23
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Current understanding and challenges for the utilisation of pyrite for environmental remediation: a review

, , , , &
Pages 461-477 | Received 07 Sep 2023, Accepted 19 May 2024, Published online: 15 Jul 2024

References

  • Partridge M. Fool's gold: the search for early life [The golden mineral, pyrite, is valuable tool in the search for the secrets of early life on Earth]. Australas Sci. 2011;32:27–29.
  • Nieva NE, Borgnino L, García MG. Long term metal release and acid generation in abandoned mine wastes containing metal-sulphides. Environ Pollut. 2018;242:264–276. doi:10.1016/j.envpol.2018.06.067
  • Gu X, Heaney PJ, Reis FDA, et al. Deep abiotic weathering of pyrite. Science. 2020;370:eabb8092. doi:10.1126/science.abb8092
  • Wang C, Zhang P, Chen Y, et al. Study on the purification property of pyrite and its spectra on the processing of metal-bearing wastewater. Environ Earth Sci. 2010;61:939–945. doi:10.1007/s12665-009-0411-z
  • Liang J, Zhang L, Zhou Y. Pyrite assisted peroxymonosulfate sludge conditioning: Uncover triclosan transformation during treatment. J Hazard Mater. 2021;413:125368. doi:10.1016/j.jhazmat.2021.125368
  • Chen Q, Yao Y, Zhao Z, et al. Long term catalytic activity of pyrite in Heterogeneous Fenton-like oxidation for the tertiary treatment of dyeing wastewater. J Environ Chem Eng. 2021;9:105730. doi:10.1016/j.jece.2021.105730
  • Ling C, Liu X, Li M, et al. Sulphur vacancy derived anaerobic hydroxyl radical generation at the pyrite-water interface: Pollutants removal and pyrite self-oxidation behavior. Appl Catal, B. 2021;290:120051. doi:10.1016/j.apcatb.2021.120051
  • Yang R, Zeng G, Zhou Z, et al. Naphthalene degradation dominated by homogeneous reaction in Fenton-like process catalyzed by pyrite: mechanism and application. Sep Purif Technol. 2023;310:123150. doi:10.1016/j.seppur.2023.123150
  • Sharma V, Yan R, Feng X, et al. Removal of toxic metals using iron sulfide particles: A brief overview of modifications and mechanisms. Chemosphere. 2024;346:140631. doi:10.1016/j.chemosphere.2023.140631S
  • Arienzo M. Oxidizing 2, 4, 6-trinitrotoluene with pyrite-H2O2 suspensions. Chemosphere. 1999;39:1629–1638. doi:10.1016/S0045-6535(99)00061-2
  • Zhang Y, Zhang K, Dai C, et al. An enhanced Fenton reaction catalyzed by natural heterogeneous pyrite for nitrobenzene degradation in an aqueous solution. Chem Eng J. 2014;244:438–445. doi:10.1016/j.cej.2014.01.088
  • Lee J, Von Gunten U, Kim JH. Persulfate-based advanced oxidation: critical assessment of opportunities and roadblocks. Environ Sci Technol. 2020;54:3064–3081. doi:10.1021/acs.est.9b07082
  • Kaur G, Kaur M, Thakur A, et al. Recent progress on pyrite FeS2 nanomaterials for energy and environment applications: synthesis, properties and future prospects. J Cluster Sci. 2019;31:899–937. doi:10.1007/s10876-019-01708-3
  • Ouiriemmi I, Karrab A, Oturan N, et al. Heterogeneous electro-Fenton using natural pyrite as solid catalyst for oxidative degradation of vanillic acid. J Electroanal Chem. 2017;797:69–77. doi:10.1016/j.jelechem.2017.05.028
  • Tu Z, Guo C, Zhang T, et al. Investigation of intermediate sulfur species during pyrite oxidation in the presence and absence of Acidithiobacillus ferrooxidans. Hydrometallurgy. 2017;167:58–65. doi:10.1016/j.hydromet.2016.11.001
  • Li R, Wei D, Wang W, et al. Pyrrhotite-sulfur autotrophic denitrification for deep and efficient nitrate and phosphate removal: synergistic effects, secondary minerals and microbial community shifts. Bioresour Technol. 2020;308:123302. doi:10.1016/j.biortech.2020.123302
  • Song B, Zeng Z, Almatrafi E, et al. Pyrite-mediated advanced oxidation processes: applications, mechanisms, and enhancing strategies. Water Res. 2022;211:118048. doi:10.1016/j.watres.2022.118048
  • Zhang P, Yuan S, Liao P. Mechanisms of hydroxyl radical production from abiotic oxidation of pyrite under acidic conditions. Geochim Cosmochim Acta. 2016;172:444–457. doi:10.1016/j.gca.2015.10.015
  • Nooshabadi AJ, Rao KH. Formation of hydrogen peroxide by sulphide minerals. Hydrometallurgy. 2014;141:82–88. doi:10.1016/j.hydromet.2013.10.011
  • Brillas E, Segura SG. Benchmarking recent advances and innovative technology approaches of Fenton, photo-Fenton, electro-Fenton, and related processes: a review on the relevance of phenol as model molecule. Sep Purif Technol. 2020;237:116337. doi:10.1016/j.seppur.2019.116337
  • Zhou W, Fang YF, Zhang Y, et al. Mechanism of photochemical degradation of MC-LR by pyrite. Environ Sci. 2017;38:3762–3768.
  • Zhang W, Jiang X, Ralston J, et al. Efficient heterogeneous photodegradation of Eosin Y by oxidized pyrite using the photo-Fenton process. Miner Eng. 2023;191:107972. doi:10.1016/j.mineng.2022.107972
  • da Rocha Santana RM, Napoleão DC, Gonzaga dos Santos Júnior S, et al. Sunlight irradiated pyrite-Fenton system for advanced oxidative treatment of textile dyes mixture. Water Air Soil Pollut. 2022;233:170. doi:10.1007/s11270-022-05629-2
  • Guo J, Zhang Y, Li J, et al. Molecular oxygen activation by citric acid boosted pyrite–photo–Fenton process for degradation of PPCPs in water. Molecules. 2023;28:607. doi:10.3390/molecules28020607
  • Guo Q, Zhu W, Yang D, et al. A green solar photo-Fenton process for the degradation of carbamazepine using natural pyrite and organic acid with in-situ generated H2O2. Sci Total Environ. 2021;784:147187. doi:10.1016/j.scitotenv.2021.147187
  • Kavitha V, Palanivelu K. The role of ferrous ion in Fenton and photo-Fenton processes for the degradation of phenol. Chemosphere. 2004;55:1235–1243. doi:10.1016/j.chemosphere.2003.12.022
  • Barhoumi N, Oturan N, Ammar S, et al. Enhanced degradation of the antibiotic tetracycline by heterogeneous electro-Fenton with pyrite catalysis. Environ Chem Lett. 2017;15:689–693. doi:10.1007/s10311-017-0638-y
  • Bouzayani B, Meijide J, Pazos M, et al. Removal of polyvinylamine sulfonate anthrapyridone dye by application of heterogeneous electro-Fenton process. Environ Sci Pollut Res. 2017;24:18309–18319. doi:10.1007/s11356-017-9468-5
  • Labiadh L, Oturan MA, Panizza M, et al. Complete removal of AHPS synthetic dye from water using new electro-fenton oxidation catalyzed by natural pyrite as heterogeneous catalyst. J Hazard Mater. 2015;297:34–41. doi:10.1016/j.jhazmat.2015.04.062
  • Yu F, Wang Y, Ma H, et al. Hydrothermal synthesis of FeS2 as a highly efficient heterogeneous electro-Fenton catalyst to degrade diclofenac via molecular oxygen effects for Fe (II)/Fe (III) cycle. Sep Purif Technol. 2020;248:117022. doi:10.1016/j.seppur.2020.117022
  • He K, Guo X, Wang G, et al. Excellent treatment effect of actual wastewater from a pesticide plant using electro-Fenton process catalyzed by natural pyrite. J Environ Chem Eng. 2023;11:111211. doi:10.1016/j.jece.2023.111211
  • Xia Y, Yang F, Zhang B, et al. Fabrication of novel FeS2 NWs/Ti3C2 cathode for photo-electro-Fenton degradation of sulfamethazine. Chem Eng J. 2021;426:130719. doi:10.1016/j.cej.2021.130719
  • Kim JG, Kim HB, Jeong WG, et al. Enhanced-oxidation of sulfanilamide in groundwater using combination of calcium peroxide and pyrite. J Hazard Mater. 2021;419:126514. doi:10.1016/j.jhazmat.2021.126514
  • Sun W, Wang S, Yu Z, et al. Characteristics and application of iron-based materials in heterogeneous Fenton oxidation for wastewater treatment: a review. Environ Sci: Water Res Technol. 2023;9:1266–1289. doi:10.1039/D2EW00810F
  • Chang Y, Cho YC, Lin YP. Degradation of PFOS by a MnO2/H2O2 process. Environ Sci: Water Res Technol. 2020;6:3476–3487. doi:10.1039/D0EW00739K
  • Javed H, Metz J, Eraslan TC, et al. Discerning the relevance of superoxide in PFOA degradation. Environ Sci Technol Lett. 2020;7:653–658. doi:10.1021/acs.estlett.0c00505
  • Brillas E, Martínez-Huitle CA. Decontamination of wastewaters containing synthetic organic dyes by electrochemical methods. an updated review. Appl Catal, B. 2015;166:603–643. doi:10.1016/j.apcatb.2014.11.016
  • Zeng G, Wang J, Dai M, et al. Natural iron minerals in an electrocatalytic oxidation system and in situ pollutant removal in groundwater: applications, mechanisms, and challenges. Sci Total Environ. 2023;871:161826. doi:10.1016/j.scitotenv.2023.161826
  • Kayan I, Oz NA, Kantar C. Comparison of treatability of four different chlorophenol-containing wastewater by pyrite-Fenton process combined with aerobic biodegradation: role of sludge acclimation. J Environ Manag. 2021;279:111781. doi:10.1016/j.jenvman.2020.111781
  • Morales-Gallardo M, Ayala A, Pal M, et al. Synthesis of pyrite FeS2 nanorods by simple hydrothermal method and its photocatalytic activity. Chem Phys Lett. 2016;660:93–98. doi:10.1016/j.cplett.2016.07.046
  • Chen S, Xiong P, Zhan W, et al. Degradation of ethylthionocarbamate by pyrite-activated persulfate. Miner Eng. 2018;122:38–43. doi:10.1016/j.mineng.2018.03.022
  • Sun S, Ren J, Liu J, et al. Pyrite-activated persulfate oxidation and biological denitrification for effluent of biological landfill leachate treatment system. J Environ Manag. 2022;304:114290. doi:10.1016/j.jenvman.2021.114290
  • Sangeetha A, Gandhimathi R, Nidheesh PV. Treatment of stabilized landfill leachate using pyrite-activated persulfate oxidation process. Process Saf Environ Prot. 2023;171:413–422. doi:10.1016/j.psep.2023.01.012
  • He P, Zhu J, Chen Y, et al. Pyrite-activated persulfate for simultaneous 2,4-DCP oxidation and Cr(VI) reduction. Chem Eng J. 2021;406:126758. doi:10.1016/j.cej.2020.126758
  • Zhang Y, Tran HP, Du X, et al. Efficient pyrite activating persulfate process for degradation of p-chloroaniline in aqueous systems: a mechanistic study. Chem Eng J. 2017;308:1112–1119. doi:10.1016/j.cej.2016.09.104
  • Lai L, He Y, Zhou H, et al. Critical review of natural iron-based minerals used as heterogeneous catalysts in peroxide activation processes: Characteristics, applications and mechanisms. J Hazard Mater. 2021;416:125809. doi:10.1016/j.jhazmat.2021.125809
  • Wang Y, Dong X. PMS activation by natural pyrite for APAP degradation: Underlying mechanism and long-term removal of APAP. Catal Commun. 2023;177:106661. doi:10.1016/j.catcom.2023.106661
  • Zheng X, Niu X, Zhang D, et al. Removal of Microcystis aeruginosa by natural pyrite-activated persulfate: Performance and the significance of iron species. Chem Eng J. 2022;428:132565. doi:10.1016/j.cej.2021.132565
  • Fang Y, Cao X, Feng W, et al. High catalytic hydrolysis of microcystins on pyrite surface. Environ Chem Lett. 2020;18:483–487. doi:10.1007/s10311-019-00948-z
  • Fang Y, Zhou W, Tang C, et al. Bronsted catalyzed hydrolysis of Microcystin-LR by siderite. Environ Sci Technol. 2018;52:6426–6437. doi:10.1021/acs.est.7b06096
  • Wang S, Chen Y, Jiao Y, et al. Detoxification of cylindrospermopsin by pyrite in water. Catalysts. 2019;9:699. doi:10.3390/catal9090699
  • Sun Y, Lv D, Zhou J, et al. Adsorption of mercury (II) from aqueous solutions using FeS and pyrite: A comparative study. Chemosphere. 2017;185:452–461. doi:10.1016/j.chemosphere.2017.07.047
  • Yan M, He Y, Wang Z, et al. New insights into the effect of EDTA on pyrite oxidation and N2O emission during pyrite autotrophic denitrification. Chem Eng J. 2024;481:148583. doi:10.1016/j.cej.2024.148583
  • Yang Y, Chen T, Li P, et al. Cu removal from acid mine drainage by modified pyrite: batch and column experiments. Mine Water Environ. 2017;36:371–378. doi:10.1007/s10230-016-0421-5
  • Wang T, Qian T, Huo L, et al. Immobilization of hexavalent chromium in soil and groundwater using synthetic pyrite particles. Environ Pollut. 2019;255:112992. doi:10.1016/j.envpol.2019.112992
  • Ye Y, Shan C, Zhang X, et al. Water decontamination from Cr (III)–organic complexes based on pyrite/H2O2: performance, mechanism, and validation. Environ Sci Technol. 2018;52:10657–10664. doi:10.1021/acs.est.8b01693
  • Kantar C, Ari C, Keskin S. Comparison of different chelating agents to enhance reductive Cr (VI) removal by pyrite treatment procedure. Water Res. 2015;76:66–75. doi:10.1016/j.watres.2015.02.058
  • Kantar C, Ari C, Keskin S, et al. Cr (VI) removal from aqueous systems using pyrite as the reducing agent: batch, spectroscopic and column experiments. J Contam Hydrol. 2015;174:28–38. doi:10.1016/j.jconhyd.2015.01.001
  • Hamoudi S, Belkacemi K. Adsorption of nitrate and phosphate ions from aqueous solutions using organically-functionalized silica materials: Kinetic modeling. Fuel. 2013;110:107–113. doi:10.1016/j.fuel.2012.09.066
  • Banu HAT, Karthikeyan P, Vigneshwaran S, et al. Adsorptive performance of lanthanum encapsulated biopolymer chitosan-kaolin clay hybrid composite for the recovery of nitrate and phosphate from water. Int J Biol Macromol. 2020;154:188–197. doi:10.1016/j.ijbiomac.2020.03.074
  • Li H, Li Y, Guo J, et al. Effect of calcinated pyrite on simultaneous ammonia, nitrate and phosphorus removal in the BAF system and the Fe2+ regulatory mechanisms: Electron transfer and biofilm properties. Environ Res. 2021;194:110708. doi:10.1016/j.envres.2021.110708
  • Torrentó C, Urmeneta J, Otero N, et al. Enhanced denitrification in groundwater and sediments from a nitrate-contaminated aquifer after addition of pyrite. Chem Geol. 2011;287:90–101. doi:10.1016/j.chemgeo.2011.06.002
  • Zhang W, Huang F, Hu W. Performance and mechanism of synchronous nitrate and phosphorus removal in constructed pyrite-based mixotrophic denitrification system from secondary effluent. Environ Sci Pollut Res. 2020;27:36816–36825. doi:10.1007/s11356-020-09780-3
  • Li Y, Guo J, Li H, et al. Effect of dissolved oxygen on simultaneous removal of ammonia, nitrate and phosphorus via biological aerated filter with sulfur and pyrite as composite fillers. Bioresour Technol. 2020;296:122340. doi:10.1016/j.biortech.2019.122340
  • Chen X, Yang L, Chen F, et al. High efficient bio-denitrification of nitrate contaminated water with low ammonium and sulfate production by a sulfur/pyrite-based bioreactor. Bioresour Technol. 2022;346:126669. doi:10.1016/j.biortech.2021.126669
  • Kong Z, Li L, Feng C, et al. Soil infiltration bioreactor incorporated with pyrite-based (mixotrophic) denitrification for domestic wastewater treatment. Bioresour Technol. 2015;187:14–22. doi:10.1016/j.biortech.2015.03.052
  • Ge Z, Wei D, Zhang J, et al. Natural pyrite to enhance simultaneous long-term nitrogen and phosphorus removal in constructed wetland: three years of pilot study. Water Res. 2019;148:153–161. doi:10.1016/j.watres.2018.10.037
  • Xu Z, Qiao W, Song X, et al. Pathways regulating the enhanced nitrogen removal in a pyrite based vertical-flow constructed wetland. Bioresour Technol. 2021;325:124705. doi:10.1016/j.biortech.2021.124705
  • Si Z, Song X, Wang Y, et al. Natural pyrite improves nitrate removal in constructed wetlands and makes wetland a sink for phosphorus in cold climates. J Cleaner Prod. 2021;280:124304. doi:10.1016/j.jclepro.2020.124304
  • Di Capua F, Mascolo MC, Pirozzi F, et al. Simultaneous denitrification, phosphorus recovery and low sulfate production in a recirculated pyrite-packed biofilter (RPPB). Chemosphere. 2020;255:126977. doi:10.1016/j.chemosphere.2020.126977
  • Knabe D, Kludt C, Jacques D, et al. Development of a fully coupled biogeochemical reactive transport model to simulate microbial oxidation of organic carbon and pyrite under nitrate-reducing conditions. Water Resour Res. 2018;54:9264–9286. doi:10.1029/2018WR023202
  • Cai W, Fu F, Zhu L, et al. Simultaneous removal of chromium (VI) and phosphate from water using easily separable magnetite/pyrite nanocomposite. J Alloys Compd. 2019;803:118–125. doi:10.1016/j.jallcom.2019.06.285
  • Rahman A, Khan MM. Chalcogenides as photocatalysts. New J Chem. 2021;45:19622–19635. doi:10.1039/D1NJ04346C
  • Wang Y, Zhao J, Zhang Z, et al. Water strider inspired floating solar evaporator with high salt-resistant ability for desalination of contaminated seawater. J Environ Chem Eng. 2023;11:109800. doi:10.1016/j.jece.2023.109800
  • Wang Y, Zhang Z, Jian X, et al. Engineering hierarchical FeS2/TiO2 nanotubes on Ti mesh as a tailorable flow-through catalyst belt for all-day-active degradation of organic pollutants and pathogens. J Hazard Mater. 2022;438:129501. doi:10.1016/j.jhazmat.2022.129501
  • Riyaheini M, Gilani N, Pasikhani JV. Engineering the photo-induced charge generation between TiO2 and FeS2 heterojunction for enhanced photocatalytic wastewater purification. Ceram Int. 2023;49:34682–34696. doi:10.1016/j.ceramint.2023.08.129
  • Rashid J, Saleem S, Awan SU, et al. Stabilized fabrication of anatase-TiO2/FeS2 (pyrite) semiconductor composite nanocrystals for enhanced solar light-mediated photocatalytic degradation of methylene blue. RSC Adv. 2018;8:11935–11945. doi:10.1039/C8RA02077A
  • Guo Y, Li C, Gong Z, et al. Photocatalytic decontamination of tetracycline and Cr (VI) by a novel α-FeOOH/FeS2 photocatalyst: one-pot hydrothermal synthesis and Z-scheme reaction mechanism insight. J Hazard Mater. 2020;397:122580. doi:10.1016/j.jhazmat.2020.122580
  • Parasuraman B, Kandasamy B, Murugan I, et al. Designing the heterostructured FeWO4/FeS2 nanocomposites for an enhanced photocatalytic organic dye degradation. Chemosphere. 2023;334:138979. doi:10.1016/j.chemosphere.2023.138979
  • Guo Q, Tang G, Zhu W, et al. In situ construction of Z-scheme FeS2/Fe2O3 photocatalyst via structural transformation of pyrite for photocatalytic degradation of carbamazepine and the synergistic reduction of Cr (VI). J Environ Sci. 2021;101:351–360. doi:10.1016/j.jes.2020.08.029
  • Mohamed MM, Abdelmonem EE, El-Sayed G. Graphene foam mediated FeS2/α-Fe2O3 composites for chloramphenicol photodegradation using persulfate activation under visible light irradiation. J Water Process Eng. 2023;53:103633. doi:10.1016/j.jwpe.2023.103633
  • Changotra R, Dhir A. Striking dual functionality of iron pyrite-graphene oxide nanocomposites in water treating and water splitting reactions. Chem Eng J. 2022;442:136201. doi:10.1016/j.cej.2022.136201
  • Yang K, Chi Y, Yang Y, et al. Synergistic effect of novel pyrite/N-doped reduced graphene oxide composite with heterojunction structure for enhanced photo-assisted reduction of Cr (VI) in oxic water: specific role of molecular oxygen. Sci Total Environ. 2024;907:168123. doi:10.1016/j.scitotenv.2023.168123
  • Mao H, Chen F, Zhang Q, et al. Photogenerated and cocatalytic system cooperate to accelerate Fe3+/Fe2+ cycle in CNFe/FeS2/MoS2 composite with Z-scheme heterojunction constructed by interfacial chemical bond for advanced oxidation processes. J Environ Chem Eng. 2024;12:111708. doi:10.1016/j.jece.2023.111708
  • Tang J, Xu J, Zhang H, et al. High efficient PMS activation by synergistic effects of bimetallic sulfide FeS2@ MoS2 for rapid OFX degradation. Chem Eng J. 2023;475:146023. doi:10.1016/j.cej.2023.146023
  • Yang C, You X, Cheng J, et al. A novel visible-light-driven In-based MOF/graphene oxide composite photocatalyst with enhanced photocatalytic activity toward the degradation of amoxicillin. Appl Catal, B. 2017;200:673–680. doi:10.1016/j.apcatb.2016.07.057
  • Xing M, Xu W, Dong C, et al. Metal sulfides as excellent co-catalysts for H2O2 decomposition in advanced oxidation processes. Chem. 2018;4:1359–1372. doi:10.1016/j.chempr.2018.03.002
  • Li S, Yu W, Zhang X, et al. Mo-based heterogeneous interface and sulfur vacancy synergistic effect enhances the Fenton-like catalytic performance for organic pollutant degradation. ACS Appl Mater Interfaces. 2022;15:1326–1338. doi:10.1021/acsami.2c19243
  • Su X, Guo Y, Yan L, et al. MoS2 nanosheets vertically aligned on biochar as a robust peroxymonosulfate activator for removal of tetracycline. Sep Purif Technol. 2022;282:120118. doi:10.1016/j.seppur.2021.120118

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.