81
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Advancing wastewater treatment with Azolla filiculoides waste: a comprehensive review of adsorption applications

ORCID Icon, , , , , , , , , , , ORCID Icon, ORCID Icon & show all
Pages 359-378 | Received 09 Aug 2023, Accepted 28 Apr 2024, Published online: 27 May 2024

References

  • Amare E, Kebede F, Mulat W. Wastewater treatment by Lemna minor and Azolla filiculoides in tropical semi-arid regions of Ethiopia. Ecol Eng. 2018;120:464–473. doi:10.1016/j.ecoleng.2018.07.005
  • Bianchi E, Biancalani A, Berardi C, et al. Improving the efficiency of wastewater treatment plants: bio-removal of heavy-metals and pharmaceuticals by Azolla filiculoides and Lemna minuta. Sci Total Environ. 2020;746:141219. doi:10.1016/j.scitotenv.2020.141219
  • Jorgensen SE. Applications in ecological engineering. Amsterdam: Elsevier; 2009.
  • Taha GM, Rashed MN, El-Sadek MS, et al. Effect of preheating temperature on synthesis of pure BiFeO3 via sol–gel method. Nanopages. 2019:1–11. doi:10.1556/566.2017.0010
  • Khodari M, Hassan NZ, Mohamed AE, et al. Electrocatalytic determination of the antibiotic levofloxacin using modified carbon paste electrode with a poly-murexide thin film voltammetrically. Electroanalysis. 2023;35(7).e202200431. doi:10.1002/elan.202200431
  • Rashed MN, Gad AAE, Fathy NM. Adsorption of Cd (II) and Pb (II) using physically pretreated camel bone biochar. Adv J Chem Sect A. 2019;2:247–364. doi:10.33945/SAMI/AJCA.2019.4.8
  • Rashed MN, Arifien AE, El-Dowy FA. Preparation and characterization of nanomuscovite by intercalation method for adsorption of heavy metals from polluted water. Environ Geochem Health. 2023;45:5127–5144. doi:10.1007/s10653-023-01545-4
  • Hastie BA. The use of aquatic plants in wastewater treatment: a literature review, 1992.
  • Birame CS. Development of a low-cost alternative for metal removal from textile wastewater. PhD. Degree. The Academic Board of Wageningen University and The Academic Board of the UNESCO-IHE Institute for Water Education, Delft, the Netherlands: CRC Press/Balkema; 2012.
  • Smith MD, Moelyowati I. Duckweed based wastewater treatment (DWWT): design guidelines for hot climates. Water Sci Technol. 2001;43(11):291–299. doi:10.2166/wst.2001.0694
  • Sekomo CB, Rousseau DPL, Saleh SA, et al. Heavy metal removal in duckweed and algae ponds as a polishing step for textile wastewater treatment. Ecol Eng. 2012;44:102–110. doi:10.1016/j.ecoleng.2012.03.003
  • Xu J, Li Z. A review on ecological engineering based engineering management. Omega. 2012;40:368–378. doi:10.1016/j.omega.2011.06.004
  • Sooknah RD, Wilkie AC. Nutrient removal by floating aquatic macrophytes cultured in anaerobically digested flushed dairy manure wastewater. Ecol Eng. 2004;22:27–42. doi:10.1016/j.ecoleng.2004.01.004
  • Schaffner U, Hill M, Dudley T, et al. Post-release monitoring in classical biological control of weeds: assessing impact and testing pre-release hypotheses. Curr Opin Insect Sci. 2020;38:99–106. doi:10.1016/j.cois.2020.02.008
  • Umali LJ, Duncan JR, Burgess JE. Performance of dead Azolla filiculoides biomass in biosorption of Au from wastewater. Biotechnol Lett. 2006;28:45–50. doi:10.1007/s10529-005-9686-7
  • Taghi Ganji M, Khosravi M, Rakhshaee R. Biosorption of Pb, Cd, Cu and Zn from the wastewater by treated Azolla filiculoides with H2O2/MgCl2. Int J Environ Sci Technol. 2005;1:265–271. doi:10.1007/bf03325841
  • Peters GA, Meeks JC. The Azolla-Anabaena symbiosis: basic biology. Annu Rev Plant Physiol Plant Mol Biol. 1989;40:193–210. doi:10.1146/annurev.pp.40.060189.001205
  • Antunes APM, Watkins GM, Duncan JR. Batch studies on the removal of gold(III) from aqueous solution by Azolla filiculoides. Biotechnol Lett. 2001;23:249–251. doi:10.1023/A:1005633608727
  • Schweitzer L, Noblet J. Water contamination and pollution. In: Török Béla, Dransfield Timothy, editors. Green chemistry. An inclusive approach. Elsevier; 2018. p. 261–290. doi:10.1016/B978-0-12-809270-5.00011-X
  • Dixit R, Wasiullah X, Malaviya D, et al. Bioremediation of heavy metals from soil and aquatic environment: an overview of principles and criteria of fundamental processes. Sustainability. 2015;7:2189–2212. doi:10.3390/su7022189
  • Seneviratne M, Gunaratne S, Bandara T, et al. Plant growth promotion by Bradyrhizobium japonicum under heavy metal stress. South African J Bot. 2016;105:19–24. doi:10.1016/j.sajb.2016.02.206
  • Selvi A, Rajasekar A, Theerthagiri J, et al. Integrated remediation processes toward heavy metal removal/recovery from various environments-a review. Front Environ Sci. 2019;7:66. doi:10.3389/fenvs.2019.00066
  • Miranda AF, Kumar NR, Spangenberg G, et al. Aquatic plants, landoltia punctata, and Azolla filiculoides as bio-converters of wastewater to biofuel. Plants. 2020;9:437. doi:10.3390/plants9040437
  • Scherer MD, Sposito JCV, Falco WF, et al. Cytotoxic and genotoxic effects of silver nanoparticles on meristematic cells of Allium cepa roots: a close analysis of particle size dependence. Sci Total Environ. 2019;660:459–467. doi:10.1016/j.scitotenv.2018.12.444
  • Benettayeb A, Morsli A, Guibal E, et al. New derivatives of urea-grafted alginate for improving the sorption of mercury ions in aqueous solutions. Mater Res Express. 2021;8:035303. doi:10.1088/2053-1591/abeabc
  • Benettayeb A, Ghosh S, Usman M, et al. Some well-known alginate and chitosan modifications used in adsorption: a review. Water J. 2022;14:1353–1326. doi:10.3390/w14091353
  • Benettayeb A, Guibal E, Morsli A, et al. Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II). Chem Eng J. 2017;316:704–714. doi:10.1016/j.cej.2017.01.131
  • Balarak D, Al-Musawi TJ, Mohammed IA, et al. The eradication of reactive black 5 dye liquid wastes using Azolla filiculoides aquatic fern as a good and an economical biosorption agent. SN Appl Sci. 2020;2:1015. doi:10.1007/s42452-020-2841-x
  • Bind A, Kushwaha A, Devi G, et al. Biosorption valorization of floating and submerged macrophytes for heavy-metal removal in a multi-component system. Appl Water Sci. 2019;9:95. doi:10.1007/s13201-019-0976-y
  • Benettayeb A, Usman M, Tinashe CC, et al. A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. Environ Sci Pollut Res. 2022;29:48185–48209. doi:10.1007/s11356-022-19938-w
  • Benettayeb A, Haddou B. New biosorbents based on the seeds, leaves and husks powder of Moringa oleifera for the effective removal of various toxic pollutants. Int J Environ Anal Chem. 2023;103:6859–6884. doi:10.1080/03067319.2021.1963714
  • Al-Musawi TJ, Mengelizadeh N, Taghavi M, et al. Activated carbon derived from Azolla filiculoides fern: a high-adsorption-capacity adsorbent for residual ampicillin in pharmaceutical wastewater. Biomass Convers Biorefinery. 2023;13:12179–12191. doi:10.1007/s13399-021-01962-4
  • Balarak D, Mahvi AH, Shahbaksh S, et al. Adsorptive removal of azithromycin antibiotic from aqueous solution by Azolla filiculoides-based activated porous carbon. Nanomaterials. 2021;11:3281. doi:10.3390/nano11123281
  • Mahdavinia GMA, Baghban A, Zorofi S. Kappa-carrageenan biopolymer-based nanocomposite hydrogel and adsorption of methylene blue cationic dye from water. J Mater Environ Sci. 2014;5:330–337.
  • Singh I, Birajdar B. Effective La-Na Co-doped TiO2 nano-particles for dye adsorption: synthesis, characterization and study on adsorption kinetics. Nanomaterials. 2019;9:400. doi:10.3390/nano9030400
  • Muradov N, Taha M, Miranda AF, et al. Dual application of duckweed and Azolla plants for wastewater treatment and renewable fuels and petrochemicals production. Biotechnol Biofuels. 2014;7:30. doi:10.1186/1754-6834-7-30
  • Costa ML, Santos MCR, Carrapiço F, et al. Azolla-Anabaena’s behaviour in urban wastewater and artificial media – influence of combined nitrogen. Water Res. 2009;43(15):3743–3750. doi:10.1016/j.watres.2009.05.038
  • Costa ML, Santos MC, Carrapiço F. Biomass characterization of Azolla filiculoides grown in natural ecosystems and wastewater. Hydrobiologia. 1999;415:323–327. doi:10.1023/A:1003824426183
  • Carrapiço F. Azolla as a superorganism. Its implication in symbiotic studies. In: Seckbach J, Grube M, editors. Symbioses and stress. Cellular origin, life in extreme habitats and astrobiology. Dordrecht: Springer; 2010. p. 225–241. doi:10.1007/978-90-481-9449-0_11.
  • Miranda AF, Biswas B, Ramkumar N, et al. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnol Biofuels. 2016;9: 221.doi:10.1186/s13068-016-0628-5
  • Golzary A, Tavakoli O, Rezaei Y, et al. Wastewater treatment by Azolla filiculoides (a study on color, odor, COD, nitrate, and phosphate removal). Pollution. 2018;4:69–76.
  • Arshadi M, Abdolmaleki MK, Mousavinia F, et al. Nano modification of NZVI with an aquatic plant Azolla filiculoides to remove Pb(II) and Hg(II) from water: aging time and mechanism study. J Colloid Interface Sci. 2017;486:296–308. doi:10.1016/j.jcis.2016.10.002
  • Brouwer P, van der Werf A, Schluepmann H, et al. Lipid yield and composition of Azolla filiculoides and the implications for biodiesel production. Bioenergy Res. 2016;9:369–377. doi:10.1007/s12155-015-9665-3
  • Nham Tran TL, Miranda AF, Abeynayake SW, et al. Differential production of phenolics, lipids, carbohydrates and proteins in stressed and unstressed aquatic plants, Azolla filiculoides and Azolla pinnata. Biology. 2020;9:342. doi:10.3390/biology9100342
  • Sadeghi R, Zarkami R, Sabetraftar K, et al. A review of some ecological factors affecting the growth of Azolla spp. CJES Casp J Environ Sci Casp J Env Sci. 2013;11(1):65–76.
  • Kanamarlapudi SLRK, Chintalpudi VK, Muddada S. Application of biosorption for removal of heavy metals from wastewater. Biosorption. 2018;18:70–116. doi:10.5772/intechopen.77315
  • Suganthi Rani P, Lakshmi Priya R, Velan M. Sorption behavior of freshwater aquatic fern Azolla filiculoides on redwine dye. Desalin Water Treat. 2013;51:6115–6129. doi:10.1080/19443994.2013.769665
  • Adewuyi A. Chemically modified biosorbents and their role in the removal of emerging pharmaceutical waste in the water system. Water. 2020;12:1551. doi:10.3390/w12061551
  • Mackay KT. Rice-fish culture in China. Ottawa: International Development Research Centre (IDRC); 1995.
  • Janes R. Growth and survival of Azolla filiculoides in Britain: I. Vegetative reproduction. New Phytol. 1998;138:367–375. doi:10.1046/j.1469-8137.1998.00114.x
  • Ahmady-Asbchin S, Omran AN. Potential of Azolla filiculoides in the removal of Ni and Cu from wastewaters. African J Biotechnol. 2012;11:16158–16164. doi:10.5897/AJB12.2165
  • Kooh MRR, Lim LBL, Lim LH, et al. Separation of toxic rhodamine B from aqueous solution using an efficient low-cost material, Azolla pinnata, by adsorption method. Environ Monit Assess. 2016;188(2).108. doi:10.1007/s10661-016-5108-7
  • Song U, Park H, Lee EJ. Ecological responses and remediation ability of water fern (Azolla japonica) to water pollution. J Plant Biol. 2012;55:381–389. doi:10.1007/s12374-012-0010-5
  • Sánchez-Viveros G, Ruvalcaba-Sil JL, Ferrera-Cerrato R, et al. Changes in elemental content in fronds of Azolla filiculoides due to arsenic accumulation. Plant Biosyst. 2016;150:1332–1340. doi:10.1080/11263504.2015.1057257
  • Pan C, Hu N, Ding D, et al. An experimental study on the synergistic effects between Azolla and Anabaena in removal of uranium from solutions by Azolla–Anabaena symbiotic system. J Radioanal Nucl Chem. 2016;307:385–394. doi:10.1007/s10967-015-4161-y
  • Abd Kadir A, Abdullah SRS, Othman BA, et al. Dual function of Lemna minor and Azolla pinnata as phytoremediator for palm oil mill effluent and as feedstock. Chemosphere. 2020;259:127468. doi:10.1016/j.chemosphere.2020.127468
  • Singh S, Kumar V, Datta S, et al. Current advancement and future prospect of biosorbents for bioremediation. Sci Total Environ. 2020;709:135895. doi:10.1016/j.scitotenv.2019.135895
  • Manorama Thampatti K, Beena V, Meera A. Phytoremediation of metals by aquatic macrophytes. In: Shmaefsky B, editor. Phytoremediation. Cham: Springer; 2020. p. 153–204.
  • Anastopoulos I, Kyzas GZ. Progress in batch biosorption of heavy metals onto algae. J Mol Liq. 2015;209:77–86. doi:10.1016/j.molliq.2015.05.023
  • Abdelghaffar F. The performance of yeast, fungi, and algae biomass in dye elimination. In: Muthu SS, Khadir A, editors. Advanced removal techniques for dye-containing wastewaters. Sustainable textiles: production, processing, manufacturing & chemistry. Singapore: Springer; 2021. p. 217–236. doi:10.1007/978-981-16-3164-1_8
  • Kumar Gupta S, Chandra R, Shinde KP. Study of chemical composition and mineral content of sun dried Azolla pinnata. J Pharmacogn Phytochem. 2018;7:1214–1216. https://www.researchgate.net/publication/334442536_Study_of_chemical_composition_and_mineral_content_of_sun_dried_Azolla_pinnata
  • Authority AE, Kumar Gupta S, Chandra R, et al. Valorisation de Azolla spp, Moringa oleifera, son de riz, et de co-produits de volaille et de poisson en alimentation animale: synthèse bibliographique. J Appl Biosci. 2014;80:301–316. doi:10.4314/jab.v81i1.4
  • Yadav RK, Abraham G, Singh YV, et al. Advancements in the utilization of Azolla-Anabaena system in relation to sustainable agricultural practices. Proc Indian Natl Sci Acad. 2014;80:301–316. doi:10.16943/ptinsa/2014/v80i2/55108
  • Balarak D, Baniasadi M, Lee SM, et al. Ciprofloxacin adsorption onto Azolla filiculoides activated carbon from aqueous solutions. Desalin Water Treat. 2021;218:444–453. doi:10.5004/dwt.2021.26986
  • Sundararaman S, Kumar PS, Deivasigamani P, et al. Assessing the plant phytoremediation efficacy for Azolla filiculoides in the treatment of textile effluent and redemption of Congo red dye onto Azolla biomass. Sustainability. 2021;13:9588. doi:10.3390/su13179588
  • Zazouli MA, Balarak D. Application of Azolla for 2-chlorophenol and 4-chrorophenol removal from aqueous solutions, Iran. J Heal Sci. 2013;1:43–55.
  • Lloyd-Jones PJ, Rangel-Mendez JR, Streat M. Sorption of cadmium using a natural biosorbent and activated carbon. Hazards Xvi Anal Past, Plan Futur. 2001;148:847–866.
  • Mashkani SG, Ghazvini PTM. Biotechnological potential of Azolla filiculoides for biosorption of Cs and Sr: application of micro-PIXE for measurement of biosorption. Bioresour Technol. 2009;100:1915–1921. doi:10.1016/j.biortech.2008.10.019
  • Khodadad Hosseini E, Derakhshi P, Rabbani M, et al. Pollutant removal from dairy wastewater using live Azolla filiculoides in batch and continuous bioreactors. Water Environ Res. 2021;93:2122–2134. doi:10.1002/wer.1586
  • Igwegbe CA, Onukwuli OD, Onyechi KK. Equilibrium and kinetics analysis on vat yellow 4 uptake from aqueous environment by modified rubber seed shells: nonlinear modelling. J Mater Env Sci. 2020;11:1424–1444.
  • Mesbah M, Hamedshahraki S, Ahmadi S, et al. Hydrothermal synthesis of LaFeO3 nanoparticles adsorbent: characterization and application of error functions for adsorption of fluoride. MethodsX. 2020;7:100786. doi:10.1016/j.mex.2020.100786
  • Hamza MF, Wei Y, Benettayeb A, et al. Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J Mater Sci. 2019;55:4193–4212. doi:10.1007/s10853-019-04235-8
  • Igwegbe CA, Rahdar S, Rahdar A, et al. Removal of fluoride from aqueous solution by nickel oxide nanoparticles: equilibrium and kinetic studies. Fluoride. 2019;52:599–579.
  • Ahmady-Asbchin S, Safari M, Varposhti M. Biosorption optimization of Cr(VI) using response surface methodology and thermodynamics modeling onto Azolla filiculoides. Sep Sci Technol. 2015;50:554–563. doi:10.1080/01496395.2014.957313
  • Rakhshaee R, Khosravi M, Ganji MT. Kinetic modeling and thermodynamic study to remove Pb(II), Cd(II), Ni(II) and Zn(II) from aqueous solution using dead and living Azolla filiculoides. J Hazard Mater. 2006;134:120–129. doi:10.1016/j.jhazmat.2005.10.042
  • Alatabe MJA, Al-Sharify ZT. Utilization of low cost adsorbents for the adsorption process of lead ions. Int J Mod Res Eng Technol. 2019;4:29–48.
  • Faisal ML, Al-Najjar SZ, Al-Sharify ZT. Modified orange peel as sorbent in removing of heavy metals from aqueous solution. J Green Eng. 2020;10:10600–10615.
  • Fakhri A, Rashidi S, Asif M, et al. Dynamic adsorption behavior and mechanism of Cefotaxime, Cefradine and Cefazolin antibiotics on CdS-MWCNT nanocomposites. J Mol Liq. 2016;215:269–275. doi:10.1016/j.molliq.2015.12.033
  • Igwegbe CA, Ighalo JO, Ghosh S, et al. Pistachio (Pistacia vera) waste as adsorbent for wastewater treatment: a review. Biomass Convers Biorefinery. 2021;13:8793–8811. doi:10.1007/s13399-021-01739-9
  • Liu H, Liu W, Zhang J, et al. Removal of cephalexin from aqueous solutions by original and Cu(II)/Fe(III) impregnated activated carbons developed from lotus stalks Kinetics and equilibrium studies. J Hazard Mater. 2011;185:1528–1535. doi:10.1016/j.jhazmat.2010.10.081
  • Bazrafshan E, Sobhanikia M, Mostafapour FK, et al. Chromium biosorption from aqueous environments by mucilaginous seeds of Cydonia oblonga: kinetic and thermodynamic studies. Glob Nest J. 2017;19:269–277. doi:10.30955/gnj.001708
  • Peterson JW, Petrasky LJ, Seymour MD, et al. Adsorption and breakdown of penicillin antibiotic in the presence of titanium oxide nanoparticles in water. Chemosphere. 2012;87:911–917. doi:10.1016/j.chemosphere.2012.01.044
  • Almhana NM, Ali SAK, Al-Najjar SZ, et al. Assessment of cobalt ions removal in synthetic wastewater using broad bean peels. J Green Eng. 2020;10:10157–10173.
  • Yu F, Li Y, Han S, et al. Adsorptive removal of antibiotics from aqueous solution using carbon materials. Chemosphere. 2016;153:365–385. doi:10.1016/j.chemosphere.2016.03.083
  • Rout DR, Jena HM, Baigenzhenov O, et al. Graphene-based materials for effective adsorption of organic and inorganic pollutants: a critical and comprehensive review. Sci Total Environ. 2023;863:160871. doi:10.1016/j.scitotenv.2022.160871
  • Lima EC, Hosseini-Bandegharaei A, Moreno-Piraján JC, et al. A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoof equation for calculation of thermodynamic parameters of adsorption. J Mol Liq. 2019;273:425–434. doi:10.1016/j.molliq.2018.10.048
  • Rahmani-Sani A, Singh P, Raizada P, et al. Use of chicken feather and eggshell to synthesize a novel magnetized activated carbon for sorption of heavy metal ions. Bioresour Technol. 2020;297:122452. doi:10.1016/j.biortech.2019.122452
  • Mohammadzadeh A, Kadhim MM, Taban TZ, et al. Adsorption performance of Enterobacter cloacae towards U(VI) ion and application of Enterobacter cloacae/carbon nanotubes to preconcentration and determination of low-levels of U(VI) in water samples. Chemosphere. 2023;311:136804. doi:10.1016/j.chemosphere.2022.136804
  • Zazouli MA, Belalak D, Mahdavi Y, et al. Application of Azolla filiculoides biomass for acid blue 15 dye (AB15) removal from aqueous solutions. J Basic Res Med Sci. 2014;1:29–37.
  • Zazulli MA, Blark D. The ability of Azolla and Lemna minor biomass to adsorpe p-cresol from aqueous solutions: isotherms and kinetics. J Health Field. 2017;2(1).
  • Balarak D, Mostafapour F. Batch equilibrium, kinetics and thermodynamics study of sulfamethoxazole antibiotics onto Azolla filiculoides as a novel biosorbent. Br J Pharm Res. 2016;13:1–14. doi:10.9734/bjpr/2016/28521
  • Balarak D, Mostafapour F, Akbari H, et al. Adsorption of amoxicillin antibiotic from pharmaceutical wastewater by activated carbon prepared from Azolla filiculoides. J Pharm Res Int. 2017;18:1–13. doi:10.9734/jpri/2017/35607
  • Ahmady-Asbchin S, Mohammadi M, Bahrami A, et al. Batch studies on the removal of Ni (II) from aqueous solution by Azolla filiculoides. African J Biotechnol. 2011;10:7427.
  • Balarak D, Joghataei A, Azarpira H, et al. Isotherms and thermodynamics of CD (II) ion removal by adsorption onto Azolla filiculoides. Int J Pharm Technol. 2016;8:15780–15788.
  • Zazouli M-A, Balarak D, Mahdavi Y. Effect of Azolla filiculoides on removal of reactive red 198 in aqueous solution. J Adv Environ Health Res. 2013;1:44–50.
  • Balarak D, Bazrafshan E, Mostafapour F. Equilibrium, kinetic studies on the adsorption of acid green 3 (Ag3) dye onto Azolla filiculoides as adosorbent. Am Chem Sci J. 2016;11:1–10. doi:10.9734/acsj/2016/22048
  • Balarak D, Joghataei A, Azadi N, et al. Biosorption of acid blue 225 from aqueous solution by Azolla filiculoides: kinetic and equilibrium studies. Am Chem Sci J. 2016;12:1–9. doi:10.9734/acsj/2016/22821
  • John Babu D, Sumalatha B, Venkateswarulu TC, et al. Kinetic, equilibrium and thermodynamic studies of biosorption of chromium (VI) from aqueous solutions using Azolla filiculoides. J Pure Appl Microbiol. 2014;8:3107–3116.
  • Balarak D MY. Experimental and kinetic studies on acid red 88 dye (AR88) adsorption by Azolla filiculoides. Biochem Physiol. 2016;5:1–5.
  • Zazouli MA, Mahvi AH, Dobaradaran S, et al. Adsorption of fluoride from aqueous solution by modified Azolla filiculoides. Fluoride. 2014;47:349–358.
  • Sela M, Fritz E, Huttermann A, et al. Studies on cadmium localization in the water fern Azolla. Physiol Plant. 1990;79:547–553. doi:10.1111/j.1399-3054.1990.tb02116.x
  • Diyanati Tilaki RA, Yousefi Z, Yazdani Charati J, et al. Comparison of modified canola and azolla efficiencies in phenol adsorption from aqueous solutions: an adsorption isotherm and kinetics study. Heal Dev J. 2014;3:231–244.
  • Zazouli MA, Balarak D, Mahdavi Y. Application of Azolla for 2, 4, 6-trichlorophenol (TCP) removal from aqueous solutions. Arch Hyg Sci. 2013;2:143–149.
  • Khoshraftar Z, Shamel A. Adsorption of malachite green dye from aqueous solutions using roots of Azolla filiculoides. J Phys Theor Chem IAU Iran. 2016;13:237–252.
  • Zazouli MA, Balarak D. The survey on adsorption of bisphenol A by modified Azolla from Aqueous solutions: adsorption isotherm and kinetics study. J Health. 2016;7:71–86.
  • Balarak D, Azarpira H, Mostafapour FK. Study of the adsorption mechanisms of cephalexin on to Azolla filiculoides. Der Pharma Chem. 2016;8:114–121.
  • Li H, Liu Y, Yang Y, et al. Influences of hydrogen bonding dynamics on adsorption of ethyl mercaptan onto functionalized activated carbons: a DFT/TDDFT study. J Photochem Photobiol A Chem. 2014;291:9–15. doi:10.1016/j.jphotochem.2014.06.017
  • Ighalo JO, Rangabhashiyam S, Dulta K, et al. Recent advances in hydrochar application for the adsorptive removal of wastewater pollutants. Chem Eng Res Des. 2022;184:419–456. doi:10.1016/j.cherd.2022.06.028
  • Bhagat M, Burgess JE, Antunes APM, et al. Precipitation of mixed metal residues from wastewater utilising biogenic sulphide. Miner Eng. 2004;17:925–932. doi:10.1016/j.mineng.2004.02.006
  • Al-Sharify ZT, Faisal LMA, Al-Sharif TA, et al. Removal of analgesic paracetamol from wastewater using dried olive stone. Int J Mech Eng Technol. 2018;9:293–299.
  • Razak ZA, Rushdi S, Gadhban MY, et al. Possibility of utilizing the lemon peels in removing of red reactive (RR) dye from simulated aqueous solution. J Green Eng. 2020;10:7343–7359.
  • Al-Qaisi MQ, Lahieb Faisal MA, Al-Sharify ZT, et al. Possibility of utilizing from lemon peel as a sorbent in removing of contaminant such as copper ions from simulated aqueous solution. Int J Civ Eng Technol. 2018;9:571–579.
  • Hall KR, Eagleton LC, Acrivos A, et al. Pore- and solid-diffusion kinetics in fixed-bed adsorption under constant-pattern conditions. Ind Eng Chem Fundam. 1966;5:212–223. doi:10.1021/i160018a011
  • Gholizadeh AM, Zarei M, Ebratkhahan M, et al. Removal of phenazopyridine from wastewater by merging biological and electrochemical methods via Azolla filiculoides and electro-Fenton process. J Environ Manage. 2020;254:109802. doi:10.1016/j.jenvman.2019.109802
  • Vafaei F, Khataee AR, Movafeghi A, et al. Bioremoval of an azo dye by Azolla filiculoides: study of growth, photosynthetic pigments and antioxidant enzymes status. Int Biodeterior Biodegrad. 2012;75:194–200. doi:10.1016/j.ibiod.2012.09.008

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.