1,245
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Long term hypoxia during gestation alters perirenal adipose tissue gene expression in the lamb

, , , &
Pages 223-233 | Received 08 Mar 2019, Accepted 28 Apr 2020, Published online: 13 May 2020

References

  • Sahoo K, Sahoo B, Choudhury AK, et al. Childhood obesity: causes and consequences. J Family Med Prim Care. 2015;4:187–192.
  • Ogden CL, Carroll MD, Lawman HG, et al. Trends in obesity prevalence among children and adolescents in the United States, 1988-1994 through 2013-2014. JAMA. 2016;315:2292–2299.
  • Freedman DS, Dietz WH, Srinivasan SR, et al. The relation of overweight to cardiovascular risk factors among children and adolescents: the Bogalusa Heart Study. Pediatrics. 1999;103:1175–1182.
  • Guo SS, Wu W, Chumlea WC, et al. Predicting overweight and obesity in adulthood from body mass index values in childhood and adolescence. Am J Clin Nutr. 2002;76:653–658.
  • Magarey AM, Daniels LA, Boulton TJ, et al. Predicting obesity in early adulthood from childhood and parental obesity. Int J Obes Relat Metab Disord. 2003;27:505–513.
  • Oken E, Rifas-Shiman SL, Field AE, et al. Maternal gestational weight gain and offspring weight in adolescence. Obstet Gynecol. 2008;112:999–1006.
  • Papamatheakis DG, Chundu M, Blood AB, et al. Prenatal programming of pulmonary hypertension induced by chronic hypoxia or ductal ligation in sheep. Pulm Circ. 2013;3:757–780.
  • Thornburg KL. The programming of cardiovascular disease. J Dev Orig Health Dis. 2015;6:366–376.
  • Vieau D. Perinatal nutritional programming of health and metabolic adult disease. World J Diabetes. 2011;2:133–136.
  • Zeltser LM. Developmental influences on circuits programming susceptibility to obesity. Front Neuroendocrinol. 2015;39:17–27.
  • Fain JN, Mohell N, Wallace MA, et al. Metabolic effects of beta, alpha 1, and alpha 2 adrenoceptor activation on brown adipocytes isolated from the perirenal adipose tissue of fetal lambs. Metabolism. 1984;33:289–294.
  • Klein AH, Reviczky A, Chou P, et al. Development of brown adipose tissue thermogenesis in the ovine fetus and newborn. Endocrinology. 1983;112:1662–1666.
  • Pope M, Budge H, Symonds ME. The developmental transition of ovine adipose tissue through early life. Acta Physiol (Oxf). 2014;210:20–30.
  • Myers DA, Hanson K, Mlynarczyk M, et al. Long-term hypoxia modulates expression of key genes regulating adipose function in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2008;294:R1312–8.
  • O’Connor DM, Blache D, Hoggard N, et al. Developmental control of plasma leptin and adipose leptin messenger ribonucleic acid in the ovine fetus during late gestation: role of glucocorticoids and thyroid hormones. Endocrinology. 2007;148:3750–3757.
  • Mostyn A, Pearce S, Budge H, et al. Influence of cortisol on adipose tissue development in the fetal sheep during late gestation. J Endocrinol. 2003;176:23–30.
  • Clarke L, Buss DS, Juniper DT, et al. Adipose tissue development during early postnatal life in ewe-reared lambs. Exp Physiol. 1997;82:1015–1027.
  • Symonds ME, Pope M, Sharkey D, et al. Adipose tissue and fetal programming. Diabetologia. 2012;55:1597–1606.
  • Fisher FM, Kleiner S, Douris N, et al. FGF21 regulates PGC-1alpha and browning of white adipose tissues in adaptive thermogenesis. Genes Dev. 2012;26:271–281.
  • Huang Z, Zhong L, Lee JTH, et al. The FGF21-CCL11 Axis Mediates Beiging of White Adipose Tissues by Coupling Sympathetic Nervous System to Type 2 Immunity. Cell Metab. 2017;26(493–508.e4). DOI:10.1016/j.cmet.2017.08.003
  • Nguyen NL, Barr CL, Ryu V, et al. Separate and shared sympathetic outflow to white and brown fat coordinately regulates thermoregulation and beige adipocyte recruitment. Am J Physiol Regul Integr Comp Physiol. 2017;312:R132–r45.
  • Himms-Hagen J, Melnyk A, Zingaretti MC, et al. Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol. 2000;279:C670–81.
  • Jouppila P, Kirkinen P. Umbilical vein blood flow as an indicator of fetal hypoxia. Br J Obstet Gynaecol. 1984;91:107–110.
  • Ness RB, Sibai BM. Shared and disparate components of the pathophysiologies of fetal growth restriction and preeclampsia. Am J Obstet Gynecol. 2006;195:40–49.
  • Sheffer-Mimouni G, Mimouni FB, Dollberg S, et al. Neonatal nucleated red blood cells in infants of overweight and obese mothers. J Am Coll Nutr. 2007;26:259–263.
  • Krishna U, Bhalerao S. Placental insufficiency and fetal growth restriction. J Obstet Gynaecol India. 2011;61:505–511.
  • Socol ML, Manning FA, Murata Y, et al. Maternal smoking causes fetal hypoxia: experimental evidence. Am J Obstet Gynecol. 1982;142:214–218.
  • Moore LG, Charles SM, Julian CG. Humans at high altitude: hypoxia and fetal growth. Respir Physiol Neurobiol. 2011;178:181–190.
  • Toschke AM, Koletzko B, Slikker W Jr., et al. Childhood obesity is associated with maternal smoking in pregnancy. Eur J Pediatr. 2002;161:445–448.
  • von Kries R, Toschke AM, Koletzko B, et al. Maternal smoking during pregnancy and childhood obesity. Am J Epidemiol. 2002;156:954–961.
  • Oken E, Levitan EB, Gillman MW. Maternal smoking during pregnancy and child overweight: systematic review and meta-analysis. Int J Obesity. 2005;2008(32):201–210.
  • Ducsay CA, Hyatt K, Mlynarczyk M, et al. Long-term hypoxia increases leptin receptors and plasma leptin concentrations in the late-gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2006;291:R1406–13.
  • Ducsay CA, Furuta K, Vargas VE, et al. Leptin receptor antagonist treatment ameliorates the effects of long-term maternal hypoxia on adrenal expression of key steroidogenic genes in the ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2013;304:R435–42.
  • Ducsay CA, Hyatt K, Mlynarczyk M, et al. Long-term hypoxia modulates expression of key genes regulating adrenomedullary function in the late gestation ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2007;293:R1997–2005.
  • Myers DA, Hyatt K, Mlynarczyk M, et al. Long-term hypoxia represses the expression of key genes regulating cortisol biosynthesis in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1707–14.
  • Blood AB, Terry MH, Merritt TA, et al. Effect of chronic perinatal hypoxia on the role of rho-kinase in pulmonary artery contraction in newborn lambs. Am J Physiol Regul Integr Comp Physiol. 2013;304:R136–46.
  • Myers DA, Bell PA, Hyatt K, et al. Long-term hypoxia enhances proopiomelanocortin processing in the near-term ovine fetus. Am J Physiol Regul Integr Comp Physiol. 2005;288:R1178–84.
  • Kamitomo M, Longo LD, Gilbert RD. Right and left ventricular function in fetal sheep exposed to long-term high-altitude hypoxemia. A J Physiol. 1992;262:H399–405.
  • Thompson GE, Jenkinson DM. Nonshivering thermogenesis in the newborn lamb. Can J Physiol Pharmacol. 1969;47:249–253.
  • Gemmell RT, Bell AW, Alexander G. Morphology of adipose cells in lambs at birth and during subsequent transition of brown to white adipose tissue in cold and in warm conditons. Am J Anat. 1972;133:143–164.
  • Casteilla L, Forest C, Robelin J, et al. Characterization of mitochondrial-uncoupling protein in bovine fetus and newborn calf. A J Physiol. 1987;252:E627–36.
  • Trayhurn P, Thomas ME, Duncan JS, et al. Presence of the brown fat-specific mitochondrial uncoupling protein and iodothyronine 5ʹ-deiodinase activity in subcutaneous adipose tissue of neonatal lambs. FEBS Lett. 1993;322:76–78.
  • Kleiner S, Mepani RJ, Laznik D, et al. Development of insulin resistance in mice lacking PGC-1alpha in adipose tissues. Proc Natl Acad Sci U S A. 2012;109:9635–9640.
  • Puigserver P, Wu Z, Park CW, et al. A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell. 1998;92:829–839.
  • Christian M, Kiskinis E, Debevec D, et al. RIP140-targeted repression of gene expression in adipocytes. Mol Cell Biol. 2005;25:9383–9391.
  • Hallberg M, Morganstein DL, Kiskinis E, et al. A functional interaction between RIP140 and PGC-1alpha regulates the expression of the lipid droplet protein CIDEA. Mol Cell Biol. 2008;28:6785–6795.
  • Leonardsson G, Steel JH, Christian M, et al. Nuclear receptor corepressor RIP140 regulates fat accumulation. Proc Natl Acad Sci U S A. 2004;101:8437–8442.
  • Kajimura S, Seale P, Kubota K, et al. Initiation of myoblast to brown fat switch by a PRDM16-C/EBP-beta transcriptional complex. Nature. 2009;460:1154–1158.
  • Ohno H, Shinoda K, Spiegelman BM, et al. PPARgamma agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab. 2012;15:395–404.
  • Seale P, Bjork B, Yang W, et al. PRDM16 controls a brown fat/skeletal muscle switch. Nature. 2008;454:961–967.
  • Cohen P, Levy JD, Zhang Y, et al. Ablation of PRDM16 and beige adipose causes metabolic dysfunction and a subcutaneous to visceral fat switch. Cell. 2014;156:304–316.
  • Clarke I, Heasman L, Symonds ME. Influence of maternal dexamethasone administration on thermoregulation in lambs delivered by caesarean section. J Endocrinol. 1998;156:307–314.
  • Gnanalingham MG, Mostyn A, Forhead AJ, et al. Increased uncoupling protein-2 mRNA abundance and glucocorticoid action in adipose tissue in the sheep fetus during late gestation is dependent on plasma cortisol and triiodothyronine. J Physiol. 2005;567:283–292.
  • Grosfeld A, Zilberfarb V, Turban S, et al. Hypoxia increases leptin expression in human PAZ6 adipose cells. Diabetologia. 2002;45:527–530.
  • Tschop M, Strasburger CJ, Hartmann G, et al. Raised leptin concentrations at high altitude associated with loss of appetite. Lancet. 1998;352:1119–1120.
  • Myers DA, Ducsay CA. Adrenocortical and adipose responses to high-altitude-induced, long-term hypoxia in the ovine fetus. J Pregnancy. 2012;2012:681306.
  • Stern JH, Rutkowski JM, Scherer PE. Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab. 2016;23:770–784.
  • Watson JA, Watson CJ, McCann A, et al. Epigenetics, the epicenter of the hypoxic response. Epigenetics. 2010;5:293–296.
  • Lin Q, Gao Z, Alarcon RM, et al. A role of miR-27 in the regulation of adipogenesis. Febs J. 2009;276:2348–2358.