1,844
Views
4
CrossRef citations to date
0
Altmetric
Commentary

Quantitative analyses of adiposity dynamics in zebrafish

ORCID Icon, , , , , ORCID Icon & ORCID Icon show all
Pages 330-338 | Received 22 Feb 2019, Accepted 22 Jul 2019, Published online: 14 Aug 2019

References

  • Kloting N, Bluher M. Adipocyte dysfunction, inflammation and metabolic syndrome. Rev Endocr Metab Disord. 2014;15:277–287.
  • Flier JS. Obesity wars: molecular progress confronts an expanding epidemic. Cell. 2004;116:337–350.
  • Guilherme A, Virbasius JV, Puri V, et al. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol. 2008;9:367–377.
  • Carobbio S, Pellegrinelli V, Vidal-Puig A. Adipose Tissue Function and Expandability as Determinants of Lipotoxicity and the Metabolic Syndrome. Adv Exp Med Biol. 2017;960:161–196.
  • Zwick RK, Guerrero-Juarez CF, Horsley V, et al. Anatomical, Physiological, and Functional Diversity of Adipose Tissue. Cell Metab. 2018;27:68–83.
  • Cinti S. Anatomy and physiology of the nutritional system. Mol Aspects Med. 2019. pii: S0098-2997(19)30005-6.
  • Elks CE, Den Hoed M, Zhao JH, et al. Variability in the heritability of body mass index: a systematic review and meta-regression. Front Endocrinol (Lausanne). 2012;3:29.
  • Loos RJF, Janssens A. Predicting Polygenic Obesity Using Genetic Information. Cell Metab. 2017;25:535–543.
  • Locke AE, Kahali B, Berndt SI, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.
  • Speakman JR, Loos RJF, O’Rahilly S, et al. GWAS for BMI: a treasure trove of fundamental insights into the genetic basis of obesity. Int J Obes (Lond). 2018;42:1524–1531.
  • Yengo L, Sidorenko J, Kemper KE, et al. Meta-analysis of genome-wide association studies for height and body mass index in approximately 700000 individuals of European ancestry. Hum Mol Genet. 2018;27:3641–3649.
  • Khera AV, Chaffin M, Wade KH, et al. Polygenic Prediction of Weight and Obesity Trajectories from Birth to Adulthood. Cell. 2019;177:587–596 e589.
  • Flint J, Mackay TF. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 2009;19:723–733.
  • Button KS, Ioannidis JP, Mokrysz C, et al. Power failure: why small sample size undermines the reliability of neuroscience. Nat Rev Neurosci. 2013;14:365–376.
  • Tandon P, Wafer R, Minchin JEN. Adipose morphology and metabolic disease. J Exp Biol. 2018;221.
  • Gesta S, Tseng YH, Kahn CR. Developmental origin of fat: tracking obesity to its source. Cell. 2007;131:242–256.
  • Shen W, Wang Z, Punyanita M, et al. Adipose tissue quantification by imaging methods: a proposed classification. Obes Res. 2003;11:5–16.
  • Cawthorn WP, Scheller EL. Editorial: bone Marrow Adipose Tissue: formation, Function, and Impact on Health and Disease. Front Endocrinol (Lausanne). 2017;8:112.
  • Goossens GH. The Metabolic Phenotype in Obesity: fat Mass, Body Fat Distribution, and Adipose Tissue Function. Obes Facts. 2017;10:207–215.
  • Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue–link to whole-body phenotypes. Nat Rev Endocrinol. 2015;11:90–100.
  • Manolopoulos KN, Karpe F, Frayn KN. Gluteofemoral body fat as a determinant of metabolic health. Int J Obes (Lond). 2010;34:949–959.
  • Golan R, Shelef I, Rudich A, et al. Abdominal superficial subcutaneous fat: a putative distinct protective fat subdepot in type 2 diabetes. Diabetes Care. 2012;35:640–647.
  • Porter SA, Massaro JM, Hoffmann U, et al. Abdominal subcutaneous adipose tissue: a protective fat depot? Diabetes Care. 2009;32:1068–1075.
  • Kaess BM, Pedley A, Massaro JM, et al. The ratio of visceral to subcutaneous fat, a metric of body fat distribution, is a unique correlate of cardiometabolic risk. Diabetologia. 2012;55:2622–2630.
  • Niijima K, Shimoda Y, Saito T, et al. Subcutaneous abdominal adipose tissue is associated with an index of insulin sensitivity/resistance. Adipocyte. 2016;5:375–377.
  • Bouchi R, Takeuchi T, Akihisa M, et al. High visceral fat with low subcutaneous fat accumulation as a determinant of atherosclerosis in patients with type 2 diabetes. Cardiovasc Diabetol. 2015;14:136.
  • Neeland IJ, Ayers CR, Rohatgi AK, et al. Associations of visceral and abdominal subcutaneous adipose tissue with markers of cardiac and metabolic risk in obese adults. Obesity (Silver Spring). 2013;21:E439–447.
  • Anderson CAM, Mongraw-Chaffin M. Central Obesity in Older Adults: what Should Be the Priority? J Am Heart Assoc. 2018;7:e010119.
  • Chen P, Hou X, Hu G, et al. Abdominal subcutaneous adipose tissue: a favorable adipose depot for diabetes? Cardiovasc Diabetol. 2018;17:93.
  • McLaughlin T, Lamendola C, Liu A, et al. Preferential fat deposition in subcutaneous versus visceral depots is associated with insulin sensitivity. J Clin Endocrinol Metab. 2011;96:E1756–1760.
  • Kwon H, Kim D, Kim JS. Body Fat Distribution and the Risk of Incident Metabolic Syndrome: A Longitudinal Cohort Study. Sci Rep. 2017;7:10955.
  • Hwang YC, Fujimoto WY, Hayashi T, et al. Increased Visceral Adipose Tissue Is an Independent Predictor for Future Development of Atherogenic Dyslipidemia. J Clin Endocrinol Metab. 2016;101:678–685.
  • Alman AC, Smith SR, Eckel RH, et al. The ratio of pericardial to subcutaneous adipose tissues is associated with insulin resistance. Obesity (Silver Spring). 2017;25:1284–1291.
  • Fox CS, Massaro JM, Hoffmann U, et al. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation. 2007;116:39–48.
  • Imrie D, Sadler KC. White adipose tissue development in zebrafish is regulated by both developmental time and fish size. Dev Dyn. 2010;239:3013–3023.
  • Song Y, Cone RD. Creation of a genetic model of obesity in a teleost. Faseb J. 2007;21:2042–2049.
  • Flynn EJ 3rd, Trent CM, Rawls JF. Ontogeny and nutritional control of adipogenesis in zebrafish (Danio rerio). J Lipid Res. 2009;50:1641–1652.
  • Seth A, Stemple DL, Barroso I. The emerging use of zebrafish to model metabolic disease. Dis Model Mech. 2013;6:1080–1088.
  • Oka T, Nishimura Y, Zang L, et al. Diet-induced obesity in zebrafish shares common pathophysiological pathways with mammalian obesity. BMC Physiol. 2010;10:21.
  • Minchin JE, Rawls JF. In vivo imaging and quantification of regional adiposity in zebrafish. Methods Cell Biol. 2017b;138:3–27.
  • Minchin JE, Rawls JF. In vivo analysis of white adipose tissue in zebrafish. Methods Cell Biol. 2011;105:63–86.
  • Jastroch M, Wuertz S, Kloas W, et al. Uncoupling protein 1 in fish uncovers an ancient evolutionary history of mammalian nonshivering thermogenesis. Physiol Genomics. 2005;22:150–156.
  • Klingenspor M, Fromme T, Hughes DA Jr., et al. An ancient look at UCP1. Biochim Biophys Acta. 2008;1777:637–641.
  • Jastroch M, Buckingham JA, Helwig M, et al. Functional characterisation of UCP1 in the common carp: uncoupling activity in liver mitochondria and cold-induced expression in the brain. J Comp Physiol B. 2007;177:743–752.
  • Cao H. Adipocytokines in obesity and metabolic disease. J Endocrinol. 2014;220:T47–59.
  • Gorissen M, Bernier NJ, Nabuurs SB, et al. Two divergent leptin paralogues in zebrafish (Danio rerio) that originate early in teleostean evolution. J Endocrinol. 2009;201:329–339.
  • Michel M, Page-McCaw PS, Chen W, et al. Leptin signaling regulates glucose homeostasis, but not adipostasis, in the zebrafish. Proc Natl Acad Sci U S A. 2016;113:3084–3089.
  • Yang Q, Yan C, Wang X, et al. Leptin induces muscle wasting in a zebrafish kras-driven hepatocellular carcinoma (HCC) model. Dis Model Mech. 2019;12.
  • Wafer R, Tandon P, Minchin JEN. The Role of Peroxisome Proliferator-Activated Receptor Gamma (PPARG) in Adipogenesis: applying Knowledge from the Fish Aquaculture Industry to Biomedical Research. Front Endocrinol (Lausanne). 2017;8:102.
  • Wang QA, Tao C, Gupta RK, et al. Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med. 2013;19:1338–1344.
  • Minchin JE, Rawls JF. A classification system for zebrafish adipose tissues. Dis Model Mech. 2017a;10:797–809.
  • Tingaud-Sequeira A, Ouadah N, Babin PJ. Zebrafish obesogenic test: a tool for screening molecules that target adiposity. J Lipid Res. 2011;52:1765–1772.
  • Minchin JEN, Scahill CM, Staudt N, et al. Deep phenotyping in zebrafish reveals genetic and diet-induced adiposity changes that may inform disease risk. J Lipid Res. 2018;59:1536–1545.
  • McMenamin SK, Chandless MN, Parichy DM. Working with zebrafish at postembryonic stages. Methods Cell Biol. 2016;134:587–607.
  • Houle D, Govindaraju DR, Omholt S. Phenomics: the next challenge. Nat Rev Genet. 2010;11:855–866.
  • Robinson PN. Deep phenotyping for precision medicine. Hum Mutat. 2012;33:777–780.
  • Hur M, Gistelinck CA, Huber P, et al. MicroCT-Based Phenomics in the Zebrafish Skeleton Reveals Virtues of Deep Phenotyping in a Distributed Organ System. Zebrafish. 2018;15:77–78.
  • Hur M, Gistelinck CA, Huber P, et al. MicroCT-based phenomics in the zebrafish skeleton reveals virtues of deep phenotyping in a distributed organ system. Elife. 2017;6.
  • Pendergrass SA, Verma A, Okula A, et al. Phenome-Wide Association Studies: embracing Complexity for Discovery. Hum Hered. 2015;79:111–123.
  • Cheng KC, Xin X, Clark DP, et al. Whole-animal imaging, gene function, and the Zebrafish Phenome Project. Curr Opin Genet Dev. 2011;21:620–629.
  • Fuentes R, Letelier J, Tajer B, et al. Fishing forward and reverse: advances in zebrafish phenomics. Mech Dev. 2018;154:296–308.
  • Hindorff LA, Sethupathy P, Junkins HA, et al. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc Natl Acad Sci U S A. 2009;106:9362–9367.
  • Yang J, Benyamin B, McEvoy BP, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–569.
  • Li S, Zhao JH, Luan J, et al. Cumulative effects and predictive value of common obesity-susceptibility variants identified by genome-wide association studies. Am J Clin Nutr. 2010;91:184–190.
  • Meigs JB, Shrader P, Sullivan LM, et al. Genotype score in addition to common risk factors for prediction of type 2 diabetes. N Engl J Med. 2008;359:2208–2219.
  • McMenamin SK, Minchin JE, Gordon TN, et al. Dwarfism and increased adiposity in the gh1 mutant zebrafish vizzini. Endocrinology. 2013;154:1476–1487.
  • van der Klaauw AA, Croizier S, Mendes de Oliveira E, et al. Human Semaphorin 3 Variants Link Melanocortin Circuit Development and Energy Balance. Cell. 2019;176:729–742.e18.
  • El Ghoch M, Calugi S, Lamburghini S, et al. Anorexia nervosa and body fat distribution: a systematic review. Nutrients. 2014;6:3895–3912.
  • Grinspoon S, Thomas L, Miller K, et al. Changes in regional fat redistribution and the effects of estrogen during spontaneous weight gain in women with anorexia nervosa. Am J Clin Nutr. 2001;73:865–869.
  • Misra M, Miller KK, Almazan C, et al. Hormonal determinants of regional body composition in adolescent girls with anorexia nervosa and controls. J Clin Endocrinol Metab. 2005;90:2580–2587.
  • de Alvaro MT, Munoz-Calvo MT, Barrios V, et al. Regional fat distribution in adolescents with anorexia nervosa: effect of duration of malnutrition and weight recovery. Eur J Endocrinol. 2007;157:473–479.
  • Misra M, Katzman DK, Cord J, et al. Percentage extremity fat, but not percentage trunk fat, is lower in adolescent boys with anorexia nervosa than in healthy adolescents. Am J Clin Nutr. 2008;88:1478–1484.
  • Kerruish KP, O’Connor J, Humphries IR, et al. Body composition in adolescents with anorexia nervosa. Am J Clin Nutr. 2002;75:31–37.
  • Misra M, Soyka LA, Miller KK, et al. Regional body composition in adolescents with anorexia nervosa and changes with weight recovery. Am J Clin Nutr. 2003;77:1361–1367.
  • Zamboni M, Armellini F, Turcato E, et al. Body fat distribution before and after weight gain in anorexia nervosa. Int J Obes Relat Metab Disord. 1997;21:33–36.
  • Minchin JE, Dahlman I, Harvey CJ, et al. Plexin D1 determines body fat distribution by regulating the type V collagen microenvironment in visceral adipose tissue. Proc Natl Acad Sci U S A. 2015;112:4363–4368.
  • Minchin JEN, Rawls JF. Elucidating the role of plexin D1 in body fat distribution and susceptibility to metabolic disease using a zebrafish model system. Adipocyte. 2017;6:277–283.