2,046
Views
5
CrossRef citations to date
0
Altmetric
Research Paper

Higher lactate production from glucose in cultured adipose nucleated stromal cells than for rat adipocytes

, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 61-76 | Received 02 Oct 2018, Accepted 15 Dec 2018, Published online: 08 Feb 2019

References

  • Cinti S. The adipose organ: morphological perspectives of adipose tissues. Proc Nutr Soc. 2001;60:319–328.
  • Luo LP, Liu ML. Adipose tissue in control of metabolism. J Endocrinol. 2016;231:R77–R99. doi:10.1530/JOE-16-0211.
  • Saillan-Barreau C, Cousin B, Andre M, Villena P, Casteilla L, Pénicaud L. Human adipose cells as candidates in defense and tissue remodeling phenomena. Biochem Biophys Res Commun. 2003;309:502–505.
  • Tilg H, Moschen AR. Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Rev Immunol. 2006;6:772–783. doi:10.1038/nri1937.
  • Booth A, Magnuson A, Fouts J, Foster MT. Adipose tissue: an endocrine organ playing a role in metabolic regulation. Horm Mol Biol Clin Investig. 2016;26:25–42. doi:10.1515/hmbci-2015-0073.
  • Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–355.
  • Bremer AA, Devaraj S, Afify A, Jialal, I. Adipose tissue dysregulation in patients with metabolic syndrome. J Clin Endocrinol Metab. 2011;96:E1782–E1788. doi:10.1210/jc.2011-1577.
  • Im GI. Adipose stem cells and skeletal repair. Histol Histopathol. 2013;28:557–564. doi:10.14670/HH-28.557.
  • Apovian CM, Bigornia S, Mott M, Meyers MR, Ulloor J, Gagua M, McDonnell M, Hess D, Joseph L, Gokce N. Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Art Thromb Vasc Biol. 2008;28:1654–1659. doi:10.1161/ATVBAHA.108.170316.
  • Maumus M, Peyrafitte JA, d’Angelo R, Fournier-Wirth C, Bouloumié A, Casteilla L, Sengenès C, Bourin P. Native human adipose stromal cells: localization, morphology and phenotype. Int J Obesity. 2011;35:1141–1153. doi:10.1038/ijo.2010.269.
  • Frontini A, Giordano A, Cinti S. Endothelial cells of adipose tissues. A niche of adipogenesis. Cell Cycle. 2012;11:2765–2766. doi:10.4161/cc.21255.
  • Alemany M. Regulation of adipose tissue energy availability through blood flow control in the metabolic syndrome. Free Radical Biol Med. 2012;52:2108–2119. doi:10.1016/j.freeradbiomed.2012.03.003.
  • Spiroglou SG, Kostopoulos CG, Varakis JN, Papadaki HH. Adipokines in periaortic and epicardial adipose tissue: differential expression and relation to atherosclerosis. J Atherosc Thromb. 2010;17:115–130. doi:10.5551/jat.1735.
  • Nakajima I, Yamaguchi T, Ozutsumi K, Aso H. Adipose tissue extracellular matrix: newly organized by adipocytes during differentiation. Differentiation. 1998;63:193–200. doi:10.1111/j.1432-0436.1998.00193.x.
  • Huh JY, Park YJ, Ham M, Kim JB. Crosstalk between adipocytes and immune cells in adipose tissue inflammation and metabolic dysregulation in obesity. Mol Cells. 2014;37:365–371. doi:10.14348/molcells.2014.0074.
  • Dandona P, Aljada A, Chaudhuri A, Mohanty P, Garg R. Metabolic syndrome. A comprehensive perspective based on interactions between obesity, diabetes, and inflammation. Circulation. 2005;111:1448–1454. doi:10.1161/01.CIR.0000158483.13093.9D.
  • Romero MM, Roy S, Pouillot K, Feito M, Esteve M, Grasa MM, Fernández-López J-A, Alemany M, Remesar X. Treatment of rats with a self-selected hyperlipidic diet, increases the lipid content of the main adipose tissue sites in a proportion similar to that of the lipids in the rest of organs and tissues. PLoS One. 2014;9:e90995. doi:10.1371/journal.pone.0090995.
  • Ho-Palma AC, Rotondo F, Romero MM, Memmolo S, Remesar X, Fernández-López JA, Alemany M. A method for the measurement of lactate, glycerol and fatty acids production from 14C-glucose in primary cultures of rat epididymal adipocytes. Anal Meth. 2016;8:7873–7885. doi:10.1039/C6AY01244B.
  • Sabater D, Arriarán S, Romero MM, Agnelli S, Remesar X, Fernández-López JA, Alemany M. Cultured 3T3L1 adipocytes dispose of excess medium glucose as lactate under abundant oxygen availability. Sci Rep. 2014;4:3663. doi:10.1038/srep03663.
  • Romero MM, Sabater D, Fernández-López JA, Remesar X, Alemany M. Glycerol production from glucose and fructose by 3T3-L1 cells: A mechanism of adipocyte defense from excess substrate. PLoS One. 2015;10:e0139502. doi:10.1371/journal.pone.0139502.
  • Hodson L, Humphreys SM, Karpe F, Frayn KN. Metabolic signatures of human adipose tissue hypoxia in obesity. Diabetes. 2013;62:1417–1425. doi:10.2337/db12-1032.
  • DiGirolamo M, Newby FD, Lovejoy J. Lactate production in adipose tissue: A regulated function with extra-adipose implications. FASEB J. 1992;6:2405–2412.
  • Jansson PA, Larsson A, Smith U, Lönnroth P. Glycerol production in subcutaneous adipose tissue of lean and obese humans. J Clin Invest. 1992;89:1610–1617. doi:10.1172/JCI115756.
  • Roberts R, Hodson L, Dennis AL, Neville MJ, Humphreys SM, Harnden KE, Micklem KJ, Frayn KN. Markers of de novo lipogenesis in adipose tissue: associations with small adipocytes and insulin sensitivity in humans. Diabetologia. 2009;52:882–890. doi:10.1007/s00125-009-1300-4.
  • Arriarán S, Agnelli S, Remesar X, Fernández-López J-A, Alemany M. The urea cycle of rat white adipose tissue. RSC Adv. 2015;5:93403–93414. doi:10.1039/C5RA16398F.
  • Rotondo F, Ho-Palma AC, Remesar X, Fernandez-Lopez JA, Romero MM, Alemany M. Glycerol is synthesized and secreted by adipocytes to dispose of excess glucose, via glycerogenesis and increased acyl-glycerol turnover. Sci Rep. 2017;7:8983. doi:10.1038/s41598-017-09450-4.
  • Ho-Palma AC, Rotondo F, Romero MM, Fernández-López JA, Remesar X, Alemany M. Use of 14C-glucose by primary cultures of mature rat epididymal adipocytes. Marked release of lactate and glycerol, but limited lipogenesis in the absence of external stimuli. Adipocyte. 2018;7:204–217. doi:10.1080/21623945.2018.1460020.
  • Rotondo F, Romero MM, Ho-Palma AC, Remesar X, Fernandez-Lopez JA, Alemany M. Quantitative analysis of rat adipose tissue cell recovery, and non-fat cell volume, in primary cell cultures. PeerJ. 2016;4:e2725. doi:10.7717/peerj.2725.
  • Rotondo F, Ho-Palma AC, Remesar X, Fernandez-Lopez JA, Romero MM, Alemany M. Effect of sex and glucose handling by adipocytes isolated from rat subcutaneous, mesenteric and perigonadal adipose tissue. PeerJ. 2018;6:e5440. doi:10.7717/peerj.5440.
  • Liu MY, Guo L, Liu Y, Pei Y, Li N, Jin MM, Ma LC, Li ZB, Sun BR, Li CL. Adipose stromal-vascular fraction-derived paracrine factors regulate adipogenesis. Mol Cell Biochem. 2014;385:115–123. doi:10.1007/s11010-013-1820-6.
  • Bowles AC, Wise RM, Gerstein BY, Thomas RC, Ogelman R, Febbo I, Bunnell BA. Immunomodulatory effects of adipose stromal vascular fraction cells promote alternative activation macrophages to repair tissue damage. Stem Cells. 2017;35:2198–2207. doi:10.1002/stem.2689.
  • Qomi RT, Sheykhhasan M. Adipose-derived stromal cell in regenerative medicine: A review. World J Stem Cells. 2017;9:107–117. doi:10.4252/wjsc.v9.i8.107.
  • Meissburger B, Perdikari A, Moest H, Müller S, Geiger M, Wolfrum C. Regulation of adipogenesis by paracrine factors from adipose stromal-vascular fraction - a link to fat depot-specific differences. Biochim Biophys Acta-Mol Cell Biol Lipids. 2016;1861:1121–1131. doi:10.1016/j.bbalip.2016.06.010.
  • Arriarán S, Agnelli S, Sabater D, Remesar X, Fernández-López JA, Alemany M. Evidences of basal lactate production in the main white adipose tissue sites of rats. Effects of sex and a cafeteria diet. PLoS One. 2015;10:e0119572. doi:10.1371/journal.pone.0119572.
  • Koutsari C, Ali AH, Mundi MS, Jensen MD. Storage of circulating free fatty acid in adipose tissue of postabsorptive humans. Quantitative measures and implications for body fat distribution. Diabetes. 2011;60:2032–2040. doi:10.2337/db11-0154.
  • de Oliveira CC, Acedo SC, Pedrazzoli J, Saad MJ, Gambero A. Depot-specific alterations to insulin signaling in mesenteric adipose tissue during intestinal inflammatory response. Int Immunopharmacol. 2009;9:396–402. doi:10.1016/j.intimp.2008.12.015.
  • Meijer RI, Bakker W, Alta CLAF, Sipkema P, Yudkin JS, Viollet B, Richter EA, Smulders YM, van Hinsbergh VWM, Serne EH, et al. Perivascular adipose tissue control of insulin-induced vasoreactivity in muscle is impaired in db/db mice. Diabetes. 2013;62:590–598. doi:10.2337/db11-1603.
  • Choi TY, Ahmadi N, Sourayanezhad S, Zeb I, Budoff MJ. Relation of vascular stiffness with epicardial and pericardial adipose tissues, and coronary atherosclerosis. Atherosclerosis. 2013;229:118–123. doi:10.1016/j.atherosclerosis.2013.03.003.
  • Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Z, Yanxiang Guo J, et al. Glucose feeds the tca cycle via circulating lactate. Nature. 2017;551:115–118. doi:10.1038/nature24057.
  • Crandall DL, Fried SK, Francendese AA, Nickel M, DiGirolamo M. Lactate release from isolated rat adipocytes: influence of cell size, glucose concentration; insulin and epinephrine. Horm Metab Res. 1983;15:326–329. doi:10.1055/s-2007-1018710.
  • Kellner J, Sivajothi S, McNiece I. Differential properties of human stromal cells from bone marrow, adipose, liver and cardiac tissues. Cytother. 2015;17:1514–1523. doi:10.1016/j.jcyt.2015.07.009.
  • Faintrenie G, Géloën A. Lactate production by white adipocytes in relation to insulin sensitivity. Am J Physiol. 1996;270:C1061–C1066. doi:10.1152/ajpcell.1996.270.4.C1061.
  • Sahlin K. Lactate formation and tissue hypoxia. J Appl Physiol. 1989;67:2640. doi:10.1152/jappl.1989.67.6.2640a.
  • Taylor CT, Kent BD, Crinion SJ, McNicholas WT, Ryan S. Human adipocytes are highly sensitive to intermittent hypoxia induced nf-kappab activity and subsequent inflammatory gene expression. Biochem Biophys Res Commun. 2014;447:660–665. doi:10.1016/j.bbrc.2014.04.062.
  • Kaaman M, Sparks LM, van Harmelen V, Smith SR, Sjolin E, Dahlman I, Arner P. Strong association between mitochondrial DNA copy number and lipogenesis in human white adipose tissue. Diabetologia. 2007;50:2526–2533. doi:10.1007/s00125-007-0818-6.
  • Bohr C, Hasselbalch K, Krogh A. Über einen in biologischer Beziehung wichtigen Einfluss, den die Kohlensäurespannung des Blutes auf dessen Sauerstoffbindung übt [about a biologically important influence that the carbonic acid tension of the blood exerts on its oxygen binding]. Scand Arch Physiol. 1904;16:402–412. doi:10.1111/j.1748-1716.1904.tb01382.x.
  • Alemany M. The defense of adipose tissue against excess substrate-induced hyperthrophia: immune system cell infiltration and arrested metabolic activity. J Clin Endocrinol Metab. 2011;96:66–68. doi:10.1210/jc.2010-2541.
  • Sabater D, Agnelli S, Arriarán S, Romero MM, Fernández-López JA, Alemany M, Remesar X. Cafeteria diet induce changes in blood flow that are more related with heat dissipation than energy accretion. PeerJ. 2016;4:e2302. doi:10.7717/peerj.2302.
  • Eto H, Suga H, Inoue K, Aoi N, Kato H, Araki J, Doi K, Higashino T, Yoshimura K. Adipose injury-associated factors mitigate hypoxia in ischemic tissues through activation of adipose-derived stem/progenitor/stromal cells and induction of angiogenesis. Am J Pathol. 2011;178:2322–2332. doi:10.1016/j.ajpath.2011.01.032.
  • Gatenby RA, Gillies RJ. Why do cancers have high aerobic glycolysis? Nature Rev Cancer. 2004;4:891–899. doi:10.1038/nrc1478.
  • Freund G. The metabolic effects of glycerol administered to diabetic patients. Arch Int Med. 1968;121:123–129. doi:10.1001/archinte.1968.03640020011003.
  • Schurr A, Payne RS, Miller JJ, Rigor BM. Brain lactate, not glucose, fuels the recovery of synaptic function from hypoxia upon reoxygenation: an in vivo study. Brain Res. 1977;744:105–111. doi:10.1016/S0006-8993(96)01106-7.
  • Tildon JT, Roeder LM. Glycerol oxidation in rat brain: subcellular localization and kinetic characteristics. J Neurosci Res. 1980;5:7–17. doi:10.1002/jnr.490050103.
  • Bouzier-Sore A-K, Voisin P, Bouchaud V, Bezancon E, Franconi J-M, Pellerin L. Competition between glucose and lactate as oxidative energy substrates in both neurons and astrocytes: A comparative NMR study. Eur J Neurosci. 2006;24:1687–1694. doi:10.1111/j.1460-9568.2006.05056.x.
  • Rodbell M. Metabolism of isolated fat cells .I. Effects of hormones on glucose metabolism + lipolysis. J Biol Chem. 1964;239:375–380.
  • Baviskar SN. A quick & automated method for measuring cell area using imagej. Am Biol Teach. 2011;73:554–556. doi:10.1525/abt.2011.73.9.9.
  • Oliva L, Baron C, Fernández-López J-A, Remesar X, Alemany M. Marked increase in rat red blood cell membrane protein glycosylation by one-month treatment with a cafeteria diet. PeerJ. 2015;3:e1101. doi:10.7717/peerj.1101.
  • Romero MM, Grasa MM, Esteve M, Fernández-López JA, Alemany M, Semiquantitative RT. -PCR measurement of gene expression in rat tissues including a correction for varying cell size and number. Nutr Metab. 2007;4:26. doi:10.1186/1743-7075-4-26.
  • Bamias G, Goukos D, Laouidi E, Balla IG, Siakavellas SI, Daikos GL, Ladas SD. Comparative study of candidate housekeeping genes for quantification of target gene messenger RNA expression by real-time PCR in patients with inflammatory bowel disease. Inflamm Bowel Dis. 2013;19:2840–2847. doi:10.1097/01.MIB.0000435440.22484.e8.