258
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Biological, behavioral, and social correlates of executive function in low-income preschoolers: Insights from the perspective of the networks

ORCID Icon, , ORCID Icon, , ORCID Icon & ORCID Icon

References

  • Anderson, Y. C., Kirkpatrick, K., Dolan, G. M. S., Wouldes, T. A., Grant, C. C., Cave, T. L., Wild, C. E. K., Derraik, J. G. B., Cutfield, W. S., & Hofman, P. L. (2019). Do changes in weight status affect cognitive function in children and adolescents with obesity? A secondary analysis of a clinical trial. BMJ Open, 9(2), e021586. https://doi.org/10.1136/bmjopen-2018-021586
  • Barnett, L. M., Lai, S. K., Veldman, S. L. C., Hardy, L. L., Cliff, D. P., Morgan, P. J., Zask, A., Lubans, D. R., Shultz, S. P., Ridgers, N. D., Rush, E., Brown, H. L., & Okely, A. D. (2016). Correlates of gross motor competence in children and adolescents: A systematic review and meta-analysis. Sports Medicine, 46(11), 1663–1688. https://doi.org/10.1007/s40279-016-0495-z
  • Batouli, S. A., & Saba, V. (2017). At least eighty percent of brain grey matter is modifiable by physical activity: A review study. Behavioural Brain Research, 332, 204–217. https://doi.org/10.1016/j.bbr.2017.06.002
  • Bell, M. A., & Cuevas, K. (2016). Psychobiology of executive function in early development. In Executive function in preschool age children: Integrating measurement, neurodevelopment and translational research (pp. 157–179).
  • Bezerra, T. A., Bandeira, P. F. R., de Souza Filho, A. N., Clark, C. C. T., Mota, J., Duncan, M. J., & de Lucena Martins, C. M. (2021). A network perspective on the relationship between moderate to vigorous physical activity and fundamental motor skills in early childhood. Journal of Physical Activity & Health, 18(7), 774–781. https://doi.org/10.1123/jpah.2020-0218
  • Bezerra, T. A., Clark, C. C. T., Souza Filho, A. N., Fortes, L. S., Mota, J., Duncan, M. J., & Martins, C. M. L. (2020). 24-hour movement behaviour and executive function in preschoolers: A compositional and isotemporal reallocation analysis. European Journal of Sport Science, 17, 1–9. https://doi.org/10.1080/17461391.2020.1795274
  • Borsboom, D., & Cramer, A. O. (2013). Network analysis: An integrative approach to the structure of psychopathology. Annual Review of Clinical Psychology, 9, 91–121. https://doi.org/10.1146/annurev-clinpsy-050212-185608
  • Butte, N. F., Wong, W. W., Lee, J. S., Adolph, A. L., Puyau, M. R., & Zakeri, I. F. (2014). Prediction of energy expenditure and physical activity in preschoolers. Medicine & Science in Sports & Exercise, 46(6), 1216–1226. https://doi.org/10.1249/MSS.0000000000000209
  • Cadenas-Sánchez, C., Alcántara-Moral, F., Sánchez-Delgado, G., Mora-González, J., Martínez-Téllez, B., Herrador-Colmenero, M., Jiménez-Pavón, D., Femia, P., Ruiz, J. R., & Ortega, F. B. (2014). Assessment of cardiorespiratory fitness in preschool children: Adaptation of the 20 metres shuttle run test. Nutricion Hospitalaria, 30(6), 1333–1343. https://doi.org/10.3305/nh.2014.30.6.7859
  • Chang, Y.-K., & Etnier, J. (2009). Exploring the dose-response relationship between resistance exercise intensity and cognitive function. Journal of Sport & Exercise Psychology, 31(5), 640–656. https://doi.org/10.1123/jsep.31.5.640
  • Chen, J., & Chen, Z. (2008). Extended Bayesian information criteria for model selection with large model spaces. Biometrika, 95(3), 759–771. https://doi.org/10.1093/biomet/asn034
  • Counsell, S. J., & Boardman, J. P. (2005). Differential brain growth in the infant born preterm: Current knowledge and future developments from brain imaging. Seminars in Fetal and Neonatal Medicine, 10(5), 403–410. https://doi.org/10.1016/j.siny.2005.05.003
  • da Silva, W. Q. A., Fontes, E. B., Forti, R. M., Lima, Z. L., Machado, D. G. d S., Deslandes, A. C., Hussey, E., Ward, N., Mesquita, R. C., Okano, A. H., & Elsangedy, H. M. (2017). Affect during incremental exercise: The role of inhibitory cognition, autonomic cardiac function, and cerebral oxygenation. PLoS One, 12(11), e0186926. https://doi.org/10.1371/journal.pone.0186926
  • de Kieviet, J., Zoetebier, L., Elburg, R., Vermeulen, R., & Oosterlaan, J. (2012). Brain development of very preterm and very low-birthweight children in childhood and adolescence: A meta-analysis. Developmental Medicine & Child Neurology, 54(4), 313–323. https://doi.org/10.1111/j.1469-8749.2011.04216.x
  • de Onis, M. (2006). WHO child growth standards. World Health Organization.
  • Diamond, A. (2002). Normal development of prefrontal cortex from birth to young adulthood: Cognitive functions, anatomy, and biochemistry. In Principles of Frontal Lobe Function. Oxford University Press.
  • Diamond, A. (2012). Executive functions. Annual Review of Psychology, 2012, 64. https://doi.org/10.1146/annurev-psych-113011-143750
  • Diamond, A. (2015). Why assessing and improving executive functions early in life is critical. In Executive function in preschool-age children: Integrating measurement, neurodevelopment, and translational research (pp. 11–43). American Psychological Association.
  • Diamond, A., & Ling, D. S. (2016). Conclusions about interventions, programs, and approaches for improving executive functions that appear justified and those that, despite much hype, do not. Developmental Cognitive Neuroscience, 18, 34–48. https://doi.org/10.1016/j.dcn.2015.11.005
  • Donnelly, J. E., Hillman, C. H., Castelli, D., Etnier, J. L., Lee, S., Tomporowski, P., Lambourne, K., & Szabo-Reed, A. N. (2016). Physical activity, fitness, cognitive function, and academic achievement in children: A systematic review. Medicine and Science in Sports and Exercise, 48(6), 1197–1222. https://doi.org/10.1249/MSS.0000000000000901
  • Epskamp, S., Cramer, A. O., Waldorp, L. J., Schmittmann, V. D., & Borsboom, D. J. J. o S. S. (2012). qgraph: Network visualizations of relationships in psychometric data. Journal of Statistical Software, 1(4), 1–18. https://doi.org/10.18637/jss.v048.i04
  • Esteban-Cornejo, I., Cadenas-Sanchez, C., Contreras-Rodriguez, O., Verdejo-Roman, J., Mora-Gonzalez, J., Migueles, J. H., Henriksson, P., Davis, C. L., Verdejo-Garcia, A., Catena, A., & Ortega, F. B. (2017). A whole brain volumetric approach in overweight/obese children: Examining the association with different physical fitness components and academic performance. The ActiveBrains project. NeuroImage, 159(1095–9572), 346–354. https://doi.org/10.1016/j.neuroimage.2017.08.011
  • Fedewa, A. L., & Ahn, S. (2011). The effects of physical activity and physical fitness on children’s achievement and cognitive outcomes: A meta-analysis. Research Quarterly for Exercise and Sport,, 82(3), 521–535. https://doi.org/10.1080/02701367.2011.10599785
  • Foygel, R., & Drton, M. (2010). Extended Bayesian information criteria for Gaussian graphical models. Paper presented at the Advances in neural information processing systems.
  • Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with the graphical LASSO. Biostatistics, 9(3), 432–441. https://doi.org/10.1093/biostatistics/kxm045
  • Fruchterman, T. M. J., & Reingold, E. M. (1991). Graph drawing by force-directed placement. Software: Practice and Experience, 21(11), 1129–1164. https://doi.org/10.1002/spe.4380211102
  • Hillman, C., Khan, N., & Kao, S.-C. (2015). The relationship of health behaviors to childhood cognition and brain health. Annals of Nutrition & Metabolism, 66(Suppl 3), 1–4. https://doi.org/10.1159/000381237
  • Hillman, C. H., Erickson, K., Fau-Kramer, A. F., & Kramer, A. F. (2008). Be smart, exercise your heart: Exercise effects on brain and cognition. Nature Reviews Neuroscience, 9(1), 58–0048. https://doi.org/10.1038/nrn2298
  • Howard, S., & Melhuish, E. (2017). An early years toolbox for assessing early executive function, language, self-regulation, and social development: Validity, reliability, and preliminary norms. Journal of Psychoeducational Assessment, 35(3), 255–275. https://doi.org/10.1177/0734282916633009
  • Hughes, C., & Devine, R. T. (2019). For better or for worse? Positive and negative parental influences on young children’s executive function. Child Development, 90(2), 593–609. https://doi.org/10.17863/CAM.10870
  • Kamijo, K., Nishihira, Y., Hatta, A., Kaneda, T., Wasaka, T., Kida, T., & Kuroiwa, K. (2004). Differential influences of exercise intensity on information processing in the central nervous system. European Journal of applied physiology, 92(3), 305–311. https://doi.org/10.1007/s00421-004-1097-2
  • Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia-Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re-analysis of latent variable studies. Psychological Bulletin, 144(11), 1147–1185. https://doi.org/10.1037/bul0000160
  • Khan, N., & Hillman, C. (2014). The relation of childhood physical activity and aerobic fitness to brain function and cognition: A review. Pediatric Exercise Science, 26(2), 138–146. https://doi.org/10.1123/pes.2013-0125
  • Klenberg, L., Korkman, M., & Lahti-Nuuttila, P. (2001). Differential development of attention and executive functions in 3- to 12-year-Old Finnish Children. Developmental Neuropsychology, 20(1), 407–428. https://doi.org/10.1207/S15326942DN2001_6
  • Koziol, L. F., & Lutz, J. T. (2013). From movement to thought: The development of executive function. Applied Neuropsychology. Child, 2(2), 104–115. https://doi.org/10.1080/21622965.2013.748386
  • Krämer, N., Schäfer, J., Fau-Boulesteix, A.-L., & Boulesteix, A. L. (2009). Regularized estimation of large-scale gene association networks using graphical Gaussian models. BMC Bioinformatics, 10(1471-2105), 384. https://doi.org/10.1186/1471-2105-10-384
  • Kurth, S., Dean, D., Achermann, P., O’Muircheartaigh, J., Huber, R., Deoni, S., & Lebourgeois, M. (2016). Increased sleep depth in developing neural networks: New insights from sleep restriction in children. Frontiers in human neuroscience, 10, 456. https://doi.org/10.3389/fnhum.2016.00456
  • Lawson, G., Hook, C., & Farah, M. (2017). A meta-analysis of the relationship between socioeconomic status and executive function performance among children. Developmental Science, 21(2), e12529. https://doi.org/10.1111/desc.12529
  • Leger, L., Mercier, D., Gadoury, C., & Lambert, J. (1988). The multistage 20 metre Shuttle Run test for aerobic fitness. Journal of Sports Sciences, 6(2), 93–101. https://doi.org/10.1080/02640418808729800
  • Linsell, L., Johnson, S., Wolke, D., O’Reilly, H., Morris, J. K., Kurinczuk, J. J., & Marlow, N. (2017). Cognitive trajectories from infancy to early adulthood following birth before 26 weeks of gestation: A prospective, population-based cohort study. Archives of Disease in Childhood, 103(4), 363–370. https://doi.org/10.1136/archdischild-2017-313414
  • McMorris, T. (2016). History of research into the acute exercise–cognition interaction: A cognitive psychology approach. In Exercise-cognition interaction: Neuroscience perspectives (pp. 1–28). Elsevier Academic Press.
  • Miyake, A., Friedman, N., Emerson, M., Witzki, A., Howerter, A., & Wager, T. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49–100. https://doi.org/10.1006/cogp.1999.0734
  • Nieto-López, M., Sánchez-López, M., Visier-Alfonso, M. E., Martínez-Vizcaíno, V., Jiménez-López, E., & Álvarez-Bueno, C. (2020). Relation between physical fitness and executive function variables in a preschool sample. Pediatric Research. 88(4), 623–628. https://doi.org/10.1038/s41390-020-0791-z
  • Nordhov, S., Ronning, J., Dahl, L., Ulvund, S., Tunby, J., & Kaaresen, P. (2010). Early intervention improves cognitive outcomes for preterm infants: Randomized controlled trial. Pediatrics, 126(5), e1088–e1094. https://doi.org/10.1542/peds.2010-0778
  • Pate, R. R., Hillman, C. H., Janz, K. F., Katzmarzyk, P. T., Powell, K. E., Torres, A., & Whitt-Glover, M. C. (2019). Physical activity and health in children younger than 6 years: A systematic review. Medicine & Science in Sports & Exercise, 51(6), 1282–1291. https://doi.org/10.1249/MSS.0000000000001940
  • Polishchuk, O. (2021). Influence and betweenness in flow models of complex network systems. In T. Radivilova, D. Ageyev, & N. Kryvinska (Eds.), Data-centric business and applications: ICT systems-theory, radio-electronics, information technologies and cybersecurity (Volume 5, pp. 67–90). Springer International Publishing.
  • Pontifex, M., McGowan, A., Chandler, M., Gwizdala, K., Parks, A., Fenn, K., & Kamijo, K. (2019). A primer on investigating the after effects of acute bouts of physical activity on cognition. Psychology of Sport and Exercise, 40, 1–22. https://doi.org/10.1016/j.psychsport.2018.08.015
  • Rao, H., Betancourt, L., Giannetta, J. M., Brodsky, N. L., Korczykowski, M., Avants, B. B., Gee, J. C., Wang, J., Hurt, H., Detre, J. A., & Farah, M. J. (2010). Early parental care is important for hippocampal maturation: Evidence from brain morphology in humans. NeuroImage, 49(1), 1144–1150. https://doi.org/10.1016/j.neuroimage.2009.07.003
  • Raver, C. C., Blair, C., & Willoughby, M. (2013). Poverty as a predictor of 4-year-olds’ executive function: New perspectives on models of differential susceptibility. Developmental Psychology, 49(2), 292–304. https://doi.org/10.1037/a0028343
  • Reilly, J. J., Jackson, D. M., Montgomery, C., Kelly, L. A., Slater, C., Grant, S., & Paton, J. Y. (2004). Total energy expenditure and physical activity in young Scottish children: Mixed longitudinal study. The Lancet, 363(9404), 211–212. https://doi.org/10.1016/S0140-6736(03)15331-7
  • Ruiz-Hermosa, A., Mota, J., Diez-Fernandez, A., Martinez Vizcaino, V., Redondo-Tébar, A., & Sánchez-López, M. (2020). Relationship between weight status and cognition in children: A mediation analysis of physical fitness components. Journal of Sports Sciences, 38(1), 13–20. https://doi.org/10.1080/02640414.2019.1676538
  • Ruotsalainen, I., Gorbach, T., Perkola, J., Renvall, V., Syväoja, H. J., Tammelin, T. H., & Parviainen, T. (2020). Physical activity, aerobic fitness, and brain white matter: Their role for executive functions in adolescence. Developmental Cognitive Neuroscience, 42, 100765. https://doi.org/10.1016/j.dcn.2020.100765
  • Scheurer, J. M., Zhang, L., Plummer, E. A., Hultgren, S. A., Demerath, E. W., & Ramel, S. E. (2018). Body composition changes from infancy to 4 years and associations with early childhood cognition in preterm and full-term children. Neonatology, 114(2), 169–176. https://doi.org/10.1159/000487915
  • Schmittmann, V., Cramer, A., Waldorp, L., Epskamp, S., Kievit, R., & Borsboom, D. (2013). Deconstructing the construct: A network perspective on psychological phenomena. New Ideas in Psychology, 31(1), 43–53. https://doi.org/10.1016/j.newideapsych.2011.02.007
  • Sektnan, M., McClelland, M., Acock, A., & Morrison, F. (2010). Relations between early family risk, children’s behavioral regulation, and academic achievement. Early Childhood Research Quarterly, 25(4), 464–479. https://doi.org/10.1016/j.ecresq.2010.02.005
  • Smith, E., Anderson, A., Thurm, A., Shaw, P., Maeda, M., Chowdhry, F., Chernomordik, V., & Gandjbakhche, A. (2017). Prefrontal activation during executive tasks emerges over early childhood: Evidence from functional near infrared spectroscopy. Developmental Neuropsychology, 42(4), 253–264. https://doi.org/10.1080/87565641.2017.1318391
  • Stillman, C. M., Esteban-Cornejo, I., Brown, B., Bender, C. M., & Erickson, K. I. (2020). Effects of exercise on brain and cognition across age groups and health states. Trends in Neurosciences. 43(7), 533–543. https://doi.org/10.1016/j.tins.2020.04.010
  • Tandon, P., Klein, M., Saelens, B., Christakis, D., Marchese, A., & Lengua, L. (2018). Short term impact of physical activity vs. sedentary behavior on preschoolers’ cognitive functions. Mental Health and Physical Activity, 15, 17–21. https://doi.org/10.1016/j.mhpa.2018.06.004
  • Valentini, F., & Damásio, B. F. (2016). Variância Média Extraída e Confiabilidade Composta: Indicadores de Precisão. Psicologia, 32(2), 1–7.
  • Vandenbroucke, L., Spilt, J., Verschueren, K., & Baeyens, D. (2017). Keeping the spirits up: The effect of teachers’ and parents’ emotional support on children’s working memory performance. Frontiers in Psychology. 8, e00512. https://doi.org/10.3389/fpsyg.2017.00512
  • Vaynman, S., & Gomez-Pinilla, F. (2006). Revenge of the “Sit”: How lifestyle impacts neuronal and cognitive health through molecular systems that interface energy metabolism with neuronal plasticity. Journal of Neuroscience Research, 84(4), 699–715. https://doi.org/10.1002/jnr.20979
  • Walker, A., & Macphee, D. (2011). How home gets to school: Parental control strategies predict children’s school readiness. Early Childhood Research Quarterly, 26(3), 355–364. https://doi.org/10.1016/j.ecresq.2011.02.001
  • Wang, Q., Zhang, H., Wee, C.-Y., Lee, A., Poh, J. S., Chong, Y.-S., Tan, K. H., Gluckman, P. D., Yap, F., Fortier, M. V., Rifkin-Graboi, A., & Qiu, A. (2019). Maternal sensitivity predicts anterior hippocampal functional networks in early childhood. Brain Structure and Function, 224(5), 1885–1895. https://doi.org/10.1007/s00429-019-01882-0
  • Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440–442. https://doi.org/10.1038/30918
  • Wen, x., Zhang, Y., Gao, Z., Zhao, W., Jie, J., & Bao, L. (2018). Effect of mini-trampoline physical activity on executive functions in preschool children. BioMed Research International, 2018, 2712803–2712807. https://doi.org/10.1155/2018/2712803
  • Wiebe, S. A., Sheffield, T. D., & Espy, K. A. (2012). Separating the fish from the sharks: A longitudinal study of preschool response inhibition. Child Development, 83(4), 1245–1261. https://doi.org/10.1111/j.1467-8624.2012.01765.x
  • Willoughby, M. T., Blair Cb Fau-Wirth, R. J., Wirth Rj Fau-Greenberg, M., & Greenberg, M. (2012). The measurement of executive function at age 5: Psychometric properties and relationship to academic achievement. Psychological Assessment, 24(1), 226–239. https://doi.org/10.1037/a0025361
  • Zysset, A. E., Kakebeeke, T. H., Messerli-Bürgy, N., Meyer, A. H., Stülb, K., Leeger-Aschmann, C. S., Schmutz, E. A., Arhab, A., Puder, J. J., Kriemler, S., Munsch, S., & Jenni, O. G. (2018). Predictors of executive functions in preschoolers: Findings from the SPLASHY study. Frontiers in Psychology, 9, 2060–2060. https://doi.org/10.3389/fpsyg.2018.02060

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.