1,628
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Comparative [18F]FDG and [18F]DPA714 PET imaging and time-dependent changes of brown adipose tissue in tumor-bearing mice

, , , , , , , , , & show all
Pages 542-549 | Received 28 May 2020, Accepted 20 Aug 2020, Published online: 09 Sep 2020

References

  • Li H, Qi J, Li L. Phytochemicals as potential candidates to combat obesity via adipose non-shivering thermogenesis. Pharmacol Res. 2019;147:104393.
  • Bartelt A, Bruns OT, Reimer R, et al. Brown adipose tissue activity controls triglyceride clearance. Nat Med. 2011;17(2):200–205. .
  • Xiang A, Meikle PJ, Carey AL, et al. Brown adipose tissue and lipid metabolism: new strategies for identification of activators and biomarkers with clinical potential. Pharmacol Ther. 2018;192:141–149.
  • Poher AL, Altirriba J, Veyrat-Durebex C, et al. Brown adipose tissue activity as a target for the treatment of obesity/insulin resistance. Front Physiol. 2015;6:4.
  • Stanford KI, Tseng YH, Goodyear LJ. Brown adipose tissue regulates glucose homeostasis and insulin sensitivity. J Clin Invest. 2013;123(1):215–223.
  • Dong M, Lin J, Lim W, et al. Role of brown adipose tissue in metabolic syndrome, aging, and cancer cachexia. Front Med. 2018;12(2):130–138. .
  • Han J, Meng Q, Shen L, et al. Interleukin-6 induces fat loss in cancer cachexia by promoting white adipose tissue lipolysis and browning. Lipids Health Dis. 2018;17:14.
  • Kir S, White JP, Kleiner S, et al. Tumor-derived PTHrP triggers adipose tissue browning and cancer cachexia. Nature. 2014;513(100–104). DOI:10.1038/nature13528.
  • Argilés JM, Busquets S, López-Soriano FJ. Anti-inflammatory therapies in cancer cachexia. Eur J Pharmacol. 2011;668:S81–S86.
  • Crandall JP, Joo HO, Gajwani P, et al. Measurement of brown adipose tissue activity using microwave radiometry and [18F]FDG PET/CT. J Nucl Med. 2018;59(8):1243–1248. .
  • Chen K, Cypess AM, Laughlin MR, et al. Brown adipose reporting criteria in imaging studies (BARCIST 1.0): recommendations for standardized FDG-PET/CT experiments in humans. Cell Metab. 2016;24(2):210–222. .
  • Zhang Z, Cypess AM, Miao Q, et al. The prevalence and predictors of active brown adipose tissue in Chinese adults. Eur J Endocrinol. 2014;170(3):359–366.
  • TerVoert EEGW, Svirydenka H, Müller J, et al. Low-dose [18F]FDG TOF-PET/MR for accurate quantification of brown adipose tissue in healthy volunteers. EJNMMI Res. 2020;10(1):5.
  • Cypess AM, Doyle AN, Sass CA, et al. Quantification of human and rodent brown adipose tissue function using 99mTc-methoxyisobutylisonitrile SPECT/CT and [18F]FDG PET/CT. J Nucl Med. 2013;54(11):1896–1901.
  • Yaligar J, Verma SK, Gopalan V, et al. Dynamic contrast-enhanced MRI of brown and beige adipose tissues. Magn Reson Med. 2019;5:68.
  • O’Brien ER, Kersemans V, Tredwell M, et al. Glial activation in the early stages of brain metastasis: TSPO as a diagnostic biomarker. J Nucl Med. 2014;55(2):275–280.
  • Backhaus P, Roll W, Beuker C, et al. Initial experience with [18F]DPA-714 TSPO-PET to image inflammation in primary angiitis of the central nervous system. Eur J Nucl Med Mol Imaging. 2020 Jan 20. DOI:10.1007/s00259-019-04662-4
  • Sacher C, Blume T, Beyer L, et al. Longitudinal PET monitoring of amyloidosis and microglial activation in a second-generation amyloid-β mouse model. J Nucl Med. 2019;60(12):1787–1793.
  • Ran C, Albrecht DS, Bredella MA, et al. PET imaging of human brown adipose tissue with the TSPO tracer [11C]PBR28. Mol Imaging Biol. 2018;20(2):188–193.
  • Yang J, Yang J, Wang L, et al. Synthesis-free PET imaging of brown adipose tissue and TSPO via combination of disulfiram and 64CuCl2. Sci Rep. 2017;7:8298.
  • Wang L, Cheng R, Fujinaga M, et al. A facile radiolabeling of [18F]FDPA via spirocyclic iodonium ylides: preliminary PET imaging studies in preclinical models of neuroinflammation. J Med Chem. 2017;60:5222–5227.
  • Yu S. Review of [18F]FDG synthesis and quality control. Biomed Imaging Interv J. 2006;2(4):e57.
  • Verweij SL, Stiekema LCA, Delewi R, et al. Prolonged hematopoietic and myeloid cellular response in patients after an acute coronary syndrome measured with [18F]DPA-714 PET/CT. Eur J Nucl Med Mol Imaging. 2018;45(11):1956–1963. .
  • Porter C. Quantification of UCP1 function in human brown adipose tissue. Adipocyte. 2017;6(2):167–174.
  • Hartimath SV, Khanapur S, Boominathan R, et al. Imaging adipose tissue browning using the TSPO-18kDa tracer [18F]FEPPA. Mol Metab. 2019;25:154–158.
  • Weir G, Ramage LE, Akyol M, et al. Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab. 2018;27:1–8.
  • Baskaran P, Krishnan V, Ren J, et al. Capsaicin induces browning of white adipose tissue and counters obesity by activating TRPV1 channel-dependent mechanisms. Br J Pharmacol. 2016;173:2369–2389.
  • Bos SA, Gill CM, Martinez-Salazar EL, et al. Preliminary investigation of brown adipose tissue assessed by PET/CT and cancer activity. Skeletal Radiol. 2019;48:413–419.
  • Chu K, Bos SA, Gill CM, et al. Brown adipose tissue and cancer progression. Skeletal Radiol. 2020;49:635–639.
  • Ogawa Y, Abe K, Sakoda A, et al. FDG-PET and CT findings of activated brown adipose tissue in a patient with paraganglioma. Eur J Radiol Open. 2018;5:126–130.