74
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Insights into logical method selection for modification of chitosan and alginate towards the adsorption of heavy metal ions: a review

ORCID Icon, , , , , , , , , , ORCID Icon & show all
Pages 398-420 | Received 08 Aug 2023, Accepted 02 May 2024, Published online: 05 Jun 2024

References

  • Cleland J. World population growth; past, present and future. Environ Resour Econ. 2013;55:543–554. doi:10.1007/s10640-013-9675-6
  • Pichel N, Vivar M, Fuentes M. The problem of drinking water access: a review of disinfection technologies with an emphasis on solar treatment methods. Chemosphere. 2019;218:1014–1030. doi:10.1016/j.chemosphere.2018.11.205
  • Amar IA, Abdulqadir MA, Benettayeb A, et al. Cerium-doped calcium ferrite for malachite green dye removal and antibacterial activities. Chem Africa. 2024;7:1423–1441. doi:10.1007/s42250-023-00834-w
  • Kushwaha A, Hans N, Upadhyay N, et al. Valorization of water hyacinth: a sustainable route for bioenergy generation and other value-added products. In: Hussain CM, Bharagava RM, Goswami L, et al., editors. Bio-based materials and waste for energy generation and resource management. Present and emerging waste management practices. Advanced zero waste tool, Vol. 5; 2023.
  • Benettayeb A, Ahamadi S, Ghosh S, et al. Natural adsorbents for the removal of emerging pollutants and its adsorption mechanisms. In: Dehghani MH, Karri RR, Tyagi I, editors. Sustainable remediation technologies for emerging pollutants in aqueous environment. 2024: 63–78. doi:10.1016/B978-0-443-18618-9.00013-9
  • Pal A, Asmaa B, Pal P. Environmentally safe biosorbents for crystal violet removal from wastewater. In: Crystal violet production, applications and precautions; Nova Science Publishers, Inc; 2019. Chapter 2, p. 31–74. Available from: https://novapublishers.com/shop/crystal-violet-production-applications-and-precautions/.
  • Mørch ÝA, Donati I, Strand BL. Effect of Ca2+, Ba2+, and Sr2+ on alginate microbeads. Biomacromolecules. 2006;7(5):1471–1480.
  • Yu J, Zheng J, Lu Q, et al. Selective adsorption and reusability behavior for Pb2+ and Cd2+ on chitosan/poly(ethylene glycol)/poly(acrylic acid) adsorbent prepared by glow-discharge electrolysis plasma. Colloid Polym Sci. 2016;10:1585–1598.
  • Benettayeb A, Usman M, Tinashe CC, et al. A critical review with emphasis on recent pieces of evidence of Moringa oleifera biosorption in water and wastewater treatment. Environ Sci Pollut Res. 2022;29:48185–48209.
  • Benettayeb A, Ghosh S, Usman M, et al. Some well-known alginate and chitosan modifications used in adsorption. A review. Water J. 2022;14:1–26.
  • Benettayeb A, Seihoub FZ, Pal P, et al. Chitosan nanoparticles as potential nano-sorbent for removal of toxic environmental pollutants. Nanomaterials. 2023;13:447. doi:10.3390/nano13030447
  • Satapathy SC, Raju KS, Editors MNF. Advances in computational and bio-engineering. Presents the proceedings of the International Conference on Computational and Bio Engineering (CBE 2019), held on 27–28 December 2019 in Tirupati, India. Springer Cham; 2019.
  • Wan Ngah WS, Endud CS, Mayanar R. Removal of copper(II) ions from aqueous solution onto chitosan and cross-linked chitosan beads. React Funct Polym. 2002;50:181–190. doi:10.1016/S1381-5148(01)00113-4
  • Ngah W, Kamari WS, Koay A, et al. Equilibrium and kinetics studies of adsorption of copper (II) on chitosan and chitosan/PVA beads. Int J Biol Macromol. 2004;34(3):155–161.
  • Inoue K, Ohto K, Yoshizuka K, et al. Adsorption behavior of metal ions on some carboxymethylated chitosans. Bunseki Kagaku. 1993;42:725–731. doi:10.2116/bunsekikagaku.42.11_725
  • Koyama Y, Taniguchi A. Studies on chitin X. Homogeneous cross-linking of chitosan for enhanced cupric ion adsorption. J Appl Polym Sci. 1986;31:1951–1954. doi:10.1002/app.1986.070310636
  • Ngah WSW, Fatinathan S. Adsorption of Cu(II) ions in aqueous solution using chitosan beads, chitosan-GLA beads and chitosan-alginate beads. Chem Eng J. 2008;143:62–72. doi:10.1016/j.cej.2007.12.006
  • Horzum N, Boyaci E, Eroǧlu AE, et al. Sorption efficiency of chitosan nanofibers toward metal ions at low concentrations. Biomacromolecules. 2010;11(12):3301–3308.
  • Ngah WSW, Ab Ghani S, Kamari A. Adsorption behaviour of Fe(II) and Fe(III) ions in aqueous solution on chitosan and cross-linked chitosan beads. Bioresour Technol. 2005;96:443–450. doi:10.1016/j.biortech.2004.05.022
  • Beppu MM, Vieira RS, Aimoli CG, et al. Crosslinking of chitosan membranes using glutaraldehyde: effect on ion permeability and water absorption. J Memb Sci. 2007;301:126–130. doi:10.1016/j.memsci.2007.06.015
  • Crini G. Recent developments in polysaccharide-based materials used as adsorbents in wastewater treatment. Prog Polym Sci. 2005;30:38–70. doi:10.1016/j.progpolymsci.2004.11.002
  • Crini G, Torri G, Lichtfouse E, et al. Dye removal by biosorption using cross-linked chitosan-based hydrogels. Environ Chem Lett. 2019;17:1645–1666. doi:10.1007/s10311-019-00903-y
  • Qu B, Luo Y. Chitosan-based hydrogel beads: preparations, modifications and applications in food and agriculture sectors – a review. Int J Biol Macromol 2020;152:437–448.
  • Jóźwiak T, Filipkowska U. Sorption kinetics and isotherm studies of a reactive black 5 dye on chitosan hydrogel beads modified with various ionic and covalent cross-linking agents. J Environ Chem Eng. 2020;8(2):103564.
  • Wang LY, Gu YH, Su ZG, et al. Preparation and improvement of release behavior of chitosan microspheres containing insulin. Int J Pharm. 2006;311:187–195. doi:10.1016/j.ijpharm.2005.12.033
  • Luk CJ, Yip J, Yuen CM, et al. A comprehensive study on adsorption behaviour of direct, reactive and acid dyes on crosslinked and non-crosslinked chitosan beads. J Fiber Bioeng Informatics. 2014;7:35–52. doi:10.3993/jfbi03201404
  • Sutirman ZA, Sanagi MM, Abd Karim KJ, et al. Equilibrium, kinetic and mechanism studies of Cu(II) and Cd(II) ions adsorption by modified chitosan beads. Int J Biol Macromol. 2018;116:255–263. doi:10.1016/j.ijbiomac.2018.05.031
  • Jayakumar R, Prabaharan M, Reis RL, et al. Graft copolymerized chitosan - present status and applications. Carbohydr Polym. 2005;62(2):142–158.
  • Zhou L, Liu J, Liu Z. Adsorption of platinum(IV) and palladium(II) from aqueous solution by thiourea-modified chitosan microspheres. J Hazard Mater. 2009;172:439–446. doi:10.1016/j.jhazmat.2009.07.030
  • Upadhyay U, Sreedhar I, Singh SA, et al. Recent advances in heavy metal removal by chitosan based adsorbents. Carbohydr Polym. 2021;251:117000. doi:10.1016/j.carbpol.2020.117000
  • Lalita SA, Sharma RK. Synthesis and characterization of graft copolymers of chitosan with NIPAM and binary monomers for removal of Cr(VI), Cu(II) and Fe(II) metal ions from aqueous solutions. Int J Biol Macromol. 2017;99:409–426. doi:10.1016/j.ijbiomac.2017.02.091
  • Kyzas GZ, Siafaka PI, Lambropoulou DA, et al. Poly(itaconic acid)-grafted chitosan adsorbents with different cross-linking for Pb(II) and Cd(II) uptake. Langmuir. 2014;30:120–131. doi:10.1021/la402778x
  • Guibal E, Jansson-Charrier M, Saucedo I, et al. Enhancement of metal Ion sorption performances of chitosan: effect of the structure on the diffusion properties. Langmuir. 1995;11:591–598. doi:10.1021/la00002a039
  • Miretzky P, Cirelli AF. Cr(VI) and Cr(III) removal from aqueous solution by raw and modified lignocellulosic materials: a review. J Hazard Mater. 2010;180:1–19. doi:10.1016/j.jhazmat.2010.04.060
  • Guibal E, Touraud E, Roussy J. Chitosan interactions with metal ions and dyes: dissolved-state vs. solid-state application. World J Microbiol Biotechnol. 2005;21:913–920. doi:10.1007/s11274-004-6559-5
  • Wang J, Chen C. Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Bioresour Technol. 2014;160:129–141. doi:10.1016/j.biortech.2013.12.110
  • Wang J, Zhuang S. Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit Rev Environ Sci Technol. 2017;47:2331–2386. doi:10.1080/10643389.2017.1421845
  • McKay G, Blair AF HS. Sorption of metal ions by chitosan. In: H Eccles, S Hunt, editor. Immobilisation of ions by biosorption. Chichester: Ellis Horwood; 1986. p. 59. Technol. 35 (1995) 97.
  • Ruiz M, Sastre AM, Zikan MC, et al. Palladium sorption on glutaraldehyde-crosslinked chitosan in fixed-bed systems. J Appl Polym Sci. 2001;81:153–165. doi:10.1002/app.1425
  • Milot C, McBrien J, Allen S, et al. Influence of physicochemical and structural characteristics of chitosan flakes on molybdate sorption. J Appl Polym Sci. 1998;68:571–580.
  • Siripattanakul-Ratpukdi S, Tongkliang T. Municipal wastewater treatment using barium alginate entrapped activated sludge: adjustment of utilization conditions. Int J Chem Eng Appl. 2012;3(5):328–332.
  • Gao X, Liu J, Li M, et al. Mechanistic study of selective adsorption and reduction of Au (III) to gold nanoparticles by ion-imprinted porous alginate microspheres. Chem Eng J. 2020;385:123897. doi:10.1016/j.cej.2019.123897
  • Golie WM, Upadhyayula S. An investigation on biosorption of nitrate from water by chitosan based organic-inorganic hybrid biocomposites. Int J Biol Macromol. 2017;97:489–502. doi:10.1016/j.ijbiomac.2017.01.066
  • Liu Q, Yang B, Zhang L, et al. Simultaneous adsorption of aniline and Cu2+ from aqueous solution using activated carbon/chitosan composite. Desalin Water Treat. 2015;55:410–419. doi:10.1080/19443994.2014.923331
  • Tzu TW. Sorption of Pb(II), Cd(II), and Ni(II) toxic metal ions by alginate-bentonite. J Environ Prot. 2013;4:51–55. Available from: http://www.scirp.org/journal/PaperDownload.aspx?DOI=10.4236jep.2013.41B010.
  • Park HG, Chae MY. Novel type of alginate gel-based adsorbents for heavy metal removal. J Chem Technol Biotechnol. 2004;79:1080–1083. doi:10.1002/jctb.1080
  • Remuñán-López C, Bodmeier R. Mechanical, water uptake and permeability properties of crosslinked chitosan glutamate and alginate films. J Control Release. 1997;44:215–225. doi:10.1016/S0168-3659(96)01525-8
  • Ngah WSW, Fatinathan S. Pb(II) biosorption using chitosan and chitosan derivatives beads: equilibrium, ion exchange and mechanism studies. J Environ Sci. 2010;22:338–346. doi:10.1016/S1001-0742(09)60113-3
  • Salam A, Pawlak JJ, Venditti RA, et al. Synthesis and characterization of starch citrate-chitosan foam with superior water and saline absorbance properties. Biomacromolecules 2010;11:1453–1459. doi:10.1021/bm1000235
  • Gomez-Maldonado D, Erramuspe IBV, Peresin MS. Natural polymers as alternative adsorbents and treatment agents for water remediation. BioResources. 2019;14:10093–10160. doi:10.15376/biores.14.4.Gomez-Maldonado
  • Inoue K, Yoshizuka K, Ohto K. Adsorptive separation of some metal ions by complexing agent types of chemically modified chitosan. Anal Chim Acta. 1999;388:209–218. doi:10.1016/S0003-2670(99)00090-2
  • Shehzad H, Zhou L, Wang Y, et al. Effective biosorption of U(VI) from aqueous solution using calcium alginate hydrogel beads grafted with amino-carbamate moieties. J Radioanal Nucl Chem. 2019;321:605–615. doi:10.1007/s10967-019-06631-5
  • Karthik R, Meenakshi S. Removal of Pb(II) and Cd(II) ions from aqueous solution using polyaniline grafted chitosan. Chem Eng J. 2015;263:168–177. doi:10.1016/j.cej.2014.11.015
  • Khan MN, Chowdhury M, Rahman. MM. Biobased amphoteric aerogel derived from amine-modified clay-enriched chitosan/alginate for adsorption of organic dyes and chromium (VI) ions from aqueous solution. Mater Today Sustain. 2021;13:100077.
  • Mahl CRA, Taketa TB, Bataglioli RA, et al. Chitosan functionalization with amino acids yields to higher copper ions adsorption capacity. J Polym Environ. 2018;26:4338–4349. doi:10.1007/s10924-018-1306-4
  • Guibal E, Vincent T, Mendoza RN. Synthesis and characterization of a thiourea derivative of chitosan for platinum recovery. J Appl Polym Sci. 2000;75:119–134. doi:10.1002/(SICI)1097-4628(20000103)75:1<119::AID-APP14>3.0.CO;2-E
  • Ruiz M, Sastre A, Guibal E. Osmium and iridium sorption on chitosan derivatives. Solvent Extr Ion Exch. 2003;21:307–329. doi:10.1081/SEI-120018952
  • Ruiz M, Sastre A, Guibal E. Pd and Pt recovery using chitosan gel beads. II. Influence of chemical modifications on sorption properties. Sep Sci Technol. 2002;37(10):2385–2403.
  • Ghoul M, Bacquet M, Morcellet M. Uptake of heavy metals from synthetic aqueous solutions using modified PEI - silica gels. Water Res. 2003;37:729–734. doi:10.1016/S0043-1354(02)00410-4
  • Chassary P, Vincent T, Guibal E. Metal anion sorption on chitosan and derivative materials: a strategy for polymer modification and optimum use. React Funct Polym. 2004;60:137–149. doi:10.1016/j.reactfunctpolym.2004.02.018
  • Rabelo R, Vieira R, Luna F, et al. Adsorption of copper(II) and mercury(II) ions onto chemically-modified chitosan membranes: equilibrium and kinetic properties. Adsorpt Sci Technol. 2012;30:1–21. doi:10.1260/0263-6174.30.1.1
  • Vieira RS, Beppu MM. Mercury ion recovery using natural and crosslinked chitosan membranes. Adsorption. 2005;11:731–736. doi:10.1007/s10450-005-6015-3
  • Bui TH, Lee W, Jeon SB, et al. Enhanced gold(III) adsorption using glutaraldehyde-crosslinked chitosan beads: effect of crosslinking degree on adsorption selectivity, capacity, and mechanism. Sep Purif Technol. 2020;248:116989.
  • Laus R, Costa TG, Szpoganicz B, et al. Adsorption and desorption of Cu(II), Cd(II) and Pb(II) ions using chitosan crosslinked with epichlorohydrin-triphosphate as the adsorbent. J Hazard Mater. 2010;183:233–241. doi:10.1016/j.jhazmat.2010.07.016
  • Chen AH, Liu SC, Chen CY, et al. Comparative adsorption of Cu(II), Zn(II), and Pb(II) ions in aqueous solution on the crosslinked chitosan with epichlorohydrin. J Hazard Mater. 2008;154:184–191. doi:10.1016/j.jhazmat.2007.10.009
  • Lee C-S, Chu I-M. Characterization of modified alginate-poly-L-LysineMicrocapsules. Artif Organs. 2008;21:1002–1006. doi:10.1111/j.1525-1594.1997.tb00515.x
  • Chu L, Liu C, Zhou G, et al. A double network gel as low cost and easy recycle adsorbent: highly efficient removal of Cd(II) and Pb(II) pollutants from wastewater. J Hazard Mater. 2015;300:153–160. doi:10.1016/j.jhazmat.2015.06.070
  • Varma AJ, Deshpande SV, Kennedy JF. Metal complexation by chitosan and its derivatives: a review. Carbohydr Polym. 2004;55:77–93. doi:10.1016/j.carbpol.2003.08.005
  • Arvand M, Pakseresht MA. Cadmium adsorption on modified chitosan-coated bentonite: batch experimental studies. J Chem Technol Biotechnol. 2013;88:572–578. doi:10.1002/jctb.3863
  • Nematidil N, Sadeghi M, Nezami S, et al. Synthesis and characterization of Schiff-base based chitosan-g-glutaraldehyde/NaMMTNPs-APTES for removal Pb2+ and Hg2+ ions. Carbohydr Polym. 2019;222:114971. doi:10.1016/j.carbpol.2019.114971
  • Monier M, Abdel-Latif DA. Preparation of cross-linked magnetic chitosan-phenylthiourea resin for adsorption of Hg(II), Cd(II) and Zn(II) ions from aqueous solutions. J Hazard Mater. 2012;209–210:240–249.
  • Oshita K, Sabarudin A, Takayanagi T, et al. Adsorption behavior of uranium(VI) and other ionic species on cross-linked chitosan resins modified with chelating moieties. Talanta. 2009;79:1031–1035. doi:10.1016/j.talanta.2009.03.035
  • Monteiro OAC, Airoldi C. Some thermodynamic data on copper-chitin and copper-chitosan biopolymer interactions. J Colloid Interface Sci. 1999;212:212–219. doi:10.1006/jcis.1998.6063
  • Rorrer GL, Hsien TY, Way JD. Synthesis of porous-magnetic chitosan beads for removal of cadmium ions from waste water. Ind Eng Chem Res. 1993;32:2170–2178. doi:10.1021/ie00021a042
  • Guibal E, Milot C, Tobin JM. Metal-anion sorption by chitosan beads: equilibrium and kinetic studies. Ind Eng Chem Res. 1998;37:1454–1463. doi:10.1021/ie9703954
  • Kuncoro EP, Roussy J, Guibal E. Mercury recovery by polymer-enhanced ultrafiltration: comparison of chitosan and poly(ethylenimine) used as macroligand. Sep Sci Technol. 2005;40:659–684. doi:10.1081/SS-200042646
  • Bertagnolli C, Grishin A, Vincent T, et al. Recovering heavy metal ions from complex solutions using polyethylenimine derivatives encapsulated in alginate matrix. Ind Eng Chem Res. 2016;55:2461–2470. doi:10.1021/acs.iecr.5b04683
  • Bertagnolli C, Grishin A, Vincent T, et al. Synthesis and application of a novel sorbent (tannic acid-grafted-polyethyleneimine encapsulated in alginate beads) for heavy metal removal. Sep Sci Technol. 2015;50:2897–2906.
  • Jin X, Li K, Ning P, et al. Removal of Cu(II) ions from aqueous solution by magnetic chitosan-tripolyphosphate modified silica-coated adsorbent: characterization and mechanisms. Water Air Soil Pollut. 2017;228:302.
  • Vijayalakshmi K, Devi BM, Latha S, et al. Batch adsorption and desorption studies on the removal of lead (II) from aqueous solution using nanochitosan/sodium alginate/microcrystalline cellulose beads. Int J Biol Macromol. 2017;104:1483–1494. doi:10.1016/j.ijbiomac.2017.04.120
  • Giraldo JD, Rivas BL, Elgueta E, et al. Metal ion sorption by chitosan–tripolyphosphate beads. J Appl Polym Sci. 2017;134(46):45511.
  • Wu SJ, Liou TH, Yeh CH, et al. Preparation and characterization of porous chitosan-tripolyphosphate beads for copper(II) ion adsorption. J Appl Polym Sci. 2013;27(6). doi:10.1002/app.38073
  • Sureshkumar MK, Das D, Mallia MB, et al. Adsorption of uranium from aqueous solution using chitosan-tripolyphosphate (CTPP) beads. J Hazard Mater. 2010;184:65–72. doi:10.1016/j.jhazmat.2010.07.119
  • Nitsae M, Madjid A, Hakim L, et al. Preparation of chitosan beads using tripolyphosphate and ethylene glycol diglycidyl ether as crosslinker for Cr(VI) adsorption. Chem Chem Technol. 2016;10:105–113. doi:10.23939/chcht10.01.105
  • Shafaei A, Ashtiani FZ, Kaghazchi T. Equilibrium studies of the sorption of Hg (II) ions onto chitosan. Chem Eng J. 2007;133:311–316. doi:10.1016/j.cej.2007.02.016
  • Benettayeb A, Guibal E, Morsli A, et al. Chemical modification of alginate for enhanced sorption of Cd(II), Cu(II) and Pb(II). Chem Eng J. 2017;316:704–714. doi:10.1016/j.cej.2017.01.131
  • Pearson RG. Hard and soft acids and bases. J Am Chem Soc. 1963;85:3533–3539. doi:10.1021/ja00905a001
  • Nieboer E, Richardson DHS. The replacement of the nondescript term “heavy metals” by a biologically and chemically significant classification of metal ions. Environ Pollut Ser B Chem Phys. 1980;1:3–26. doi:10.1016/0143-148X(80)90017-8
  • Fujiwara K, Ramesh A, Maki T, et al. Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater. 2007;146(1–2):39–50.
  • Pearson RG. Hard and soft acids and bases-the evolution of a chemical concept. Coord Chem Rev. 1990;100:403–425. doi:10.1016/0010-8545(90)85016-L
  • Pletnev IV, Zernov VV. Classification of metal ions according to their complexing properties: a data-driven approach. Anal Chim Acta. 2002;455:131–142. doi:10.1016/S0003-2670(01)01571-9
  • Mohamud H, Ivanov P, Russell BC, et al. Selective sorption of uranium from aqueous solution by graphene oxide-modified materials. J Radioanal Nucl Chem. 2018;316:839–848. doi:10.1007/s10967-018-5741-4
  • Pearson RG. Chemical hardness and bond dissociation energies. J Am Chem Soc. 1988;110(23):7684–7690.
  • Alfarra A, Frackowiak E, Beguin F. The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons. Appl Surf Sci. 2004;228:84–92. doi:10.1016/j.apsusc.2003.12.033
  • Benettayeb A, Guibal E, Bhatnagar A, et al. Effective removal of nickel (II) and zinc (II) in mono-compound and binary systems from aqueous solutions by application of alginate-based materials. Int J Environ Anal Chem. 2021;00:1–22. doi:10.1080/03067319.2021.1887164
  • Benettayeb A, Morsli A, Guibal E, et al. New derivatives of urea-grafted alginate for improving the sorption of mercury ions in aqueous solutions. Mater Res Express. 2021;8:035303. doi:10.1088/2053-1591/abeabc
  • Huamani-Palomino RG, Jacinto CR, Alarcón H, et al. Chemical modification of alginate with cysteine and its application for the removal of Pb(II) from aqueous solutions. Int J Biol Macromol. 2019;129:1056–1068.
  • Wang M, Yang Q, Zhao X, et al. Highly efficient removal of copper ions from water by using a novel alginate-polyethyleneimine hybrid aerogel. Int J Biol Macromol. 2019;129:1056–1068.
  • Godiya CB, Liang M, Sayed SM, et al. Novel alginate/polyethyleneimine hydrogel adsorbent for cascaded removal and utilization of Cu2+ and Pb2+ ions. J Environ Manage. 2019;232:829–841. doi:10.1016/j.jenvman.2018.11.131
  • Chakraborty R, Asthana A, Singh AK, et al. Adsorption of heavy metal ions by various low-cost adsorbents: a review. Int J Environ Anal Chem 2022;102(2):342–379.
  • Asthana A, Verma R, Singh AK, et al. Glycine functionalized magnetic nanoparticle entrapped calcium alginate beads: a promising adsorbent for removal of Cu(II) ions. J Environ Chem Eng. 2016;4(2):1985–1995.
  • Verma R, Asthana A, Singh AK, et al. Novel glycine-functionalized magnetic nanoparticles entrapped calcium alginate beads for effective removal of lead. Microchem J. 2017;130:168–178.
  • Wang F, Pan Y, Cai P, et al. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Bioresour Technol. 2017;241:482–490.
  • McKay G, Blair H. Equilibrium studies for the sorption of metal ions onto chitosan. Ind. J Chem Sect A. 1989;28:356–360.
  • Allouche FN, Guibal E, Mameri N. Preparation of a new chitosan-based material and its application for mercury sorption. Colloids Surf A Physicochem Eng Asp. 2014;446:224–232. doi:10.1016/j.colsurfa.2014.01.025
  • Plaza J, Viera M, Donati E, et al. Biosorption of mercury by Macrocystis pyrifera and Undaria pinnatifida: influence of zinc, cadmium and nickel. J Environ Sci. 2011;23:1778–1786. doi:10.1016/S1001-0742(10)60650-X
  • Sun N, Wen X, Yan C. Adsorption of mercury ions from wastewater aqueous solution by amide functionalized cellulose from sugarcane bagasse. Int J Biol Macromol. 2018;108:1199–1206. doi:10.1016/j.ijbiomac.2017.11.027
  • Zhang D, Wang L, Zeng H, et al. A three-dimensional macroporous network structured chitosan/cellulose biocomposite sponge for rapid and selective removal of mercury(II) ions from aqueous solution. Chem Eng J. 2019;363:192–202. doi:10.1016/j.cej.2019.01.127
  • Malbenia John M, Benettayeb A, Belkacem M, et al. An overview on the key advantages and limitations of batch and dynamic modes of biosorption of metal ions. Chemosphere 2024;357:142051. Available from: https://linkinghub.elsevier.com/retrieve/pii/S0045653524009445.
  • Ren Y, Abbood HA, He F, et al. Magnetic EDTA-modified chitosan/SiO2/Fe3O4 adsorbent: preparation, characterization, and application in heavy metal adsorption. Chem Eng J. 2013;226:300–311. doi:10.1016/j.cej.2013.04.059
  • Merrifield JD, Davids WG, MacRae JD, et al. Uptake of mercury by thiol-grafted chitosan gel beads. Water Res 2004;38:3132–3138. doi:10.1016/j.watres.2004.04.008
  • Hamza MF, Wei Y, Benettayeb A, et al. Efficient removal of uranium, cadmium and mercury from aqueous solutions using grafted hydrazide-micro-magnetite chitosan derivative. J Mater Sci. 2020;55:4193–4212. doi:10.1007/s10853-019-04235-8
  • Huang S, Ma C, Liao Y, et al. Removal of mercury(II) from aqueous solutions by adsorption on poly(1-amino-5-chloroanthraquinone) nanofibrils: equilibrium, kinetics, and mechanism studies. J Nanomater. 2016;2016.
  • Zeng H, Wang L, Zhang D, et al. Highly efficient and selective removal of mercury ions using hyperbranched polyethylenimine functionalized carboxymethyl chitosan composite adsorbent. Chem Eng J. 2019;358:253–263. doi:10.1016/j.cej.2018.10.001
  • Zhang D, Wang L, Zeng H, et al. Novel polyethyleneimine functionalized chitosan-lignin composite sponge with nanowall-network structures for fast and efficient removal of Hg(ii) ions from aqueous solution. Environ Sci Nano. 2020;7:793–802. doi:10.1039/C9EN01368G
  • Zhou L, Wang Y, Liu Z, et al. Characteristics of equilibrium, kinetics studies for adsorption of Hg(II), Cu(II), and Ni(II) ions by thiourea-modified magnetic chitosan microspheres. J Hazard Mater. 2009;161:995–1002. doi:10.1016/j.jhazmat.2008.04.078
  • Ballav N, Das R, Giri S, et al. L-cysteine doped polypyrrole (PPy@L-Cyst): a super adsorbent for the rapid removal of Hg+2 and efficient catalytic activity of the spent adsorbent for reuse. Chem Eng J. 2018;345:621–630. doi:10.1016/j.cej.2018.01.093
  • Negm NA, Sheikh E, El-Farargy R, et al. Treatment of industrial wastewater containing copper and cobalt ions using modified chitosan. J Ind Eng Chem. 2015;21:526–534. doi:10.1016/j.jiec.2014.03.015
  • Gok C, Aytas S. Biosorption of uranium(VI) from aqueous solution using calcium alginate beads. J Hazard Mater. 2009;168:369–375. doi:10.1016/j.jhazmat.2009.02.063
  • Benettayeb A, Malbenia J, Chitepo RM, et al. Facile fabrication of new bioadsorbents from Moringa oleifera and alginate for efficient removal of uranium (VI). J Radioanal Nucl Chem. 2024;333:2369–2387. doi:10.1007/s10967-024-09470-1
  • Yu J, Wang J, Jiang Y. Removal of uranium from aqueous solution by alginate beads. Nucl Eng Technol. 2017;49:534–540. doi:10.1016/j.net.2016.09.004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.