2,438
Views
13
CrossRef citations to date
0
Altmetric
Commentary

Age-dependent obesity and mitochondrial dysfunction

, &
Pages 161-166 | Received 23 Nov 2016, Accepted 15 Feb 2017, Published online: 22 Mar 2017

References

  • Collaboration, NCDRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants. Lancet 2016; 387(10026):1377-96; PMID:27115820; https://doi.org/10.1016/S0140-6736(16)30054-X
  • Global, BMIMC, Di Angelantonio E, Bhupathiraju Sh N, Wormser D, Gao P, Kaptoge S, Berrington de Gonzalez A, Cairns BJ, Huxley R, Jackson ChL, et al. Body-mass index and all-cause mortality: individual-participant-data meta-analysis of 239 prospective studies in four continents. Lancet 2016; 388(10046):776-86; PMID:27423262; https://doi.org/10.1016/S0140-6736(16)30175-1
  • Kuk JL, Saunders TJ, Davidson LE, Ross R. Age-related changes in total and regional fat distribution. Ageing Res Rev 2009; 8(4):339-48; PMID:19576300; https://doi.org/10.1016/j.arr.2009.06.001
  • Kyle UG, Genton L, Hans D, Karsegard L, Slosman DO, Pichard C. Age-related differences in fat-free mass, skeletal muscle, body cell mass and fat mass between 18 and 94 years. Eur J Clin Nutr 2001; 55(8):663-72; PMID:11477465; https://doi.org/10.1038/sj.ejcn.1601198
  • Cartwright MJ, Tchkonia T, Kirkland JL. Aging in adipocytes: potential impact of inherent, depot-specific mechanisms. Exp Gerontol 2007; 42(6):463-71; PMID:17507194; https://doi.org/10.1016/j.exger.2007.03.003
  • Hughes VA, Roubenoff R, Wood M, Frontera WR, Evans WJ, Fiatarone Singh MA. Anthropometric assessment of 10-y changes in body composition in the elderly. Am J Clin Nutr 2004; 80(2):475-82; PMID:15277173
  • Slawik M, Vidal-Puig AJ. Lipotoxicity, overnutrition and energy metabolism in aging. Ageing Res Rev 2006; 5(2):144-64; PMID:16630750; https://doi.org/10.1016/j.arr.2006.03.004
  • Lee YS, Kim JW, Osborne O, Oh DY, Sasik R, Schenk S, Chen A, Chung H, Murphy A, Watkins SM, et al. Increased adipocyte O2 consumption triggers HIF-1alpha, causing inflammation and insulin resistance in obesity. Cell 2014; 157(6):1339-52; PMID:24906151; https://doi.org/10.1016/j.cell.2014.05.012
  • Lv, Y, L Xue, Cai C, Liu QH, Shen J. Deficiency of myotubularin-related protein 14 influences body weight, metabolism, and inflammation in an age-dependent manner. Cell Biosci 2015; 5:69; PMID:26697164; https://doi.org/10.1186/s13578-015-0062-6
  • Soro-Arnaiz, I, Li QO, Torres-Capelli M, Melendez-Rodriguez F, Veiga S, Veys K, Sebastian D, Elorza A, Tello D, Hernansanz-Agustin P, et al. Role of Mitochondrial Complex IV in Age-Dependent Obesity. Cell Rep 2016; 16(11):2991-3002; PMID:27626667; https://doi.org/10.1016/j.celrep.2016.08.041
  • Gomes AP, Price NL, Ling AJ, Moslehi JJ, Montgomery MK, Rajman L, White JP, Teodoro JS, Wrann CD, Hubbard BP, et al., Declining NAD(+) induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell 2013; 155(7):1624-38; PMID:24360282; https://doi.org/10.1016/j.cell.2013.11.037
  • Houtkooper RH, Argmann C, Houten SM, Canto C, Jeninga EH, Andreux PA, Thomas C, Doenlen R, Schoonjans K, Auwerx J. The metabolic footprint of aging in mice. Sci Rep 2011; 1:134; PMID:22355651; https://doi.org/10.1038/srep00134
  • Sasaki T, Age-Associated Weight Gain, Leptin, and SIRT1: A possible role for hypothalamic SIRT1 in the prevention of weight gain and aging through modulation of leptin sensitivity. Front Endocrinol (Lausanne) 2015; 6:109; PMID:26236282
  • Yang SB, Tien AC, Boddupalli G, Xu AW, Jan YN, Jan LY. Rapamycin ameliorates age-dependent obesity associated with increased mTOR signaling in hypothalamic POMC neurons. Neuron 2012; 75(3):425-36; PMID:22884327; https://doi.org/10.1016/j.neuron.2012.03.043
  • Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153(6):1194-217; PMID:23746838; https://doi.org/10.1016/j.cell.2013.05.039
  • Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, Han SS, Yoon YS, Yoon G, Choi KM, Ko YG. Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia 2006; 49(4):784-91; PMID:16501941; https://doi.org/10.1007/s00125-006-0170-2
  • Valerio A, Cardile A, Cozzi V, Bracale R, Tedesco L, Pisconti A, Palomba L, Cantoni O, Clementi E, Moncada S, et al., TNF-alpha downregulates eNOS expression and mitochondrial biogenesis in fat and muscle of obese rodents. J Clin Invest 2006; 116(10):2791-8; PMID:16981010; https://doi.org/10.1172/JCI28570
  • Rong, JX, Qiu Y, Hansen MK, Zhu L, Zhang V, Xie M, Okamoto Y, Mattie MD, Higashiyama H, Asano S, et al. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes 2007; 56(7):1751-60; PMID:17456854; https://doi.org/10.2337/db06-1135
  • Gao CL, Zhu C, Zhao YP, Chen XH, Ji CB, Zhang CM, Zhu JG, Xia ZK, Tong ML, Guo XR. Mitochondrial dysfunction is induced by high levels of glucose and free fatty acids in 3T3-L1 adipocytes. Mol Cell Endocrinol 2010; 320(1–2):25-33; PMID:20144685; https://doi.org/10.1016/j.mce.2010.01.039
  • Kusminski CM, Scherer PE. Mitochondrial dysfunction in white adipose tissue. Trends Endocrinol Metab 2012; 23(9):435-43; PMID:22784416; https://doi.org/10.1016/j.tem.2012.06.004
  • Villarroya J, Giralt M, Villarroya F, Mitochondrial DNA: an up-and-coming actor in white adipose tissue pathophysiology. Obesity (Silver Spring) 2009; 17(10):1814-20; PMID:19461585; https://doi.org/10.1038/oby.2009.152
  • Lindinger A, Peterli R, Peters T, Kern B, von Flue M, Calame M, Hoch M, Eberle AN, Lindinger PW. Mitochondrial DNA content in human omental adipose tissue. Obes Surg 2010; 20(1):84-92; PMID:19826890; https://doi.org/10.1007/s11695-009-9987-3
  • Yin, X, Lanza IR, Swain JM, Sarr MG, Nair KS, Jensen MD. Adipocyte mitochondrial function is reduced in human obesity independent of fat cell size. J Clin Endocrinol Metab 2014; 99(2):E209-16; PMID:24276464; https://doi.org/10.1210/jc.2013-3042
  • Kaaman M, Sparks LM, van Harmelen V, Smith SR, Sjolin E, I Dahlman, Arner P. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia 2007; 50(12):2526-33; PMID:17879081; https://doi.org/10.1007/s00125-007-0818-6
  • Fischer B, Schottl T, Schempp C, Fromme T, Hauner H, Klingenspor M, Skurk T. Inverse relationship between body mass index and mitochondrial oxidative phosphorylation capacity in human subcutaneous adipocytes. Am J Physiol Endocrinol Metab 2015; 309(4):E380-7; PMID:26081284; https://doi.org/10.1152/ajpendo.00524.2014
  • Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O, Shah YM, Gonzalez FJ. Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 2011; 60(10):2484-95; PMID:21873554; https://doi.org/10.2337/db11-0174
  • Krishnan J, Danzer C, Simka T, Ukropec J, Walter KM, Kumpf S, Mirtschink P, Ukropcova B, Gasperikova D, Pedrazzini T, et al. Dietary obesity-associated Hif1alpha activation in adipocytes restricts fatty acid oxidation and energy expenditure via suppression of the Sirt2-NAD+ system. Genes Dev 2012; 26(3):259-70; PMID:22302938; https://doi.org/10.1101/gad.180406.111
  • Lee KY, Gesta S, Boucher J, Wang XL, Kahn CR. The differential role of Hif1beta/Arnt and the hypoxic response in adipose function, fibrosis, and inflammation. Cell Metab 2011; 14(4):491-503; PMID:21982709; https://doi.org/10.1016/j.cmet.2011.08.006
  • Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, et al. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007; 56(4):901-11; PMID:17395738; https://doi.org/10.2337/db06-0911
  • Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293(4):E1118-28; PMID:17666485; https://doi.org/10.1152/ajpendo.00435.2007
  • Sasaki, T, Kikuchi O, Shimpuku M, Susanti VY, Yokota-Hashimoto H, Taguchi R, Shibusawa N, Sato T, Tang L, Amano K, et al. Hypothalamic SIRT1 prevents age-associated weight gain by improving leptin sensitivity in mice. Diabetologia 2014; 57(4):819-31; PMID:24374551; https://doi.org/10.1007/s00125-013-3140-5
  • Lafontaine-Lacasse M, Richard D, Picard F. Effects of age and gender on Sirt 1 mRNA expressions in the hypothalamus of the mouse. Neurosci Lett 2010; 480(1):1-3; PMID:20074616; https://doi.org/10.1016/j.neulet.2010.01.008
  • Morley R, The influence of early diet on later development. J Biosoc Sci 1996; 28(4):481-7; PMID:8973005; https://doi.org/10.1017/S0021932000022549
  • Starr ME, Saito H. Age-related increase in food spilling by laboratory mice may lead to significant overestimation of actual food consumption: implications for studies on dietary restriction, metabolism, and dose calculations. J Gerontol A Biol Sci Med Sci 2012; 67(10):1043-8; PMID:22451471; https://doi.org/10.1093/gerona/gls009
  • Sena, LA, Chandel NS. Physiological roles of mitochondrial reactive oxygen species. Mol Cell 2012; 48(2):158-67; PMID:23102266; https://doi.org/10.1016/j.molcel.2012.09.025
  • Chandel, NS, Maltepe E, Goldwasser E, Mathieu CE, Simon MC, Schumacker PT. Mitochondrial reactive oxygen species trigger hypoxia-induced transcription. Proc Natl Acad Sci U S A 1998; 95(20):11715-20; PMID:9751731; https://doi.org/10.1073/pnas.95.20.11715
  • Anavi S, Hahn-Obercyger M, Madar Z, Tirosh O, Mechanism for HIF-1 activation by cholesterol under normoxia: a redox signaling pathway for liver damage. Free Radic Biol Med 2014; 71:61-9; PMID:24632196; https://doi.org/10.1016/j.freeradbiomed.2014.03.007
  • Salmon AB, Oxidative stress in the etiology of age-associated decline in glucose metabolism. Longev Healthspan 2012; 1:7; PMID:24764512; https://doi.org/10.1186/2046-2395-1-7
  • Zhang L, Ebenezer PJ, Dasuri K, Fernandez-Kim SO, Francis J, Mariappan N, Gao Z, Ye J, Bruce-Keller AJ, Keller JN. Aging is associated with hypoxia and oxidative stress in adipose tissue: implications for adipose function. Am J Physiol Endocrinol Metab 2011; 301(4):E599-607; PMID:21586698; https://doi.org/10.1152/ajpendo.00059.2011
  • Sebastian D, Sorianello E, Segales J, Irazoki A, Ruiz-Bonilla V, Sala D, Planet E, Berenguer-Llergo A, Munoz JP, Sanchez-Feutrie M, et al. Mfn2 deficiency links age-related sarcopenia and impaired autophagy to activation of an adaptive mitophagy pathway. EMBO J 2016; 35(15):1677-93; PMID:27334614; https://doi.org/10.15252/embj.201593084
  • Kaelin WG, Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008; 8(11):865-73; PMID:18923434; https://doi.org/10.1038/nrc2502
  • Aragones J, Fraisl P, Baes M, Carmeliet P. Oxygen sensors at the crossroad of metabolism. Cell Metab 2009; 9(1):11-22; PMID:19117543; https://doi.org/10.1016/j.cmet.2008.10.001
  • Iyer NV, Kotch LE, Agani F, Leung SW, Laughner E, Wenger RH, Gassmann M, Gearhart JD, Lawler AM, Yu AY, et al. Cellular and developmental control of O2 homeostasis by hypoxia-inducible factor 1 alpha. Genes Dev 1998; 12(2):149-62; PMID:9436976; https://doi.org/10.1101/gad.12.2.149
  • Papandreou I, Cairns RA, Fontana L, Lim AL, Denko NC. HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab 2006; 3(3):187-97; PMID:16517406; https://doi.org/10.1016/j.cmet.2006.01.012
  • Kim JW, Tchernyshyov I, Semenza GL, Dang CV. HIF-1-mediated expression of pyruvate dehydrogenase kinase: a metabolic switch required for cellular adaptation to hypoxia. Cell Metab 2006; 3(3):177-85; PMID:16517405; https://doi.org/10.1016/j.cmet.2006.02.002
  • Tello D, Balsa E, Acosta-Iborra B, Fuertes-Yebra E, Elorza A, Ordonez A, Corral-Escariz M, Soro I, Lopez-Bernardo E, Perales-Clemente E, et al. Induction of the mitochondrial NDUFA4L2 protein by HIF-1alpha decreases oxygen consumption by inhibiting Complex I activity. Cell Metab 2011; 14(6):768-79; PMID:22100406; https://doi.org/10.1016/j.cmet.2011.10.008
  • Dahia, PL, Ross KN, Wright ME, Hayashida CY, Santagata S, Barontini M, Kung AL, Sanso G, Powers JF, Tischler AS, et al. A HIF1alpha regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005; 1(1):72-80; PMID:16103922; https://doi.org/10.1371/journal.pgen.0010008
  • Fukuda R, Zhang H, Kim JW, Shimoda L, Dang CV, Semenza GL. HIF-1 regulates cytochrome oxidase subunits to optimize efficiency of respiration in hypoxic cells. Cell 2007; 129(1):111-22; PMID:17418790; https://doi.org/10.1016/j.cell.2007.01.047
  • Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL. HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 2007; 11(5):407-20; PMID:17482131; https://doi.org/10.1016/j.ccr.2007.04.001
  • Galati D, Srinivasan S, Raza H, Prabu SK, Hardy M, Chandran K, Lopez M, Kalyanaraman B, Avadhani NG. Role of nuclear-encoded subunit Vb in the assembly and stability of cytochrome c oxidase complex: implications in mitochondrial dysfunction and ROS production. Biochem J 2009; 420(3):439-49; PMID:19338496; https://doi.org/10.1042/BJ20090214

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.