tecnológico Superior de Zacapoaxtla. Puebla; 2012.
  • Parra J. Evaluación de la remoción de contaminantes y la emisión de gases de efecto invernadero en humedales construidos con plantas ornamentales en Pinoltepec, Veracruz. Facultad de Biología. Instituto Tecnológico de Zacapoaxtla; 2014.
  • Mitsch WJ, Gosselink JG. Wetlands. 4th ed. Nueva York: John Wiley & Sons; 2007.
  • Yu G, Tan M, Chong Y, et al. Spatial variation of phosphorous retention capacity in subsurface flow constructed wetlands: effect of wetland type and inflow loading. PloS one. 2015;10(7):e0134010.
  • Alvarez JMM, Pozuelo RFV, Marzo JMD, et al. Contribuciones a la flora de los humedales del sur de Córdoba (Andalucía, España)/contribution to the vascular flora of the wetlands of the south of Cordoba (Andalusia, Spain). Flora Montiberica. 2016;65:8–16.
  • Vymazal J. The use of hybrid constructed wetlands for wastewater treatment with special attention to nitrogen removal: a review of a recent development. Water Res. 2013;47(14):4795–4811.
  • Saeed T, Haque I, Khan T. Organic matter and nutrients removal in hybrid constructed wetlands: influence of saturation. Chem Eng J. 2019;371:154–165.
  • Maine MA, Sanchez GC, Hadad HR, et al. Hybrid constructed wetlands for the treatment of wastewater from a fertilizer manufacturing plant: microcosms and field scale experiments. Sci Total Environ. 2019;650:297–302.
  • Rousso BZ, Pelissari C, Santos MOD, et al. Hybrid constructed wetlands system with intermittent feeding applied for urban wastewater treatment in south Brazil. J Water Sanitation Hyg Develop. 2019;9(3):559–570.
  • Du M, Xu D, Trinh X, et al. EPS solubilization treatment by applying the biosurfactant rhamnolipid to reduce clogging in constructed wetlands. Bioresour Technol. 2016;218:833–841.
  • Wu S, Lv T, Lu Q, et al. Treatment of anaerobic digestate supernatant in microbial fuel cell coupled constructed wetlands: evaluation of nitrogen removal, electricity generation, and bacterial community response. Sci Total Environ. 2017;580:339–346.
  • Martínez NB, Tejeda A, Del Toro A, et al. Nitrogen removal in pilot-scale partially saturated vertical wetlands with and without an internal source of carbon. Sci Total Environ. 2018;645:524–532.
  • Ding X, Xue Y, Zhao Y, et al. Effects of different covering systems and carbon nitrogen ratios on nitrogen removal in surface flow constructed wetlands. J. Clean. Prod. 2018a;172:541–551.
  • Zhao M, Wang S, Wang H, et al. Application of sodium titanate nanofibers as constructed wetland fillers for efficient removal of heavy metal ions from wastewater. Environ Pollut. 2019;248:938–946.
  • Brisson J, Chazarenc F. Maximizing pollutant removal in constructed wetlands: should we pay more attention to macrophyte species selection? Sci Total Environ. 2009;407(13):3923–3930.
  • Romero-Aguilar M, Colin-Cruz A, Sanchez-Salinas E, et al. Wastewater treatment by an artificial wetlands pilot system: evaluation of the organic charge removal. Rev Int Contaminación Ambiental. 2009;25(3):157–167.
  • Rivas A, Barcelo-Quintal I, Moeller GE. Pollutant removal in a multi-stage municipal wastewater treatment system comprised of constructed wetlands and a maturation pond, in a temperate climate. Water Sci Techonol. 2011;54(4):980–987.
  • Marín-Muñiz JL, Hernández ME, Gallegos-Pérez MP, et al. Plant growth and pollutant removal from wastewater in domiciliary constructed wetland microcosms with monoculture and polyculture of tropical ornamental plants. Ecol Eng. 2020;147:105658.
  • Orozco CE, Cruz A, Rodríguez M, et al. Humedal subsuperficial de flujo vertical como sistema de depuración terciaria en el proceso de beneficiado de café. Higiene y Sanidad Ambiental. 2006;6(7):190–196.
  • Ramírez-Carrillo HF, Luna-Pabello VM, Arredondo-Figueroa JL. Evaluación de un humedal artificial de flujo vertical intermitente, para obtener agua de buena calidad para la acuicultura/evaluation of an intermitent artificial vertical flow wetland, to obtain good quality water for aquaculture. Revista Mexicana Ingeniería Química. 2009;8(1):93–99.
  • Zurita F, White JR. Comparative study of three two-stage hybrid ecological wastewater treatment systems for producing high nutrient, reclaimed water for irrigation reuse in developing countries. Water (Basel). 2014;6(2):213–228.
  • Marín-Muñiz JL. Remoción de contaminantes de aguas residuales por medio de humedales artificiales establecidos en el municipio de Actopan, Veracruz, México/Removal of wastewater pollutant in artificial wetlands implemented in Actopan, Veracruz, México. Revista Mexicana Ingeniería Química. 2016;15(2):553–563.
  • Zurita F, de Anda J, Belmont MA. Performance of laboratory-scale wetlands planted with tropical ornamental plants to treat domestic wastewater. Water Quality Res J. 2006;41(4):410–417.
  • Maas-Van de Kamer H, Maas PJM. The Cannaceae of the world. Blumea-Biodiversity. Evol Biogeograph Plants. 2008;53(2):247–318.
  • Sandoval L, Marín-Muñiz JL, Zamora-Castro SA, et al. Evaluation of wastewater treatment by microcosms of vertical subsurface wetlands in partially saturated conditions planted with ornamental plants and filled with mineral and plastic substrates. Int J Environ Res Public Health. 2019;16(2):167.
  • Matos A, Freitas W, Martínez M, et al. Tifton grass yield on constructed wetland used for swine wastewater treatment. Revista Brasil Engenharia Agrícola Ambiental. 2010;14(5):510–516.
  • Antunes M, Colen F, Menegali I, et al. Desempenho de alagados constrídos cultivado com tifton 85 (Cynodon Dactylon Pers.). Res Soc Develop. 2021;10(5):1–10.
  • Texeira D, Matos A, Hamakawa P, et al. Evapotranspiration of the vetiver and tifton 85 grasses grown in horizontal subsurface flow constructed wetlands. J Environ Sci Health, Part A. 2020;55(6):661–668.
  • Long Y, Zhang Z, Pan X, et al. Substrate influences on archaeal and bacterial assemblages in constructed wetland microcosms. Ecol Eng. 2016;94:437–442.
  • Gagnon V, Chazarenc F, Comeau Y, et al. Influence of macrophyte species on microbial density and activity in constructed wetlands. Water Sci Technol. 2007;56(3):249–254.
  • Carballeira T, Ruiz I, Soto M. Methanogenic activity of accumulated solids and gas emissions from planted and unplanted shallow horizontal subsurface flow constructed wetlands. Ecol Eng. 2017;98:297–306.
  • Huang X, Zheng J, Liu C, et al. Removal of antibiotics and resistance genes from swine wastewater using vertical flow constructed wetlands: effect of hydraulic flow direction and substrate type. Chem Eng J. 2017;308:692–699.
  • Józefowska A, Woś B, Pietrzykowski M. Tree species and soil substrate effects on soil biota during early soil forming stages at afforested mine sites. Appl Soil Ecol. 2016;102:70–79.
  • Al-Omari A, Fayyad M. Treatment of domestic wastewater by subsurface flow constructed wetlands in Jordan. Desalination. 2003;155(1):27–39.
  • Greenway M, Woolley A. Constructed wetlands in Queensland: performance efficiency and nutrient bioaccumulation. Ecol Eng. 1999;12(1-2):39–55.
  • Steer D, Fraser L, Boddy J, et al. Efficiency of small constructed wetlands for subsurface treatment of single-family domestic effluent. Ecol Eng. 2002;18(4):429–440.
  • Vymazal J. The use of sub-surface constructed wetlands for wastewater treatment in the Czech Republic: 10 years experience. Ecol Eng. 2002;18(5):633–646.
  • Maucieri Carmelo, Barbera Antonio C., Vymazal Jan, et al. A review on the main affecting factors of greenhouse gases emission in constructed wetlands. Agricultural and Forest Meteorology. 2017;236:175–193. doi:10.1016/j.agrformet.2017.01.006.
  • Vainburg VM, Lysenko AA, Shtyagina LM, et al. Fibrous materials as artificial soil substrates. Fibre Chem. 2008;40(4):308–313.
  • Tanner CC, Headley TR. Components of floating emergent macrophyte treatment wetlands influencing removal of stormwater pollutants. Ecol Eng. 2011;37(3):474–486.
  • Korboulewsky N, Wang R, Baldy V. Purification processes involved in sludge treatment by a vertical flow wetland system: focus on the role of the substrate and plants on N and P removal. Bioresour Technol. 2012;105:9–14.
  • Chafloque WAL, Gómez EG. Diseño de humedales artificiales para el tratamiento de aguas residuales en la UNMSM. Revista Instituto Investig Facul Ingeniería Geológica, Minera, Metal Geográfica. 2006;9(17):85–96.
  • Beavers PD, Tully IK. Nutrient reduction evaluation of sewage effluent treatment options for small communities. Water Sci Technol. 2005;51(10):221–229.
  • Cao W, Wang Y, Sun L, et al. Removal of nitrogenous compounds from polluted river water by floating constructed wetlands using rice straw and ceramsite as substrates under low temperature conditions. Ecol Eng. 2016;88:77–81.
  • Caselles-Osorio A, Vega H, Lancheros JC, et al. Horizontal subsurface-flow constructed wetland removal efficiency using Cyperus articulatus L. Ecol Eng. 2017;99:479–485.
  • García González MCFDP. Estudio del crecimiento de plantas y evaluación de la capacidad de remoción de contaminantes en aguas residuales mediante microcosmos de humedales artificiales; 2015.
  • Reyes RGM, Judith MB, Alfredo JB, et al. Humedal de flujo vertical para tratamiento terciario del efluente físico-químico de una estación depuradora de aguas residuales domésticas/ subsurface vertical flow constructed wetland for tertiary treatment of effluent of physical-chemical process of a domestic wastewater treatment plant. Ingeniería, Investigación Tecnología. 2013;14(2):223–235.
  • Hernández ME, Ruiz-Enzástiga P. Riparian Constructed Wetlands for Improving Wáter Quality in a Pollute Driver in Southeastern Mexico. In XVII World congress of the international commission of Agricultural and Biosystems Engineering. Québec City, Canada; 2010.
  • De la Esse Cevallos DC. Propuesta de producción más limpia en la finca Maranatha para el manejo eficiente del agua [Doctoral dissertation]; 2015.
  • Cabrera M, Alexander P. Evaluación de la eficiencia de tratamiento de aguas residuales domésticas, implementando un sistema de humedales artificiales de flujo subsuperficial horizontal (HAFSSH) en el colegio comfamiliar siglo XXI, sede campestre corregimiento de San Fernando, Municipio de Pasto, Colombia [Doctoral dissertation]. Facultad de Ciencias Exactas y Naturales. Universidad de Buenos Aires; 2014.
  • Gilón LP. Remoción de contaminantes en la estabilización de humedales construidos de flujo vertical, sembrados con heliconia (sp), para el tratamiento de aguas residuales domésticas [Doctoral dissertation]. Universidad Tecnológica de Pereira. Facultad de Tecnologías. Tecnología Química; 2014.
  • Arivoli A, Mohanraj R. Efficacy of Typha angustifolia based vertical flow constructed wetland system in pollutant reduction of domestic wastewater. Int J Environ Sci. 2013;3(5):1497.
  • Mosquera HG, Varón MRP, Reyes AA. Estimación del balance de nitrógeno en un humedal construido subsuperficial plantado con Heliconia psittacorum para el tratamiento de aguas residuales domésticas/Nitrogen balance estimation in a subsurface flow constructed wetland planted with Heliconia psittacorum for domestic wastewater treatment. Revista Facult Ingeniería Universidad Antioquia. 2010;56, 87–98.
  • Paz N, Blanco E, Gutiérrez E, et al. Pilot scale superficial flow constructed wetlands for sulfide and phenol removals from oil field produced water. Revista Técnica Facult Ingeniería. Universidad Zulia. 2012;35(1):71–79.
  • Agudelo C, Ruth M, Jaramillo G, et al. Remoción del carbono orgánico disuelto en humedales piloto de flujos subsuperficial y superficial/ removal of dissolved organic carbon in pilot wetlands of subsuperficial and superficial flows. Revista Facultad Nacional Salud Pública. 2010;28(1):21–28.
  • Acosta CM, Silván RS, Ocaña GL, et al. Tratamiento de aguas residuales por humedales artificiales tropicales en tabasco, méxico/constructed wastewater treatment by tropical-wetlands in tabasco, Mexico/treatment of water waste by wetlands artificial tropical in tabasco. CIBA Revista Iberoamer Ciencias Biol Agropecuarias. 2016;5(10):1–20.
  • González B, Torrealba G, Cuicas ECL, et al. Evaluación de un humedal artificial como tratamiento para efluentes sintéticos de tenería. Novum Scientiarum. 2016;1:52–57.
  • Sarmento AP, Borges AC, de Matos AT. Effect of cultivated species and retention time on the performance of constructed wetlands. Environ Technol. 2013;34(8):961–965.
  • Ríos-Montes KA, Peñuela-Mesa GA. Chlorothalonil degradation by a microbial consortium isolated from constructed wetlands in laboratory trials. Actualidades Biológicas. 2015;37(102):255–265.
  • Valles-Aragón MC, Alarcón-Herrera MT. Retención de arsénico en humedales construidos con Eleocharis macrostachya y Schoenoplectus americanus/ Arsenic retention in a wetland constructed with Eleocharis macrostachya and Schoenoplectus americanus. Revista Int Contaminación Ambiental. 2014;30(2):143–148.
  • Sheoran AS. A laboratory treatment study of acid mine water of wetlands with emergent macrophyte (Typha angustata). Int J Surf Mining, Reclamation Environ. 2006;20(3):209–222.
  • Ayaz SC. Post-treatment and reuse of tertiary treated wastewater by constructed wetlands. Desalination. 2008;226(1-3):249–255.
  • Marchand L, Nsanganwimana F, Oustrière N, et al. Copper removal from water using a bio-rack system either unplanted or planted with Phragmites australis, Juncus articulatus and Phalaris arundinacea. Ecol Eng. 2014;64:291–300.
  • Calheiros CS, Bessa VS, Mesquita RB, et al. Constructed wetland with a polyculture of ornamental plants for wastewater treatment at a rural tourism facility. Ecol Eng. 2015;79:1–7.
  • Sanz JM, Martín N, Camacho JV. Depuración de aguas residuales con humedales artificiales: Ventajas de los sistemas híbridos. Castilla, España: CONAMA; 2009.
  • Badejo AA, Omole DO, Ndambuki JM, et al. Municipal wastewater treatment using sequential activated sludge reactor and vegetated submerged bed constructed wetland planted with Vetiveria zizanioides. Ecol Eng. 2017;99:525–529.
  • Tang X, Huang S, Scholz M, et al. Nutrient removal in pilot-scale constructed wetlands treating eutrophic river water: assessment of plants, intermittent artificial aeration and polyhedron hollow polypropylene balls. Water, Air, Soil Pollut. 2009;197(1-4):61.
  • Chen J, Wei XD, Liu YS, et al. Removal of antibiotics and antibiotic resistance genes from domestic sewage by constructed wetlands: optimization of wetland substrates and hydraulic loading. Sci Total Environ. 2016;565:240–248.
  • Li XN, Song HL, Li W, et al. An integrated ecological floating-bed employing plant, freshwater clam and biofilm carrier for purification of eutrophic water. Ecol Eng. 2010;36(4):382–390.
  • White Sarah A., Cousins Matthew M. Floating treatment wetland aided remediation of nitrogen and phosphorus from simulated stormwater runoff. Ecological Engineering. 2013;61:207–215. doi:10.1016/j.ecoleng.2013.09.020.
  • Sun Lianpeng, Liu Yang, Jin Hui. Nitrogen removal from polluted river by enhanced floating bed grown canna. Ecological Engineering. 2009;35(1):135–140. doi:10.1016/j.ecoleng.2008.09.016.
  • Cao Wenping, Zhang Yanqiu. Removal of nitrogen (N) from hypereutrophic waters by ecological floating beds (EFBs) with various substrates. Ecological Engineering. 2014;62:148–152. doi:10.1016/j.ecoleng.2013.10.018.
  • Zhou Xiaohong, Wang Guoxiang. Nutrient concentration variations during Oenanthe javanica growth and decay in the ecological floating bed system. Journal of Environmental Sciences. 2010;22(11):1710–1717. doi:10.1016/S1001-0742(09)60310-7.
  • Xin Zai-jun, Li Xiu-zhen, Nielsen Søren, et al. Effect of Stubble Heights and Treatment Duration Time on the Performance of Water Dropwort Floating Treatment Wetlands (FTWS). Ecological Chemistry and Engineering S. 2012;19(3):315–330. doi:10.2478/v10216-011-0023-x.
  • Delgadillo O. Depuración de aguas residuales por medio de humedales artificiales. Nelson Antequera; 2010.
  • Long Y, Zhang Z, Pan X, et al. Substrate influences on archaeal and bacterial assemblages in constructed wetland microcosms. Ecol Eng. 2016;94:437–442.
  • Li Y, Zhu G, Ng WJ. A review on removing pharmaceutical contaminants from wastewater by constructed wetlands: design, performance and mechanism. Science of the Total Environment. 2014;468:908–932.
  • Esbert Alemany R M, Marcos Fierro, Ordaz Gargallo R M, etal.. Petrografía, propiedades físicas y durabilidad de algunas rocas utilizadas en el patrimonio monumental de Catalunya (España). 1989.
  • Íñigo A Í, Tavera S V, Arnau V R, et al. Porosidad libre en granitos alterados: Comentarios a las normas. Materiales de Construcción. 1995;45(238):47–53.
  • Lemaire F, Fatigues L M, Rivières. Cultures en Post et Conteneurs, Principes Agronomiques at Ap-plications. 2003.
  • Trejo-Téllez L I, Ramírez-Martínez M, Gómez-Merino F C, etal. . Evaluación física y química de tezontle y su uso en la producción de tulipán. Revista mexicana de ciencias agrícolas. 2013;4(SPE5):863–876.
  • Cabrera R. Propiedades, uso y manejo de sustratos de cultivo para la producción de plantas en maceta. Revista chapingo serie horticultura. 1999;5:5–11.
  • Barbaro L A M A, Karlanian S, Imhoff DE. Caracterización de la turba subtropical del departamento Islas del Ibicuy. Agriscientia. 2011;28(2):137–145.
  • Xiaoyan T, Suyu W, Yang Y. et.al. Chemical Engineering Journal. 2015;275:198–205.
  • Paleo M C, Pérez Meroni. Dimensión social de la tecnología cerámica en sociedades cazadoras-recolectoras. 2006.
  • Santamaría-Vicario I, Rodríguez-Saiz Á, García-Cuadrado J, et al. Influencia de la porosidad en el comportamiento de morteros fabricados con escorias de acería y aditivos en ambientes húmedos DYNA-Ingeniería e Industria; 2017.
  • Fu G, Yu T, Huangshen L, et al. The influence of complex fermentation broth on denitrification of saline sewage in constructed wetlands by heterotrophic nitrifying/aerobic denitrifying bacterial communities. Bioresour Technol. 2018;250:290–298.
  • Ding Y, Lyu T, Bai S, et al. Effect of multilayer substrate configuration in horizontal subsurface flow constructed wetlands: assessment of treatment performance, biofilm development, and solids accumulation. Environ Sci Pollut Res. 2018;25(2):1883–1891.
  • Sandoval-Herazo LC, Alvarado-Lassman A, López-Méndez MC, et al. Effects of ornamental plant density and mineral/plastic media on the removal of domestic wastewater pollutants by home wetlands technology. Molecules. 2020;25(22):5273.
  • Zehua J, Wenzhong T, Yuansheng P. Constructed wetland substrates: A review on development, function mechanisms, and application in contaminants removal; 2022. doi:10.1016/j.chemosphere.2021.131564
  • Sandoval-Herazo Mayerlin, Martínez-Reséndiz Georgina, Fernández Echeverria Eduardo, et al. Plant Biomass Production in Constructed Wetlands Treating Swine Wastewater in Tropical Climates. Fermentation. 2021;7(4):296. doi:10.3390/fermentation7040296.
  • Mlih R, Bydalek F, Klumpp E, et al. Light-expanded clay aggregate (LECA) as a substrate in constructed wetlands – a review. Ecol Eng. 2020;148:105783.
  • Batool A, Saleh TA. Removal of toxic metals from wastewater in constructed wetlands as a green technology; catalyst role of substrates and chelators. Ecotoxicol Environ Saf. 2020;189:109924.
  • IWA. Constructed wetlands for pollution control: processes, performance, design and operation. London: IWA Publishing; 2001.
  • Mohammed A, Babatunde AO. Modelling heavy metals transformation in vertical flow constructed wetlands. Ecol. Model. 2017;354:62–71.
  • Kizito S, Wu S, Kirui WK, et al. Evaluation of slow pyrolyzed wood and rice husks biochar for adsorption of ammonium nitrogen from piggery manure anaerobic digestate slurry. Sci Total Environ. 2015;505:102–112.
  • Cui L, Zhu X, Ma M, et al. Phosphorus sorption capacities and physicochemical properties of nine substrate materials for constructed wetland. Arch Environ Contam Toxicol. 2008;55(2):210–217.
  • Arias CA, Del Bubba M, Brix H. Phosphorus removal by sands for use as media in subsurface flow constructed reed beds. Water Res. 2001;35(5):1159–1168.
  • Brix H, Arias CA, Del Bumma M. La selección de medios para la eliminación de fósforo sostenible en humedales construidos de flujo subsuperficial.Sci agua. Tech. 2001;44:47–54.
  • Pant HK, Reddy KR, Lemon E. Phosphorus retention capacity of root bed media of sub-surface flow constructed wetlands. Ecol Eng. 2001;17(4):345–355.
  • Zhou M, Yuncong L. Características de fósforo-sorción de suelos calcáreos y piedra caliza de las marismas del sur y las tierras de cultivo adyacentes. Soil Sci Soc Am J. 2001;65(2001):1404–1412.
  • Zhu T, Jenssen PD, Mæhlum T, et al. Fósforo de sorción y químicas chracteristics de áridos ligeros (LWA): medios de filtro potenciales en humedales de tratamiento. Sci Agua Tech. 1997;35(1997):103–108.
  • Drizo A, Frost CA, Grace J, et al. Physico-chemical screening of phosphate-removing substrates for use in constructed wetland systems. Water Res. 1999;33(17):3595–3602.
  • Rodríguez-Momroy J, Durán-de-Bazúa C. Remoción de nitrógeno en un sistema de tratamiento de aguas residuales usando humedales artificiales de flujo vertical a escala de banco. Tecnología, Ciencia, Educación. 2006;21(1):25–33.
  • Kuschk P, Wiessner A, Kappelmeyer U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Res. 2003;37(17):4236–4242.
  • Sandoval-Herazo LC, Alvarado-Lassman A, Marín-Muñiz JL, et al. Effects of the use of ornamental plants and different substrates in the removal of wastewater pollutants through microcosms of constructed wetlands. Sustainability. 2018;10(5):1594.
  • Saraiva CB, Matos AT, Matos MP, et al. Influence of substrate and species arrangement of cultivated grasses on the efficiency of horizontal subsurface flow constructed wetlands. Engenharia Agricola. 2018;38:417–425.
  • Miranda ST, de Matos AT, de Matos MP, et al. Influence of the substrate type and position of plant species on clogging and the hydrodynamics of constructed wetland systems. J Water Process Eng. 2019;31:100871.
  • Chen X, Huang X, Zhang K, et al. Feasibility of using plastic wastes as constructed wetland substrates and potential for pharmaceuticals and personal care products removal. J Environ Sci Health, Part A. 2020;55(10):1241–1246.
  • Orduña-Gaytán F, Vallejo-Cantú NA, Alvarado-Vallejo A, et al. Evaluation of the removal of organic matter and nutrients in the Co-treatment of fruit and vegetable waste using a bioreactor-constructed wetlands system. Processes. 2022;10(2):278.
  • Yang Y, Yaqian Z, Ranbin L, et al. Global development of various emerged substrates utilized in constructed wetlands. 2018. doi:10.1016/j.biortech.2018.03.085
  • Arroyo P, Ansola G, Miera LESd. Effects of substrate, vegetation and flow on arsenic and zinc removal efficiency and microbial diversity in constructed wetlands. Ecol Eng. 2013;51:95–103. doi:10.1016/j.chemosphere.2021.131564.
  • Dordio AV, Carvalho AJ. Organic xenobiotics removal in constructed wetlands, with emphasis on the importance of the support matrix. J Hazard Mater. 2013;252:272–292...
  • Tsihrintzis VA. The use of vertical flow constructed wetlands in wastewater treatment. Water Resource Manag. 2017;31(10):3245–3270.
  • Gupta VK, Carrott PJM, Carrott R, et al. Low-cost adsorbents: growing approach to wastewater treatment – a review. Crit Rev Environ Sci Technol. 2009;39(10):783–842.
  • Cano A.L Depuración de aguas residuales mediante humedales artificiales: La EDAR de los Gallardos (Almería). In: Ecología, manejo y conservación de los humedales. Almeria: Instituto de Estudios Almerienses; 2003, p. 99–112.
  • Wu H, Zhang J, Ngo HH, et al. A review on the sustainability of constructed wetlands for wastewater treatment: design and operation. Bioresour Technol. 2015;175:594–601.
  • Lai DY, Lam KC. Phosphorus sorption by sediments in a subtropical constructed wetland receiving stormwater runoff. Ecol Eng. 2009;35(5):735–743.
  • Marín-Muñiz Jose Luis, García-González Maria Cristina, Ruelas-Monjardín Laura C, et al. Influence of Different Porous Media and Ornamental Vegetation on Wastewater Pollutant Removal in Vertical Subsurface Flow Wetland Microcosms. Environmental Engineering Science. 2018;35(2):88–94. http://dx.doi.org/10.1089/ees.2017.0061.
  • Dougclack Truking Co. Price-list [WWW Document]. 2019. https://www.dougclack.com/ (accessed 14.10.22).
  • QuimiNet. [WWW Document]. 2017. https://www.quiminet.com/ (accessed 15.10.22).
  • CostoNet. [WWW Document]; 2018. https://www.costonet.com.mx/ (accessed 14.10.22).
  • CostoNet. [WWW Document]. 2019. https://www.costonet.com.mx/ (accessed 14.10.22).
  • QuimiNet. [WWW Document]. 2014. https://www.quiminet.com/ (accessed 15.10.22).
  • Ceramics International. Shop [WWW Document. 2019. https://www.ceramicsinternational.com.au/ (accessed 14.10.22).
  • Espuma en Casa. Catalogo [WWW Document]. 2018. https://www.espumaencasa.es// (accessed 14.10.22).
  • The Home Depot. [WWW Document]. 2019. https://www.homedepot.com/ (accessed 12.10.22).
  • Zeomex A. Filtros de zeolita [WWW Document. 2019. https://zeomex.com.mx// (accessed 10.10.22).
  • Zhang Dong-Qing, Jinadasa K.B.S.N, Gersberg Richard M., et al. Application of constructed wetlands for wastewater treatment in tropical and subtropical regions (2000–2013). Journal of Environmental Sciences. 2015;30:30–46. doi:10.1016/j.jes.2014.10.013.
  • FAO 28 de Julio de 2019. Organización de las Naciones Unidas para la Alimentación y la Agricultura. Obtenido de Foro global sobre seguridad alimentaria y nutrición. Available from: http://www.fao.org/news/story/es/item/1042101/icode/.
  • WWAP (World Water Assessment Programme). United Nations World Water Development Report, Wastewater: The Untapped Resource 2017. París: UNESCO; 2017. ISBN: 978-92-3-300058-2. Available from: https://unesdoc.unesco.org/ark:/48223/pf0000247647.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.