709
Views
6
CrossRef citations to date
0
Altmetric
Commentary

Minor differences in the molecular machinery mediating regulated membrane fusion has major impact on metabolic health

, , , &
Pages 318-325 | Received 02 Dec 2015, Accepted 24 Dec 2015, Published online: 10 Mar 2016

References

  • Valladolid-Acebes I, Daraio T, Brismar K, Harkany T, Ögren SO, Hökfelt TG, Bark C. Replacing SNAP-25b with SNAP-25a expression results in metabolic disease. Proc Natl Acad Sci USA 2015; 112(31): E4326-35; PMID:26195742; http://dx.doi.org/10.1073/pnas.1511951112
  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE. A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993; 75(3): 409-18; PMID:8221884; http://dx.doi.org/10.1016/0092-8674(93)90376-2
  • Südhof TC. The molecular machinery of neurotransmitter release (Nobel lecture). Angew Chem Int Ed Engl 2014; 53(47): 12696-717; PMID:25339369; http://dx.doi.org/10.1002/anie.201406359
  • Sutton RB1, Fasshauer D, Jahn R, Brunger AT. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. Nature 1998; 395(6700): 347-53; PMID:9759724; http://dx.doi.org/10.1038/26412
  • Bark IC. Structure of the chicken gene for SNAP-25 reveals duplicated exon encoding distinct isoforms of the protein. J Mol Biol 1993. 233:67-76; PMID:8377193; http://dx.doi.org/10.1006/jmbi.1993.1485
  • Bark IC, Wilson MC. Human cDNA clones encoding two different isoforms of the nerve terminal protein SNAP-25. Gene 1994a; 139:291-2; PMID:8112622; http://dx.doi.org/10.1016/0378-1119(94)90773-0
  • Bark IC, Hahn KM, Ryabinin AE, Wilson MC. Differential expression of SNAP-25 protein isoforms during divergent vesicle fusion events of neural development. Proc Natl Acad Sci USA 1995;92(5):1510-4. PMID:7878010; http://dx.doi.org/10.1073/pnas.92.5.1510
  • Bark C, Bellinger FP, Kaushal A, Mathews JR, Partridge LD, Wilson MC. Developmentally regulated switch in alternatively spliced SNAP-25 isoforms alters facilitation of synaptic transmission. J Neurosci 2004. 24:8796-805; PMID:15470145; http://dx.doi.org/10.1523/JNEUROSCI.1940-04.2004
  • Johansson JU, Ericsson J, Janson J, Beraki S, Stanić D, Mandic SA, Wikström MA, Hökfelt T, Ögren SO, Rozell B, et al. An ancient duplication of exon 5 in the Snap25 gene is required for complex neuronal development/function. PLoS Genetics 2008; 4: e1000278; PMID:19043548; http://dx.doi.org/10.1371/journal.pgen.1000278
  • Carr K. Nobel goes to discoverers of ‘split genes’. Nature 1993; 365(6447):597; PMID:8413620; http://dx.doi.org/ 10.1038/365597a0
  • Sharp PA. Split Genes and RNA Splicing Nobel Lecture. Cell 1994; 77:805-815; PMID:7516265; http://dx.doi.org/10.1016/0092-8674(94)90130-9
  • Jangi M, Sharp PA. Building robust transcriptomes with master splicing factors. Cell 2014; 159(3):487-98; PMID:25417102; http://dx.doi.org/10.1016/j.cell.2014.09.054
  • de Klerk E, ´t Hoen PA. Alternative mRNA transcription, processing: and translation: insights from RNA sequencing. Trends Genet. 2015; 31(3):128-39; PMID:25648499; http://dx.doi.org/10.1016/j.tig.2015.01.001
  • Washbourne P, Thompson PM, Carta M, Costa ET, Mathews JR, Lopez-Benditó G, Molnár Z, Becher MW, Valenzuela CF, Partridge LD, et al. Genetic ablation of the t-SNARE SNAP-25 distinguishes mechanisms of neuroexocytosis. Nat Neurosci 2002; 5(1):19-26; PMID:11753414; http://dx.doi.org/10.1038/nn783
  • Bark C. SNAP-25 and gene-targeted mouse mutants. Ann N Y Acad Sci 2009; 1152:145-53; PMID:19161385; http://dx.doi.org/10.1111/j.1749-6632.2008.04009.x
  • Sørensen JB, Nagy G, Varoqueaux F, Nehring RB, Brose N, Wilson MC, Neher E. Differential control of the releasable vesicle pools by SNAP-25 splice variants and SNAP-23. Cell 2003; 114:75-86; PMID:12859899; http://dx.doi.org/10.1016/S0092-8674(03)00477-X
  • Gao Q, Horvath TL. Neurobiology of feeding and energy expenditure. Annu Rev Neurosci 2007; 30:367-98; PMID:17506645; http://dx.doi.org/10.1146/annurev.neuro.30.051606.094324
  • Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and disease. Nat Rev Neurosci 2014; 15(6): 367-378; PMID:24840801; http://dx.doi.org/10.1038/nrn3745
  • Müller TD, Tschöp MH. Ghrelin - a key pleiotropic hormone-regulating systemic energy metabolism. Endocr Dev 2013; 25:91-100; PMID:23652395; http://dx.doi.org/10.1159/000346590
  • Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, Mullany EC, Biryukov S, Abbafati C, Abera SF, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: A systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014; 384(9945): 766-81; PMID:24880830; http://dx.doi.org/10.1016/s0140-6736(14)60460-8
  • Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults. Findings from the third National Health and Nutrition Examination Survey. JAMA 2001; 287(3):356-59; PMID:11790215; http://dx.doi.org/10.1001/jama.287.3.356
  • Long YC, Zierath JR. AMP-activated protein kinase signaling in metabolic regulation. J Clin Invest 2006; 116(7):1776-83; PMID:16823475; http://dx.doi.org/10.1172/JCI29044
  • Grahame Hardie D. AMP-activated protein kinase. A key regulator of energy balance with many roles in human disease. J Intern Med 2014;276(6): 543-59; PMID:24824502; http://dx.doi.org/10.1111/joim.12268
  • Friedman J. 20 years of leptin. Leptin at 20: An overview. J Endocrinol 2014; 223(1):T1-T8; PMID:25121999; http://dx.doi.org/10.1530/JOE-14-0405
  • Tanti JF, Jager J. Cellular mechanisms of insulin resistance. Role of stress-regulated serine kinases and insulin receptor substrates (IRS) serine phosphorylation. Curr Opin Pharmacol 2009; 9(6):753-62; PMID:19683471; http://dx.doi.org/10.1016/j.coph.2009.07.004
  • Herder C, Roden M. Genetics of type 2 diabetes. pathophysiologic and clinical relevance. Eur J Clin Invest 2011; 41(6):679-92; PMID:21198561; http://dx.doi.org/10.1111/j.1365-2362.2010.02454.x
  • Barr CL, Feng Y, Wigg K, Bloom S, Roberts W, Malone M, Schachar R, Tannock R, Kennedy JL. Identification of DNA variants in the SNAP-25 gene and linkage study of these polymorphisms and attention-deficit hyperactivity disorder. Mol Psychiatry 2000; 5:405-409; PMID:10889551; http://dx.doi.org/ 10.1038/sj.mp.4000733
  • Brophy K, Hawi Z, Kirley A, Fitzgerald M, Gill M. Synaptosomal-associated protein 25 (SNAP-25) and attention deficit hyperactivity disorder (ADHD): evidence of linkage and association in the Irish population. Mol Psychiatry 2002; 7:913-17; PMID:12232787; http://dx.doi.org/10.1038/sj.mp.4001092
  • Kustanovich V, Merriman B, McGough J, McCracken JT, Smalley SL, Nelson SF. Biased paternal transmission of SNAP-25 risk alleles in attention-deficit hyperactivity disorder. Mol Psychiatry 2003; 8:309-15; PMID:12660803; http://dx.doi.org/10.1038/sj.mp.4001247
  • Feng Y, Crosbie J, Wigg K, Pathare T, Ickowicz A, Schachar R, Tannock R, Roberts W, Malone M, Swanson J, et al. The SNAP25 gene as a susceptibility gene contributing to attention-deficit hyperactivity disorder. Mol Psychiatry 2005; 10:998-1005, 973; PMID:16088329; http://dx.doi.org/10.1038/sj.mp.4001722
  • Mill J, Xu X, Ronald A, Curran S, Price T, Knight J, Craig I, Sham P, Plomin R, Asherson P. Quantitative trait locus analysis of candidate gene alleles associated with attention deficit hyperactivity disorder (ADHD) in five genes. DRD4, DAT1, DRD5, SNAP-25, and 5HT1B. Am J Med Genet B Neuropsychiatr Genet 2005; 133B: 68-73; PMID:15578613; http://dx.doi.org/10.1002/ajmg.b.30107
  • Kim JW, Waldman ID, Faraone SV, Biederman J, Doyle AE, Purcell S, Arbeitman L, Fagerness J, Sklar P, Smoller JW. Investigation of parent-of-origin effects in ADHD candidate genes. Am J Med Gent B Neuropsychiatr Genet 2007a; 144B:776-80; PMID:17427194; http://dx.doi.org/10.1002/ajmg.b.30519
  • Kim JW, Biederman J, Arbeitman L, Fagerness J, Doyle AE, Petty C, Perlis RH, Purcell S, Smoller JW, Faraone SV, et al. Investigation of variation in SNAP-25 and ADHD and relationship to co-morbid major depressive disorder. Am J Med Gent B Neuropsychiatr Genet 2007b; 144B:781-90; PMID:17455213; http://dx.doi.org/10.1002/ajmg.b.30522
  • Gosso MF, de Geus EJ, Polderman TJ, Boomsma DI, Heutink P, Posthuma D. Common variants underlying cognitive ability. further evidence for association between the SNAP-25 gene and cognition using a family-based study in two independent Dutch cohorts. Genes Brain Behav 2008; 7:355-64; PMID:17908175; http://dx.doi.org/10.1111/j.1601-183X.2007.00359.x
  • Guan L, Wang B, Chen Y, Yang L, Li J, Qian Q, Wang Z, Faraone SV, Wang Y. A high-density single-nucleotide polymorphism screen of 23 candidate genes in attention deficit hyperactivity disorder. suggesting multiple susceptibility genes among Chinese Han population. Mol Psychiatry 2009; 14:546-554; PMID:18180757; http://dx.doi.org/10.1038/sj.mp.4002139
  • Söderqvist S, McNab F, Peyrard-Janvid M, Matsson H, Humphreys K, Kere J, Klingberg T. The SNAP25 gene is linked to working memory capacity and maturation of the posterior cingulate cortex during childhood. Biol Psychiatry 2010; 68:1120-25; PMID:20950795; http://dx.doi.org/10.1016/j.biopsych.2010.07.036
  • Müller DJ, Klempan TA, De Luca V, Sicard T, Volavka J, Czobor P, Sheitman BB, Lindenmayer JP, Citrome L, McEvoy JP, et al. The SNAP-25 gene may be associated with clinical response and weight gain in antipsychotic treatment of schizophrenia. Neurosci Lett 2005; 379(2):81-89; PMID:15823421; http://dx.doi.org/10.1016/j.neulet.2004.12.037
  • Musil R, Spellmann I, Riedel M, Dehning S, Douhet A, Maino K, Zill P, Müller N, Möller HJ, Bondy B. SNAP-25 gene polymorphisms and weight gain in schizophrenic patients. J Psychiatr Res 2008; 42(12):963-70; PMID:18191416; http://dx.doi.org/10.1016/j.jpsychires.2007.11.003
  • Al-Daghri NM, Costa AS, Alokail MS, Zanzottera M, Alenad AM, Mohammed AK, Clerici M, Guerini FR. Synaptosomal Protein of 25 kDa (Snap25) Polymorphisms Associated with Glycemic Parameters in Type 2 Diabetes Patients. J Diabetes Res 2016; http://dx.doi.org/10.1155/2016/8943092
  • Chen YL, Pei D, Hung YJ, Lee CH, Hsiao FC, Wu CZ, Lin JD, Hsu CH, Chang JB, Hsieh CH. Associations between genetic variants and the severity of metabolic syndrome in subjects with type 2 diabetes. Genet Mol Res 2015; 14(1): 2518-26; PMID:25867398; http://dx.doi.org/10.4238/2015.March.30.10
  • Goldlust IS, Hermetz KE, Catalano LM, Barfield RT, Cozad R, Wynn G, Ozdemir AC, Conneely KN, Mulle JG, Dharamrup S, et al. Mouse model implicates GNB3 duplication in a childhood obesity syndrome. Proc Natl Acad Sci USA 2013; 110(37):14990-4; PMID:23980137; http://dx.doi.org/10.1073/pnas.1305999110
  • Romeo S, Sentinelli F, Cavallo MG, Leonetti F, Fallarino M, Mariotti S, Baroni MG. Search for genetic variants of the SYNTAXIN 1A (STX1A) gene. The −352 A>T variant in the STX1A promoter associates with impaired glucose metabolism in an Italian obese population. Int J Obes 2008; 32(3):413-20; PMID:17912268; http://dx.doi.org/10.1038/sj.ijo.0803743
  • Tsunoda K, Sanke T, Nakagawa T, Furuta H, Nanjo K. Single nucleotide polymorphism (D68D, T to C) in the syntaxin 1A gene correlates to age at onset and insulin requirement in Type II diabetic patients. Diabetologia 2001; 44(11):2092-97; PMID:11719842; http://dx.doi.org/10.1007/s001250100015
  • Reinbothe TM, Alkayyali S, Ahlqvist E, Tuomi T, Isomaa B, Lyssenko V, Renström E. The human L-type calcium channel Cav1.3 regulates insulin release and polymorphisms in CACNA1D associate with type 2 diabetes. Diabetologia 2013; 56(2):340-49; PMID:23229155; http://dx.doi.org/10.1007/s00125-012-2758-z
  • Olson TM, Terzic A. Human K(ATP) channelopathies. Diseases of metabolic homeostasis. Pflugers Arch 2010; 460(2):295-306; PMID:20033705; http://dx.doi.org/10.1007/s00424-009-0771-y
  • Németh N, Kovács-Nagy R, Székely A, Sasvári-Székely M, Rónai Z. Association of impulsivity and polymorphic microRNA-641 target sites in the SNAP-25 gene. PLoS One 2013; 8(12): e84207; PMID:24391914; http://dx.doi.org/10.1371/journal.pone.0084207
  • International Diabetes Federation (IDF) http://www.idf.org
  • World Health Organization (WHO) http://www.who.int/mediacentre/factsheets/fs311/en
  • McDonald TJ, Ellard S. Maturity onset diabetes of the young: identification and diagnosis. Ann Clin Biochem 2013; 50(5):403-15; PMID:23878349; http://dx.doi.org/10.1177/0004563213483458
  • Steinbusch L, Labouèbe G, Thorens B: Brain glucose sensing in homeostatic and hedonic regulation. Trends Endocrinol Metab 2015; 26(9):455-66; PMID:26163755; http://dx.doi.org/10.1016/j.tem.2015.06.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.