3,561
Views
17
CrossRef citations to date
0
Altmetric
Research Paper

Transcriptome profiling reveals association of peripheral adipose tissue pathology with type-2 diabetes in Asian Indians

, , , , , , , , , , , & show all
Pages 125-136 | Received 21 Nov 2018, Accepted 05 Mar 2019, Published online: 28 Mar 2019

References

  • Saxena A, Sachin K, Bhatia AK. System level meta-analysis of microarray datasets for elucidation of diabetes mellitus pathobiology. Curr Genomics. 2017;18(03). [Crosssref], [PubMed], [Web of Science], [Google Scholar]. DOI:10.2174/13892029186661701050933339
  • Hsu WC, Araneta MRG, Kanaya AM, et al. BMI cut points to identify at-risk Asian Americans for type 2 diabetes screening. Diabetes Care. 2014;38(1):150–158. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Pandžić JV, Grizelj D. Under the surface of subcutaneous adipose tissue biology. Acta Dermatovenerol Croat. 2016 Dec;24(4):250–260. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Sattar N, Gill JM. Type 2 diabetes as a disease of ectopic fat? BMC Med. 2014;12(1). [Crossref], [PubMed], [Web of Science], [Google Scholar]. DOI:10.1186/s12916-014-0123-4
  • Sniderman AD, Bhopal R, Prabhakaran D, et al. Why might South Asians be so susceptible to central obesity and its atherogenic consequences? The adipose tissue overflow hypothesis. Int J Epidemiol. 2007 Jan;36(1):220–225. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Chandalia M, Abate N, Garg A, et al. Relationship between generalized and upper body obesity to insulin resistance in Asian Indian men. J Clin Endocrinol Metab. 1999 Jul;84(7):2329–2335. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Chandalia M, Cabo-Chan AV Jr, Devaraj S, Jialal I, Grundy SM, Abate N. Elevated plasma high-sensitivity C-reactive protein concentrations in Asian Indians living in the United States. J Clin Endocrinol Metab. 2003 May;88(8):3773–3776. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Abate N, Chandalia M, Snell PG, et al. Adipose tissue metabolites and insulin resistance in nondiabetic Asian Indian men. J Clin Endocrinol Metab. 2004 Jun;89(6):2750–2755. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Mathur S, Mathur P, Punjabi P, et al. Transcriptomic analysis of visceral adipose from healthy and diabetic obese subjects. Indian J Endocrinol Metab. 2013;17(3):446. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Trouwborst I, Bowser SM, Goossens GH, et al. Ectopic fat accumulation in distinct insulin resistant phenotypes; targets for personalized nutritional interventions. Front Nutr. 2018 Apr:5. [Crossref], [PubMed], [Web of Science], [Google Scholar]. Doi:10.2289/fnut.2018.00077
  • Jain P, Vig S, Datta M, et al. Systems biology approach reveals genome to phenome correlation in type 2 diabetes. PLoS ONE. 2013 Jul;8(1):e53522. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Langfelder P, Horvath S. WGCNA: an R package for weighted correlation network analysis. BMC Bioinformatics. 2008;9:559. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Bindea G, Mlecnik B, Hackl H, et al. ClueGO: a cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics. 2009;25(8):1091–1093. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Tarca AL, Draghici S, Khatri P, et al. A novel signaling pathway impact analysis. Bioinformatics. 2009 Jan 1;25(1):75–82. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Lin Q, Yun Z. The hypoxia-inducible factor pathway in adipocytes: the role of HIF-2 in adipose inflammation and hypertrophic cardiomyopathy. Front Endocrinol (Lausanne). 2015;6. [Crossref], [PubMed], [Web of Science], [Google Scholar]. DOI:10.3389/fendo.2015.00039
  • Monden M, Koyama H, Otsuka Y, et al. Receptor for advanced glycation end products regulates adipocyte hypertrophy and insulin sensitivity in mice: involvement of toll-like receptor 2. Diabetes. 2012;62(2):478–489. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Kota S, Meher L, Jammula S, et al. Aberrant angiogenesis: the gateway to diabetic complications. Indian J Endocrinol Metab. 2012;16(6):918. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Schäffler A, Schölmerich J. Innate immunity and adipose tissue biology. Trends Immunol. 2010;31(6):228–235. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Sanyal A, Naumann J, Hoffmann LS, et al. Interplay between obesity-induced inflammation and cGMP signaling in white adipose tissue. Cell Rep. 2017;18(1):225–236. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Vergoni B, Cornejo P-J, Gilleron J, et al. DNA damage and the activation of the p53 pathway mediate alterations in metabolic and secretory functions of adipocytes. Diabetes. 2016 Jul;65(10):3062–3074. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Stafeev IS, Vorotnikov AV, Ratner EI, et al. Latent inflammation and insulin resistance in adipose tissue. Int J Endocrinol. 2017;2017:5076732. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Han MH, Kim HJ, Jeong J-W, et al. Inhibition of adipocyte differentiation by anthocyanins isolated from the fruit of vitiscoignetiaepulliat is associated with the activation of AMPK signaling pathway. Toxicol Res. 2018;34(1):13–21. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Bang S, Chen Y, Ahima RS, et al. Convergence of IPMK and LKB1-AMPK signaling pathways on metformin action. Mol Endocrinol. 2014;28(7):1186–1193. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Suh JM, Gao X, Mckay J, et al. Hedgehog signaling plays a conserved role in inhibiting fat formation. Cell Metab. 2006;3(1):25–34. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Christodoulides C, Lagathu C, Sethi JK, et al. Adipogenesis and WNT signaling. Trends Endocrinol Metab. 2009;20(1):16–24. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • An Y, Kang Q, Zhao Y, et al. Lats2 modulates adipocyte proliferation and differentiation via hippo signaling. PLoS ONE. 2013;8(8):e72042. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Kooner JS, Saleheen D, Sim X, et al. Genome-wide association study in individuals of South Asian ancestry identifies six new type 2 diabetes susceptibility loci. Nat Genet. 2011 Aug 28;43(10):984–989. [Crossref], [PubMed], [Web of Science] [Google Scholar].
  • Bae O-N, Wang J-M, Baek S-H, et al. Oxidative stress-mediated thrombospondin-2 upregulation impairs bone marrow-derived angiogenic cell function in diabetes mellitus. Arterioscler Thromb Vasc Biol. 2013;33(8):1920–1927. [Crossref], [PubMed], [Web of Science], [Google Scholar].
  • Samuel VT, Shulman GI. Mechanisms for insulin resistance: common threads and missing links. Cell. 2012;148(5):852–871. [Crossref], [PubMed], [Web of Science], [Google Scholar].