2,966
Views
47
CrossRef citations to date
0
Altmetric
Review

Adrenergic regulation of cellular plasticity in brown, beige/brite and white adipose tissues

&
Pages 119-129 | Received 12 Nov 2015, Accepted 15 Jan 2016, Published online: 22 Mar 2016

References

  • Hany TF, Gharehpapagh E, Kamel EM, Buck A, Himms-Hagen J, von Schulthess GK. Brown adipose tissue: a factor to consider in symmetrical tracer uptake in the neck and upper chest region. European J Nuclear Med Mol Imaging 2002; 29:1393-8; http://dx.doi.org/10.1007/s00259-002-0902-6
  • Cypess AM, Lehman S, Williams G, Tal I, Rodman D, Goldfine AB, Kuo FC, Palmer EL, Tseng YH, Doria A, et al. Identification and importance of brown adipose tissue in adult humans. N Eng J Med 2009; 360:1509-17; PMID:19357406; http://dx.doi.org/10.1056/NEJMoa0810780
  • van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ. Cold-activated brown adipose tissue in healthy men. N Eng J Med 2009; 360:1500-8; PMID:19357405; http://dx.doi.org/10.1056/NEJMoa0808718
  • Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerback S, et al. Functional brown adipose tissue in healthy adults. N Eng J Med 2009; 360:1518-25; PMID:19357407; http://dx.doi.org/10.1056/NEJMoa0808949
  • Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, et al. High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 2009; 58:1526-31; PMID:19401428; http://dx.doi.org/10.2337/db09-0530
  • Muzik O, Mangner TJ, Granneman JG. Assessment of oxidative metabolism in brown fat using PET imaging. Front Endocrinol (Lausanne) 2012; 3:15; PMID:22649408
  • Muzik O, Mangner TJ, Leonard WR, Kumar A, Janisse J, Granneman JG. 15O PET measurement of blood flow and oxygen consumption in cold-activated human brown fat. J Nuclear Med 2013; 54:523-31; PMID:23362317; http://dx.doi.org/10.2967/jnumed.112.111336
  • Orava J, Nuutila P, Lidell ME, Oikonen V, Noponen T, Viljanen T, Scheinin M, Taittonen M, Niemi T, Enerback S, et al. Different metabolic responses of human brown adipose tissue to activation by cold and insulin. Cell Metab 2011; 14:272-9; PMID:21803297; http://dx.doi.org/10.1016/j.cmet.2011.06.012
  • Orava J, Nuutila P, Noponen T, Parkkola R, Viljanen T, Enerback S, Rissanen A, Pietilainen KH, Virtanen KA. Blunted metabolic responses to cold and insulin stimulation in brown adipose tissue of obese humans. Obesity (Silver Spring, Md) 2013; 21:2279-87; PMID:23554353; http://dx.doi.org/10.1002/oby.20456
  • Foster DO, Depocas F, Frydman ML. Noradrenaline-induced calorigenesis in warm- and cold-acclimated rats: relations between concentration of noradrenaline in arterial plasma, blood flow to differently located masses of brown adipose tissue, and calorigenic response. Canadian J Physiol Pharmacol 1980; 58:915-24; PMID:7225930; http://dx.doi.org/10.1139/y80-140
  • Foster DO, Frydman ML. Nonshivering thermogenesis in the rat. II. Measurements of blood flow with microspheres point to brown adipose tissue as the dominant site of the calorigenesis induced by noradrenaline. Canadian J Physiol Pharmacol 1978; 56:110-22; PMID:638848; http://dx.doi.org/10.1139/y78-015
  • Himms-Hagen J. Sympathetic regulation of metabolism. Pharmacol Rev 1967; 19:367-461; PMID:4861785
  • Bartness TJ, Shrestha YB, Vaughan CH, Schwartz GJ, Song CK. Sensory and sympathetic nervous system control of white adipose tissue lipolysis. Mol Cell Endocrinol 2010; 318:34-43; PMID:19747957; http://dx.doi.org/10.1016/j.mce.2009.08.031
  • Bartness TJ, Vaughan CH, Song CK. Sympathetic and sensory innervation of brown adipose tissue. Int J Obesity (2005) 2010; 34 Suppl 1:S36-42; PMID:20935665; http://dx.doi.org/10.1038/ijo.2010.182
  • Young JB, Saville E, Rothwell NJ, Stock MJ, Landsberg L. Effect of diet and cold exposure on norepinephrine turnover in brown adipose tissue of the rat. J Clin Invest 1982; 69:1061-71; PMID:7068845; http://dx.doi.org/10.1172/JCI110541
  • Brito NA, Brito MN, Bartness TJ. Differential sympathetic drive to adipose tissues after food deprivation, cold exposure or glucoprivation. Am J Physiol Regulatory Integrative Comparative Physiol 2008; 294:R1445-52; PMID:18321949; http://dx.doi.org/10.1152/ajpregu.00068.2008
  • Morrison SF, Madden CJ. Central nervous system regulation of brown adipose tissue. Comprehensive Physiol 2014; 4:1677-713; PMID:25428857; http://dx.doi.org/10.1002/cphy.c140013
  • Kawate R, Talan MI, Engel BT. Sympathetic nervous activity to brown adipose tissue increases in cold-tolerant mice. Physiol Behavior 1994; 55:921-5; PMID:8022914; http://dx.doi.org/10.1016/0031-9384(94)90080-9
  • Haynes WG, Morgan DA, Walsh SA, Mark AL, Sivitz WI. Receptor-mediated regional sympathetic nerve activation by leptin. J Clin Invest 1997; 100:270-8; PMID:9218503; http://dx.doi.org/10.1172/JCI119532
  • Collins S, Kuhn CM, Petro AE, Swick AG, Chrunyk BA, Surwit RS. Role of leptin in fat regulation. Nature 1996; 380:677; PMID:8614460; http://dx.doi.org/10.1038/380677a0
  • Murazumi K, Yahata T, Kuroshima A. Effects of cold and immobilization stress on noradrenaline turnover in brown adipose tissue of rat. Japanese J Physiol 1987; 37:601-7; PMID:3430868; http://dx.doi.org/10.2170/jjphysiol.37.601
  • Foster MT, Bartness TJ. Sympathetic but not sensory denervation stimulates white adipocyte proliferation. Am J Physiol Regulatory Integrative Comparative Physiol 2006; 291:R1630-7; PMID:16887921; http://dx.doi.org/10.1152/ajpregu.00197.2006
  • Giordano A, Frontini A, Murano I, Tonello C, Marino MA, Carruba MO, Nisoli E, Cinti S. Regional-dependent increase of sympathetic innervation in rat white adipose tissue during prolonged fasting. J Histochem Cytochem 2005; 53:679-87; PMID:15928317; http://dx.doi.org/10.1369/jhc.4A6566.2005
  • Shi H, Song CK, Giordano A, Cinti S, Bartness TJ. Sensory or sympathetic white adipose tissue denervation differentially affects depot growth and cellularity. Am J Physiol Regulatory Integrative Comparative Physiol 2005; 288:R1028-37; PMID:15550613; http://dx.doi.org/10.1152/ajpregu.00648.2004
  • Lee YH, Petkova AP, Konkar AA, Granneman JG. Cellular origins of cold-induced brown adipocytes in adult mice. FASEB J 2015; 29:286-99; PMID:25392270; http://dx.doi.org/10.1096/fj.14-263038
  • Giordano A, Song CK, Bowers RR, Ehlen JC, Frontini A, Cinti S, Bartness TJ. White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am J Physiol Regulatory Integrative Comparative Physiol 2006; 291:R1243-55; PMID:16809481; http://dx.doi.org/10.1152/ajpregu.00679.2005
  • Youngstrom TG, Bartness TJ. Catecholaminergic innervation of white adipose tissue in Siberian hamsters. Am J Physiol 1995; 268:R744-51; PMID:7900918
  • Shi Z, Chen WW, Xiong XQ, Han Y, Zhou YB, Zhang F, Gao XY, Zhu GQ. Sympathetic activation by chemical stimulation of white adipose tissues in rats. J Applied Physiol (Bethesda, Md: 1985) 2012; 112:1008-14; PMID:22223453; http://dx.doi.org/10.1152/japplphysiol.01164.2011
  • Weiss B, Maickel RP. Sympathetic nervous control of adipose tissue lipolysis. Int J Neuropharmacol 1968; 7:395-403; PMID:4388579; http://dx.doi.org/10.1016/0028-3908(68)90023-3
  • Dodt C, Lonnroth P, Fehm HL, Elam M. Intraneural stimulation elicits an increase in subcutaneous interstitial glycerol levels in humans. J Physiol 1999; 521 Pt 2:545-52; PMID:10581323; http://dx.doi.org/10.1111/j.1469-7793.1999.00545.x
  • Dodt C, Lonnroth P, Fehm HL, Elam M. The subcutaneous lipolytic response to regional neural stimulation is reduced in obese women. Diabetes 2000; 49:1875-9; PMID:11078454; http://dx.doi.org/10.2337/diabetes.49.11.1875
  • Hull D, Segall MM. Sympathetic nervous control of brown adipose tissue and heat production in the new-born rabbit. J Physiol 1965; 181:458-67; PMID:5880370; http://dx.doi.org/10.1113/jphysiol.1965.sp007774
  • Zeng W, Pirzgalska RM, Pereira MM, Kubasova N, Barateiro A, Seixas E, Lu YH, Kozlova A, Voss H, Martins GG, et al. Sympathetic Neuro-adipose Connections Mediate Leptin-Driven Lipolysis. Cell 2015; 163:84-94; PMID:26406372; http://dx.doi.org/10.1016/j.cell.2015.08.055
  • Contreras GA, Lee YH, Mottillo EP, Granneman JG. Inducible brown adipocytes in subcutaneous inguinal white fat: the role of continuous sympathetic stimulation. Am J Physiol Endocrinol Metab 2014; 307:E793-9; PMID:25184993; http://dx.doi.org/10.1152/ajpendo.00033.2014
  • Bartness TJ, Liu Y, Shrestha YB, Ryu V. Neural innervation of white adipose tissue and the control of lipolysis. Frontiers Neuroendocrinol 2014; 35:473-93; PMID:24736043; http://dx.doi.org/10.1016/j.yfrne.2014.04.001
  • Murphy KT, Schwartz GJ, Nguyen NL, Mendez JM, Ryu V, Bartness TJ. Leptin-sensitive sensory nerves innervate white fat. Am J Physiol Endocrinol Metab 2013; 304:E1338-47; PMID:23612999; http://dx.doi.org/10.1152/ajpendo.00021.2013
  • Garofalo MA, Kettelhut IC, Roselino JE, Migliorini RH. Effect of acute cold exposure on norepinephrine turnover rates in rat white adipose tissue. J Autonomic Nervous Sys 1996; 60:206-8; PMID:8912272; http://dx.doi.org/10.1016/0165-1838(96)00037-9
  • Granneman JG. Norepinephrine infusions increase adenylate cyclase responsiveness in brown adipose tissue. J Pharmacol Exp Therapeutics 1988; 245:1075-80; PMID:2838602
  • Liu X, Perusse F, Bukowiecki LJ. Chronic norepinephrine infusion stimulates glucose uptake in white and brown adipose tissues. Am J Physiol 1994; 266:R914-20; PMID:8160886
  • Geloen A, Collet AJ, Bukowiecki LJ. Role of sympathetic innervation in brown adipocyte proliferation. Am J Physiol 1992; 263:R1176-81; PMID:1481924
  • Ma SW, Foster DO. Potentiation of in vivo thermogenesis in rat brown adipose tissue by stimulation of α 1-adrenoreceptors is associated with increased release of cyclic AMP. Canadian J Physiol Pharmacol 1984; 62:943-8; PMID:6149006; http://dx.doi.org/10.1139/y84-158
  • Carpene C, Galitzky J, Collon P, Esclapez F, Dauzats M, Lafontan M. Desensitization of β-1 and β-2, but not β-3, adrenoceptor-mediated lipolytic responses of adipocytes after long-term norepinephrine infusion. JPharmacol Exp Therapeutics 1993; 265:237-47; PMID:8097243
  • Bachman ES, Dhillon H, Zhang CY, Cinti S, Bianco AC, Kobilka BK, Lowell BB. betaAR signaling required for diet-induced thermogenesis and obesity resistance. Science (New York, NY) 2002; 297:843-5; http://dx.doi.org/10.1126/science.1073160
  • Granneman JG, Li P, Zhu Z, Lu Y. Metabolic and cellular plasticity in white adipose tissue I: effects of beta3-adrenergic receptor activation. Am J Physiol Endocrinol Metab 2005; 289:E608-16; PMID:15941787; http://dx.doi.org/10.1152/ajpendo.00009.2005
  • Wilson C, Wilson S, Piercy V, Sennitt MV, Arch JR. The rat lipolytic β-adrenoceptor: studies using novel β-adrenoceptor agonists. European J Pharmacol 1984; 100:309-19; PMID:6145597; http://dx.doi.org/10.1016/0014-2999(84)90007-4
  • Arch JR, Ainsworth AT, Cawthorne MA, Piercy V, Sennitt MV, Thody VE, Wilson C, Wilson S. Atypical β-adrenoceptor on brown adipocytes as target for anti-obesity drugs. Nature 1984; 309:163-5; PMID:6325935; http://dx.doi.org/10.1038/309163a0
  • Arch JR, Wilson S. Beta 3-adrenoceptors and the regulation of metabolism in adipose tissues. Biochem Society Transactions 1996; 24:412-8; PMID:8736774; http://dx.doi.org/10.1042/bst0240412
  • Grujic D, Susulic VS, Harper ME, Himms-Hagen J, Cunningham BA, Corkey BE, Lowell BB. Beta3-adrenergic receptors on white and brown adipocytes mediate beta3-selective agonist-induced effects on energy expenditure, insulin secretion, and food intake. A study using transgenic and gene knockout mice. J Biol Chem 1997; 272:17686-93; PMID:9211919; http://dx.doi.org/10.1074/jbc.272.28.17686
  • Granneman JG, Lahners KN, Rao DD. Rodent and human β 3-adrenergic receptor genes contain an intron within the protein-coding block. Mol Pharmacol 1992; 42:964-70; PMID:1336117
  • Thomas RF, Liggett SB. Lack of β 3-adrenergic receptor mRNA expression in adipose and other metabolic tissues in the adult human. Mol Pharmacol 1993; 43:343-8; PMID:8383799
  • Deng C, Paoloni-Giacobino A, Kuehne F, Boss O, Revelli JP, Moinat M, Cawthorne MA, Muzzin P, Giacobino JP. Respective degree of expression of β 1-, β 2- and β 3-adrenoceptors in human brown and white adipose tissues. Br J Pharmacol 1996; 118:929-34; PMID:8799564; http://dx.doi.org/10.1111/j.1476-5381.1996.tb15488.x
  • Arch JR. Challenges in β(3)-Adrenoceptor Agonist Drug Development. Therapeutic Adv Endocrinol Metab 2011; 2:59-64; PMID:23148171; http://dx.doi.org/10.1177/2042018811398517
  • Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 2000; 279:C670-81; PMID:10942717
  • Cinti S. Reversible transdifferentiation in the adipose organ. Int J Pediatric Obesity 2008; 3(Suppl 2):21-6; PMID:18850409; http://dx.doi.org/10.1080/17477160802404665
  • Barbatelli G, Murano I, Madsen L, Hao Q, Jimenez M, Kristiansen K, Giacobino JP, De Matteis R, Cinti S. The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. Am J Physiol Endocrinol Metab 2010; 298:E1244-53; PMID:20354155; http://dx.doi.org/10.1152/ajpendo.00600.2009
  • Fedorenko A, Lishko PV, Kirichok Y. Mechanism of fatty-acid-dependent UCP1 uncoupling in brown fat mitochondria. Cell 2012; 151:400-13; PMID:23063128; http://dx.doi.org/10.1016/j.cell.2012.09.010
  • Haemmerle G, Lass A, Zimmermann R, Gorkiewicz G, Meyer C, Rozman J, Heldmaier G, Maier R, Theussl C, Eder S, et al. Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 2006; 312:734-7; http://dx.doi.org/10.1126/science.1123965
  • Mottillo EP, Bloch AE, Leff T, Granneman JG. Lipolytic products activate peroxisome proliferator-activated receptor (PPAR) α and delta in brown adipocytes to match fatty acid oxidation with supply. J Biol Chem 2012; 287:25038-48; PMID:22685301; http://dx.doi.org/10.1074/jbc.M112.374041
  • Rim JS, Kozak LP. Regulatory motifs for CREB-binding protein and Nfe2l2 transcription factors in the upstream enhancer of the mitochondrial uncoupling protein 1 gene. J Biol Chem 2002; 277:34589-600; PMID:12084707; http://dx.doi.org/10.1074/jbc.M108866200
  • Chang JS, Fernand V, Zhang Y, Shin J, Jun HJ, Joshi Y, Gettys TW. NT-PGC-1alpha protein is sufficient to link beta3-adrenergic receptor activation to transcriptional and physiological components of adaptive thermogenesis. J Biol Chem 2012; 287:9100-11; PMID:22282499; http://dx.doi.org/10.1074/jbc.M111.320200
  • Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 1998; 92:829-39; PMID:9529258; http://dx.doi.org/10.1016/S0092-8674(00)81410-5
  • Cao W, Daniel KW, Robidoux J, Puigserver P, Medvedev AV, Bai X, Floering LM, Spiegelman BM, Collins S. p38 mitogen-activated protein kinase is the central regulator of cyclic AMP-dependent transcription of the brown fat uncoupling protein 1 gene. Mol Cell Biol 2004; 24:3057-67; PMID:15024092; http://dx.doi.org/10.1128/MCB.24.7.3057-3067.2004
  • Granneman JG, Burnazi M, Zhu Z, Schwamb LA. White adipose tissue contributes to UCP1-independent thermogenesis. Am J Physiol Endocrinol Metab 2003; 285:E1230-6; PMID:12954594; http://dx.doi.org/10.1152/ajpendo.00197.2003
  • Ukropec J, Anunciado RP, Ravussin Y, Hulver MW, Kozak LP. UCP1-independent thermogenesis in white adipose tissue of cold-acclimated Ucp1−/− mice. J Biol Chem 2006; 281:31894-908; PMID:16914547; http://dx.doi.org/10.1074/jbc.M606114200
  • Mottillo EP, Balasubramanian P, Lee YH, Weng C, Kershaw EE, Granneman JG. Coupling of lipolysis and de novo lipogenesis in brown, beige, and white adipose tissues during chronic beta3-adrenergic receptor activation. J Lipid Res 2014; 55:2276-86; PMID:25193997; http://dx.doi.org/10.1194/jlr.M050005
  • Kazak L, Chouchani ET, Jedrychowski MP, Erickson BK, Shinoda K, Cohen P, Vetrivelan R, Lu GZ, Laznik-Bogoslavski D, Hasenfuss SC, et al. A Creatine-Driven Substrate Cycle Enhances Energy Expenditure and Thermogenesis in Beige Fat. Cell 2015; 163:643-55; PMID:26496606; http://dx.doi.org/10.1016/j.cell.2015.09.035
  • Schneider-Picard G, Girardier L. Postnatal development of sympathetic innervation of rat brown adipose tissue reevaluated with a method allowing for monitoring flavoprotein redox state. J De Physiologie 1982; 78:151-7; PMID:7131328
  • Desautels M, Dulos RA, Mozaffari B. Selective loss of uncoupling protein from mitochondria of surgically denervated brown adipose tissue of cold-acclimated mice. Biochem Cell Biol = Biochimie Et Biologie Cellulaire 1986; 64:1125-34; PMID:3828106; http://dx.doi.org/10.1139/o86-148
  • Park IR, Himms-Hagen J. Neural influences on trophic changes in brown adipose tissue during cold acclimation. Am J Physiol 1988; 255:R874-81; PMID:3202222
  • Minokoshi Y, Saito M, Shimazu T. Metabolic and morphological alterations of brown adipose tissue after sympathetic denervation in rats. J Autonomic Nervous Syst 1986; 15:197-204; PMID:3958437; http://dx.doi.org/10.1016/0165-1838(86)90063-9
  • Himms-Hagen J, Cui J, Lynn Sigurdson S. Sympathetic and sensory nerves in control of growth of brown adipose tissue: Effects of denervation and of capsaicin. Neurochem Int 1990; 17:271-9; PMID:20504627; http://dx.doi.org/10.1016/0197-0186(90)90149-N
  • Granneman JG, MacKenzie RG, Fluharty SJ, Zigmond MJ, Stricker EM. Neural control of adenylate cyclase responsiveness in brown adipose tissue. J Pharmacol Exp Therapeutics 1985; 233:163-7; PMID:2858577
  • Chaudhry A, Granneman JG. Adrenergic regulation of neonatal brown fat adenylyl cyclase and Gs α activity. Am J Physiol 1992; 263:R34-8; PMID:1353311
  • Padbury JF, Lam RW, Polk DH, Newnham JP, Lakshmanan J, Fisher DA. Autoimmune sympathectomy in fetal rabbits. J Dev Physiol 1986; 8:369-76; PMID:3794227
  • Thomas SA, Palmiter RD. Thermoregulatory and metabolic phenotypes of mice lacking noradrenaline and adrenaline. Nature 1997; 387:94-7; PMID:9139828; http://dx.doi.org/10.1038/387094a0
  • Morrison SF, Sved AF, Passerin AM. GABA-mediated inhibition of raphe pallidus neurons regulates sympathetic outflow to brown adipose tissue. Am J Physiol 1999; 276:R290-7; PMID:9950904
  • Osaka T. Cold-induced thermogenesis mediated by GABA in the preoptic area of anesthetized rats. Am J Physiol Regulatory Integrative Comparative Physiol 2004; 287:R306-13; PMID:15031132; http://dx.doi.org/10.1152/ajpregu.00003.2004
  • Qiu Y, Nguyen KD, Odegaard JI, Cui X, Tian X, Locksley RM, Palmiter RD, Chawla A. Eosinophils and type 2 cytokine signaling in macrophages orchestrate development of functional beige fat. Cell 2014; 157:1292-308; PMID:24906148; http://dx.doi.org/10.1016/j.cell.2014.03.066
  • Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A. Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 2011; 480:104-8; PMID:22101429; http://dx.doi.org/10.1038/nature10653
  • Bukowiecki L, Collet AJ, Follea N, Guay G, Jahjah L. Brown adipose tissue hyperplasia: a fundamental mechanism of adaptation to cold and hyperphagia. Am J Physiol 1982; 242:E353-9; PMID:6953766
  • Bukowiecki LJ, Geloen A, Collet AJ. Proliferation and differentiation of brown adipocytes from interstitial cells during cold acclimation. Am J Physiol 1986; 250:C880-7; PMID:3717329
  • Himms-Hagen J, Cui J, Danforth E, Jr, Taatjes DJ, Lang SS, Waters BL, Claus TH. Effect of CL-316,243, a thermogenic β 3-agonist, on energy balance and brown and white adipose tissues in rats. Am J Physiol 1994; 266:R1371-82; PMID:7910436
  • Lee YH, Petkova AP, Granneman JG. Identification of an adipogenic niche for adipose tissue remodeling and restoration. Cell Metab 2013; 18:355-67; PMID:24011071; http://dx.doi.org/10.1016/j.cmet.2013.08.003
  • Lee YH, Petkova AP, Mottillo EP, Granneman JG. In vivo identification of bipotential adipocyte progenitors recruited by beta3-adrenoceptor activation and high-fat feeding. Cell Metab 2012; 15:480-91; PMID:22482730; http://dx.doi.org/10.1016/j.cmet.2012.03.009
  • Granneman JG, Lahners KN, Chaudhry A. Molecular cloning and expression of the rat β 3-adrenergic receptor. Mol Pharmacol 1991; 40:895-9; PMID:1684635
  • Granneman JG, Lahners KN. Differential adrenergic regulation of β 1- and β 3-adrenoreceptor messenger ribonucleic acids in adipose tissues. Endocrinol 1992; 130:109-14; PMID:1309320
  • Muzzin P, Revelli JP, Kuhne F, Gocayne JD, McCombie WR, Venter JC, Giacobino JP, Fraser CM. An adipose tissue-specific β-adrenergic receptor. Molecular cloning and down-regulation in obesity. J Biol Chem 1991; 266:24053-8; PMID:1721063
  • Bengtsson T, Cannon B, Nedergaard J. Differential adrenergic regulation of the gene expression of the β-adrenoceptor subtypes beta1, beta2 and beta3 in brown adipocytes. Biochem J 2000; 347 Pt 3:643-51; PMID:10769166; http://dx.doi.org/10.1042/bj3470643
  • Kozak UC, Kozak LP. Norepinephrine-dependent selection of brown adipocyte cell lines. Endocrinol 1994; 134:906-13; PMID:7905411
  • Bronnikov G, Houstek J, Nedergaard J. Beta-adrenergic, cAMP-mediated stimulation of proliferation of brown fat cells in primary culture. Mediation via β 1 but not via β 3 adrenoceptors. J Biol Chem 1992; 267:2006-13; PMID:1346138
  • Bronnikov G, Bengtsson T, Kramarova L, Golozoubova V, Cannon B, Nedergaard J. beta1 to beta3 switch in control of cyclic adenosine monophosphate during brown adipocyte development explains distinct β-adrenoceptor subtype mediation of proliferation and differentiation. Endocrinology 1999; 140:4185-97; PMID:10465291
  • Richard D, Picard F. Brown fat biology and thermogenesis. Frontiers Biosci (Landmark edition) 2011; 16:1233-60; PMID:21196229; http://dx.doi.org/10.2741/3786
  • Lee YH, Mottillo EP, Granneman JG. Adipose tissue plasticity from WAT to BAT and in between. Biochimica Et Biophysica Acta 2014; 1842:358-69; PMID:23688783; http://dx.doi.org/10.1016/j.bbadis.2013.05.011
  • Loncar D, Bedrica L, Mayer J, Cannon B, Nedergaard J, Afzelius BA, Svajger A. The effect of intermittent cold treatment on the adipose tissue of the cat. Apparent transformation from white to brown adipose tissue. J Ultra Structure Mol Structure Res 1986; 97:119-29; PMID:3453365; http://dx.doi.org/10.1016/S0889-1605(86)80012-X
  • Loncar D, Afzelius BA, Cannon B. Epididymal white adipose tissue after cold stress in rats. II. Mitochondrial changes. J Ultrastructure Mol Structure Res 1988; 101:199-209; PMID:3151905; http://dx.doi.org/10.1016/0889-1605(88)90010-9
  • Loncar D, Afzelius BA, Cannon B. Epididymal white adipose tissue after cold stress in rats. I. Nonmitochondrial changes. J Ultra Structure Mol Structure Res 1988; 101:109-22; PMID:3268608; http://dx.doi.org/10.1016/0889-1605(88)90001-8
  • Guerra C, Koza RA, Yamashita H, Walsh K, Kozak LP. Emergence of brown adipocytes in white fat in mice is under genetic control. Effects on body weight and adiposity. J Clin Invest 1998; 102:412-20; PMID:9664083; http://dx.doi.org/10.1172/JCI3155
  • Xue B, Rim JS, Hogan JC, Coulter AA, Koza RA, Kozak LP. Genetic variability affects the development of brown adipocytes in white fat but not in interscapular brown fat. J Lipid Res 2007; 48:41-51; PMID:17041251; http://dx.doi.org/10.1194/jlr.M600287-JLR200
  • Hong KY, Bae H, Park I, Park DY, Kim KH, Kubota Y, Cho ES, Kim H, Adams RH, Yoo OJ, et al. Perilipin+ embryonic preadipocytes actively proliferate along growing vasculatures for adipose expansion. Development 2015; 142:2623-32; PMID:26243869; http://dx.doi.org/10.1242/dev.125336
  • Lasar D, Julius A, Fromme T, Klingenspor M. Browning attenuates murine white adipose tissue expansion during postnatal development. Biochimica Et Biophysica Acta 2013; 1831:960-8; PMID:23376694; http://dx.doi.org/10.1016/j.bbalip.2013.01.016
  • Gouon-Evans V, Pollard JW. Unexpected deposition of brown fat in mammary gland during postnatal development. Mol Endocrinol (Baltimore, Md) 2002; 16:2618-27; PMID:12403850; http://dx.doi.org/10.1210/me.2001-0337
  • Chabowska-Kita A, Trabczynska A, Korytko A, Kaczmarek MM, Kozak LP. Low ambient temperature during early postnatal development fails to cause a permanent induction of brown adipocytes. FASEB J 2015; 29:3238-52; PMID:25896784; http://dx.doi.org/10.1096/fj.15-271395
  • Gospodarska E, Nowialis P, Kozak LP. Mitochondrial turnover: a phenotype distinguishing brown adipocytes from interscapular brown adipose tissue and white adipose tissue. J Biol Chem 2015; 290:8243-55; PMID:25645913; http://dx.doi.org/10.1074/jbc.M115.637785
  • Rosenwald M, Perdikari A, Rulicke T, Wolfrum C. Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 2013; 15:659-67; PMID:23624403; http://dx.doi.org/10.1038/ncb2740
  • Kusminski CM, Gallardo-Montejano VI, Wang ZV, Hegde V, Bickel PE, Dhurandhar NV, Scherer PE. E4orf1 induction in adipose tissue promotes insulin-independent signaling in the adipocyte. Mol Metab 2015; 4:653-64; PMID:26500839; http://dx.doi.org/10.1016/j.molmet.2015.07.004
  • Wang QA, Tao C, Gupta RK, Scherer PE. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nature Med 2013; 19:1338-44; PMID:23995282; http://dx.doi.org/10.1038/nm.3324
  • Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB, Wang MY, Kusminski CM, Morley TS, Gupta RK. Pdgfrbeta Mural preadipocytes contribute to adipocyte hyperplasia induced by High-Fat-Diet Feeding and prolonged cold exposure in adult mice. Cell Metab 2015; S1550-4131(15):00567-7; PMID:26626462
  • Xue R, Lynes MD, Dreyfuss JM, Shamsi F, Schulz TJ, Zhang H, Huang TL, Townsend KL, Li Y, Takahashi H, et al. Clonal analyses and gene profiling identify genetic biomarkers of the thermogenic potential of human brown and white preadipocytes. Nat Med 2015; 21:760-8; PMID:26076036; http://dx.doi.org/10.1038/nm.3881
  • de Jong JM, Larsson O, Cannon B, Nedergaard J. A stringent validation of mouse adipose tissue identity markers. Am J Physiol Endocrinol Metab 2015; 308:E1085-105; PMID:25898951; http://dx.doi.org/10.1152/ajpendo.00023.2015
  • Wang W, Kissig M, Rajakumari S, Huang L, Lim HW, Won KJ, Seale P. Ebf2 is a selective marker of brown and beige adipogenic precursor cells. Proc Natl Acad Sci U S A 2014; 111:14466-71; PMID:25197048; http://dx.doi.org/10.1073/pnas.1412685111
  • Han J, Lee JE, Jin J, Lim JS, Oh N, Kim K, Chang SI, Shibuya M, Kim H, Koh GY. The spatiotemporal development of adipose tissue. Dev (Cambridge, England) 2011; 138:5027-37; PMID:22028034; http://dx.doi.org/10.1242/dev.067686
  • Schulz TJ, Huang TL, Tran TT, Zhang H, Townsend KL, Shadrach JL, Cerletti M, McDougall LE, Giorgadze N, Tchkonia T, et al. Identification of inducible brown adipocyte progenitors residing in skeletal muscle and white fat. Proc Natl Acad Sci USA 2011; 108:143-8; PMID:21173238; http://dx.doi.org/10.1073/pnas.1010929108
  • Lee YH, Kim SN, Kwon HJ, Maddipati KR, Granneman JG. Adipogenic role of alternatively activated macrophages in β-adrenergic remodeling of white adipose tissue. Am J Physiol Regulatory Integrative Comparative Physiol 2016; 310:R55-65; PMID:26538237; http://dx.doi.org/10.1152/ajpregu.00355.2015
  • Hofmann WE, Liu X, Bearden CM, Harper ME, Kozak LP. Effects of genetic background on thermoregulation and fatty acid-induced uncoupling of mitochondria in UCP1-deficient mice. J Biol Chem 2001; 276:12460-5; PMID:11279075; http://dx.doi.org/10.1074/jbc.M100466200
  • Liu X, Rossmeisl M, McClaine J, Riachi M, Harper ME, Kozak LP. Paradoxical resistance to diet-induced obesity in UCP1-deficient mice. J Clin Invest 2003; 111:399-407; PMID:12569166; http://dx.doi.org/10.1172/JCI200315737
  • Li P, Zhu Z, Lu Y, Granneman JG. Metabolic and cellular plasticity in white adipose tissue II: role of peroxisome proliferator-activated receptor-α. Am J Physiol Endocrinol Metab 2005; 289:E617-26; PMID:15941786; http://dx.doi.org/10.1152/ajpendo.00010.2005
  • Sanders MA, Madoux F, Mladenovic L, Zhang H, Ye X, Angrish M, Mottillo EP, Caruso JA, Halvorsen G, Roush WR, et al. Endogenous and Synthetic ABHD5 Ligands Regulate ABHD5-Perilipin Interactions and Lipolysis in Fat and Muscle. Cell Metab 2015; 22(5):851-60; PMID:26411340
  • Lee P, Smith S, Linderman J, Courville AB, Brychta RJ, Dieckmann W, Werner CD, Chen KY, Celi FS. Temperature-acclimated brown adipose tissue modulates insulin sensitivity in humans. Diabetes 2014; 63:3686-98; PMID:24954193; http://dx.doi.org/10.2337/db14-0513
  • Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S, Lidell ME, Saraf MK, Labbe SM, Hurren NM, et al. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes 2014; 63:4089-99; PMID:25056438; http://dx.doi.org/10.2337/db14-0746
  • Liu X, Zheng Z, Zhu X, Meng M, Li L, Shen Y, Chi Q, Wang D, Zhang Z, Li C, et al. Brown adipose tissue transplantation improves whole-body energy metabolism. Cell Res 2013; 23:851-4; PMID:23649313; http://dx.doi.org/10.1038/cr.2013.64
  • Gunawardana SC, Piston DW. Reversal of type 1 diabetes in mice by brown adipose tissue transplant. Diabetes 2012; 61:674-82; PMID:22315305; http://dx.doi.org/10.2337/db11-0510
  • Stanford KI, Middelbeek RJ, Townsend KL, An D, Nygaard EB, Hitchcox KM, Markan KR, Nakano K, Hirshman MF, Tseng YH, et al. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest 2013; 123:215-23; PMID:23221344; http://dx.doi.org/10.1172/JCI62308
  • Stanford KI, Middelbeek RJ, Townsend KL, Lee MY, Takahashi H, So K, Hitchcox KM, Markan KR, Hellbach K, Hirshman MF, et al. A novel role for subcutaneous adipose tissue in exercise-induced improvements in glucose homeostasis. Diabetes 2015; 64:2002-14; PMID:25605808; http://dx.doi.org/10.2337/db14-0704
  • Ohno H, Shinoda K, Ohyama K, Sharp LZ, Kajimura S. EHMT1 controls brown adipose cell fate and thermogenesis through the PRDM16 complex. Nature 2013; 504:163-7; PMID:24196706; http://dx.doi.org/10.1038/nature12652
  • Cohen P, Levy JD, Zhang Y, Frontini A, Kolodin DP, Svensson KJ, Lo JC, Zeng X, Ye L, Khandekar MJ, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell 2014; 156:304-16; PMID:24439384; http://dx.doi.org/10.1016/j.cell.2013.12.021
  • Tharp KM, Jha AK, Kraiczy J, Yesian A, Karateev G, Sinisi R, Dubikovskaya EA, Healy KE, Stahl A. Matrix-Assisted Transplantation of Functional Beige Adipose Tissue. Diabetes 2015; 64:3713-24; PMID:26293504; http://dx.doi.org/10.2337/db15-0728
  • Samms RJ, Smith DP, Cheng CC, Antonellis PP, Perfield JW, 2nd, Kharitonenkov A, Gimeno RE, Adams AC. Discrete Aspects of FGF21 In Vivo Pharmacology Do Not Require UCP1. Cell Reports 2015; 11:991-9; PMID:25956583; http://dx.doi.org/10.1016/j.celrep.2015.04.046
  • Veniant MM, Sivits G, Helmering J, Komorowski R, Lee J, Fan W, Moyer C, Lloyd DJ. Pharmacologic Effects of FGF21 Are Independent of the “Browning” of White Adipose Tissue. Cell Metab 2015; 21:731-8; PMID:25955208; http://dx.doi.org/10.1016/j.cmet.2015.04.019
  • Kajimura S, Spiegelman BM, Seale P. Brown and Beige Fat: Physiological Roles beyond Heat Generation. Cell Metab 2015; 22:546-59; PMID:26445512; http://dx.doi.org/10.1016/j.cmet.2015.09.007
  • Kleiber M. Body size and metabolic rate. Physiol Rev 1947; 27:511-41; PMID:20267758
  • Rezende EL, Bacigalupe LD. Thermoregulation in endotherms: physiological principles and ecological consequences. J Comparative Physiol B Biochem Systemic Environmental Physiol 2015; 185:709-27; PMID:26025431; http://dx.doi.org/10.1007/s00360-015-0909-5
  • Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elia E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, et al. Activation of human brown adipose tissue by a beta3-adrenergic receptor agonist. Cell Metab 2015; 21:33-8; PMID:25565203; http://dx.doi.org/10.1016/j.cmet.2014.12.009
  • Yoneshiro T, Aita S, Matsushita M, Kameya T, Nakada K, Kawai Y, Saito M. Brown adipose tissue, whole-body energy expenditure, and thermogenesis in healthy adult men. Obesity (Silver Spring, Md) 2011; 19:13-6; PMID:20448535; http://dx.doi.org/10.1038/oby.2010.105

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.