2,420
Views
3
CrossRef citations to date
0
Altmetric
Review

Adipokines in glucose and lipid metabolism

ORCID Icon, &
Article: 2202976 | Received 14 Oct 2022, Accepted 12 Apr 2023, Published online: 19 Apr 2023

References

  • Cook KS, Min HY, Johnson D, et al. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science. 1987;237(4813):402–14. Epub 1987/07/24. 10.1126/science.3299705
  • Cook KS, Groves DL, Min HY, et al. A developmentally regulated mRNA from 3t3 adipocytes encodes a novel serine protease homologue. Proc Natl Acad Sci U S A. 1985;82(19):6480–6484. Epub 1985/10/01 DOI:10.1073/pnas.82.19.6480.
  • Gómez-Banoy N, Guseh JS, Li G, et al. Adipsin preserves beta cells in diabetic mice and associates with protection from type 2 diabetes in humans. Nat Med. 2019;25(11):1739–1747. Epub 2019/11/09. DOI:10.1038/s41591-019-0610-4.
  • Lo JC, Ljubicic S, Leibiger B, et al. Adipsin is an adipokine that improves Β cell function in diabetes. Cell. 2014;158(1):41–53. Epub 2014/07/06. 10.1016/j.cell.2014.06.005
  • Zhou Q, Ge Q, Ding Y, et al. Relationship between serum adipsin and the first phase of glucose-stimulated insulin secretion in individuals with different glucose tolerance. J Diabetes Investig. 2018;9(5):1128–1134. Epub 2018/02/13. DOI:10.1111/jdi.12819.
  • Milek M, Moulla Y, Kern M, et al. Adipsin serum concentrations and adipose tissue expression in people with obesity and type 2 diabetes. Int J Mol Sci. 2022;23(4):2222. Epub 2022/02/27. 10.3390/ijms23042222
  • Wang ZV, Scherer PE. Adiponectin, the past two decades. J Mol Cell Biol. 2016;8(2):93–100. Epub 2016/03/20 DOI:10.1093/jmcb/mjw011.
  • Kita S, Fukuda S, Maeda N, et al. Native adiponectin in serum binds to mammalian cells expressing T-Cadherin, but not adipors or calreticulin. Elife. 2019;8. Epub 2019/10/28. DOI:10.7554/eLife.48675.
  • Maeda N, Funahashi T, Matsuzawa Y, et al. Adiponectin, a unique adipocyte-derived factor beyond hormones. Atherosclerosis. 2020;292:1–9. Epub 2019/11/16. DOI:10.1016/j.atherosclerosis.2019.10.021.
  • Rasmussen MS, Lihn AS, Pedersen SB, et al. Adiponectin receptors in human adipose tissue: effects of obesity, weight loss, and fat depots. Obesity (Silver Spring). 2006;14(1):28–35. Epub 2006/02/24. DOI:10.1038/oby.2006.5.
  • Sayeed M, Gautam S, Verma DP, et al. A collagen domain-derived short adiponectin peptide activates Appl1 and Ampk signaling pathways and improves glucose and fatty acid metabolisms. J Biol Chem. 2018;293(35):13509–13523. Epub 2018/07/12. DOI:10.1074/jbc.RA118.001801.
  • Ruan H, Dong LQ. Adiponectin signaling and function in insulin target tissues. J Mol Cell Biol. 2016;8(2):101–109. Epub 2016/03/20 DOI:10.1093/jmcb/mjw014.
  • Cisternas P, Martinez M, Ahima RS, et al. Modulation oF glucose metabolism in hippocampal neurons by adiponectin and resistin. Mol Neurobiol. 2019;56(4):3024–3037. Epub 2018/08/05 DOI:10.1007/s12035-018-1271-x.
  • Mao X, Kikani CK, Riojas RA, et al. Appl1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nat Cell Biol. 2006;8(5):516–523. Epub 2006/04/20. DOI:10.1038/ncb1404.
  • Karvela A, Kostopoulou E, Rojas Gil AP, et al. Adiponectin signaling and impaired gtpase Rab5 expression in adipocytes of adolescents with obesity. Horm Res Paediatr. 2020;93(5):287–296. Epub 2020/10/20. DOI:10.1159/000510851.
  • Fang H, Judd RL. Adiponectin regulation and function. Compr Physiol. 2018;8(3):1031–1063. Epub 2018/07/07 DOI:10.1002/cphy.c170046.
  • Wong GW, Krawczyk SA, Kitidis-Mitrokostas C, et al. Identification and characterization of Ctrp9, a novel secreted glycoprotein, from adipose tissue that reduces serum glucose in mice and forms heterotrimers with adiponectin. Faseb J. 2009;23(1):241–258. Epub 2008/09/13. DOI:10.1096/fj.08-114991.
  • Seldin MM, Tan SY, Wong GW. Metabolic function of the Ctrp family of hormones. Rev Endocr Metab Disord. 2014;15(2):111–123. Epub 2013/08/22 DOI:10.1007/s11154-013-9255-7.
  • Lin Z, Tian H, Lam KS, et al. Adiponectin mediates the metabolic effects of Fgf21 on glucose homeostasis and insulin sensitivity in mice. Cell Metab. 2013;17(5):779–789. Epub 2013/05/15. DOI:10.1016/j.cmet.2013.04.005.
  • Holland WL, Adams AC, Brozinick JT, et al. An Fgf21-adiponectin-ceramide axis controls energy expenditure and insulin action in mice. Cell Metab. 2013;17(5):790–797. Epub 2013/05/15. DOI:10.1016/j.cmet.2013.03.019.
  • BonDurant LD, Ameka M, Naber MC, et al. Fgf21 regulates metabolism through adipose-dependent and -independent mechanisms. Cell Metab. 2017;25(4):935–44.e4. Epub 2017/04/06. DOI:10.1016/j.cmet.2017.03.005.
  • Suzuki M, Uehara Y, Motomura-Matsuzaka K, et al. Betaklotho iS required for fibroblast growth factor (Fgf) 21 signaling through fgf receptor (Fgfr) 1c and Fgfr3c. Mol Endocrinol. 2008;22(4):1006–1014. Epub 2008/01/12. DOI:10.1210/me.2007-0313.
  • Szczepańska E, Gietka-Czernel M. Fgf21: a novel regulator of glucose and lipid metabolism and whole-body energy balance. Horm Metab Res. 2022;54(4):203–211. Epub 2022/04/13 DOI:10.1055/a-1778-4159.
  • Yie J, Wang W, Deng L, et al. Understanding the physical interactions in the Fgf21/Fgfr/Β-Klotho complex: structural requirements and implications in Fgf21 signaling. Chem Biol Drug Des. 2012;79(4):398–410. Epub 2012/01/18. DOI:10.1111/j.1747-0285.2012.01325.x.
  • Iroz A, Montagner A, Benhamed F, et al. A specific chrebp and pparα cross-talk is required for the glucose-mediated Fgf21 response. Cell Rep. 2017;21(2):403–416. Epub 2017/10/12. DOI:10.1016/j.celrep.2017.09.065.
  • Nakagawa Y, Shimano H. Crebh regulates systemic glucose and lipid metabolism. Int J Mol Sci. 2018;19(5):1396. Epub 2018/05/09. DOI:10.3390/ijms19051396.
  • Fisher FM, Kim M, Doridot L, et al. A critical role for chrebp-mediated Fgf21 secretion in hepatic fructose metabolism. Mol Metab. 2017;6(1):14–21. Epub 2017/01/27. DOI:10.1016/j.molmet.2016.11.008.
  • Postic C, Dentin R, Denechaud PD, et al. Chrebp, a transcriptional regulator of glucose and lipid metabolism. Annu Rev Nutr. 2007;27:179–192. Epub 2007/04/13. DOI:10.1146/annurev.nutr.27.061406.093618.
  • BonDurant LD, Potthoff MJ. Fibroblast growth factor 21: a versatile regulator of metabolic homeostasis. Annu Rev Nutr. 2018;38:173–196. Epub 2018/05/05. DOI:10.1146/annurev-nutr-071816-064800.
  • de Oliveira Dos Santos AR, de Oliveira Zanuso B, Miola VFB, et al. Adipokines, myokines, and hepatokines: crosstalk and metabolic repercussions. Int J Mol Sci. 2021;22(5):2639. Epub 2021/04/04. 10.3390/ijms22052639
  • Søberg S, Sandholt CH, Jespersen NZ, et al. Fgf21 is a sugar-induced hormone associated with sweet intake and preference in humans. Cell Metab. 2017;25(5):1045–53.e6. Epub 2017/05/04. DOI:10.1016/j.cmet.2017.04.009.
  • D’Souza AM, Neumann UH, Glavas MM, et al. The glucoregulatory actions of leptin. Mol Metab. 2017;6(9):1052–1065. Epub 2017/09/28 DOI:10.1016/j.molmet.2017.04.011.
  • Xu J, Bartolome CL, Low CS, et al. Genetic identification of leptin neural circuits in energy and glucose homeostases. Nature. 2018;556(7702):505–509. Epub 2018/04/20. DOI:10.1038/s41586-018-0049-7.
  • Perry RJ, Peng L, Abulizi A, et al. Mechanism for leptin’s acute insulin-independent effect to reverse diabetic ketoacidosis. J Clin Invest. 2017;127(2):657–669. Epub 2017/01/24 DOI:10.1172/jci88477.
  • RJW L, Zhang SY, Lam TKT. Interaction of glucose sensing and leptin action in the brain. Mol Metab. 2020;39:101011. Epub 2020/05/18. DOI:10.1016/j.molmet.2020.101011.
  • Pereira S, Cline DL, Glavas MM, et al. Tissue-specific effects of leptin on glucose and lipid metabolism. Endocr Rev. 2021;42(1):1–28. Epub 2020/11/06 DOI:10.1210/endrev/bnaa027.
  • Kamohara S, Burcelin R, Halaas JL, et al. Acute stimulation of glucose metabolism in mice by leptin treatment. Nature. 1997;389(6649):374–377. Epub 1997/10/06. DOI:10.1038/38717.
  • Rouru J, Cusin I, Zakrzewska KE, et al. Effects of intravenously infused leptin on insulin sensitivity and on the expression of uncoupling proteins in brown adipose tissue. Endocrinology. 1999;140(8):3688–3692. Epub 1999/08/05 DOI:10.1210/endo.140.8.6890.
  • Perry RJ, Wang Y, Cline GW, et al. Leptin mediates a glucose-fatty acid cycle to maintain glucose homeostasis in starvation. Cell. 2018;172(1–2):234–48.e17. Epub 2018/01/09. DOI:10.1016/j.cell.2017.12.001.
  • He J, Ding Y, Nowik N, et al. Leptin deficiency affects glucose homeostasis and results in adiposity in zebrafish. J Endocrinol. 2021;249(2):125–134. Epub 2021/03/12. DOI:10.1530/joe-20-0437.
  • Hedbacker K, Birsoy K, Wysocki RW, et al. Antidiabetic effects of Igfbp2, a leptin-regulated gene. Cell Metab. 2010;11(1):11–22. Epub 2010/01/16. DOI:10.1016/j.cmet.2009.11.007.
  • Assefa B, Mahmoud AM, Pfeiffer AFH, et al. Insulin-like growth factor (Igf) binding protein-2, independently of Igf-1, induces Glut-4 translocation and glucose uptake in 3t3-L1 adipocytes. Oxid Med Cell Longev. 2017;2017(2017):3035184. Epub 2018/02/10. DOI:10.1155/2017/3035184.
  • Mirza AZ, Althagafi II, Shamshad H. Role of ppar receptor in different diseases and their ligands: physiological importance and clinical implications. Eur J Med Chem. 2019;166:502–513. Epub 2019/02/12. DOI:10.1016/j.ejmech.2019.01.067.
  • Kersten S, Seydoux J, Peters JM, et al. Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest. 1999;103(11):1489–1498. Epub 1999/06/08 DOI:10.1172/jci6223.
  • Cotter DG, Ercal B, d’Avignon DA, et al. Impairments of hepatic gluconeogenesis and ketogenesis in pparα-deficient neonatal mice. Am J Physiol Endocrinol Metab. 2014;307(2):E176–85. Epub 2014/05/29 DOI:10.1152/ajpendo.00087.2014.
  • Grygiel-Górniak B. Peroxisome proliferator-activated receptors and their ligands: nutritional and clinical implications–a review. Nutr J. 2014;13:17. Epub 2014/02/15. DOI:10.1186/1475-2891-13-17.
  • Achari AE, Jain SK. Adiponectin, a therapeutic target for obesity, diabetes, and endothelial dysfunction. Int J Mol Sci. 2017;18(6):1321. Epub 2017/06/22. DOI:10.3390/ijms18061321.
  • Tomono Y, Hiraishi C, Yoshida H. Age and sex differences in serum adiponectin and its association with lipoprotein fractions. Ann Clin Biochem. 2018;55(1):165–171. Epub 2017/05/16 DOI:10.1177/0004563217699233.
  • Oku H, Matsuura F, Koseki M, et al. Adiponectin deficiency suppresses Abca1 expression and Apoa-I synthesis in the liver. FEBS Lett. 2007;581(26):5029–5033. Epub 2007/10/16. DOI:10.1016/j.febslet.2007.09.038.
  • Matsuura F, Oku H, Koseki M, et al. Adiponectin accelerates reverse cholesterol transport by increasing high density lipoprotein assembly in the liver. Biochem Biophys Res Commun. 2007;358(4):1091–1095. Epub 2007/05/25. DOI:10.1016/j.bbrc.2007.05.040.
  • Kangas-Kontio T, Huotari A, Ruotsalainen H, et al. Genetic and environmental determinants of total and high-molecular weight adiponectin in families with low Hdl-cholesterol and early onset coronary heart disease. Atherosclerosis. 2010;210(2):479–485. Epub 2010/01/09. DOI:10.1016/j.atherosclerosis.2009.12.022.
  • Okada T, Saito E, Kuromori Y, et al. Relationship between serum adiponectin level and lipid composition in each lipoprotein fraction in adolescent children. Atherosclerosis. 2006;188(1):179–183. Epub 2005/11/26. 10.1016/j.atherosclerosis.2005.10.030
  • Itoh N. Fgf21 as a hepatokine, adipokine, and myokine in metabolism and diseases. Front Endocrinol. 2014;5:107. Epub 2014/07/30. DOI:10.3389/fendo.2014.00107.
  • Prentice KJ, Saksi J, Hotamisligil GS. Adipokine Fabp4 integrates energy stores and counterregulatory metabolic responses. J Lipid Res. 2019;60(4):734–740. Epub 2019/02/02 DOI:10.1194/jlr.S091793.
  • Dou HX, Wang T, Su HX, et al. Exogenous Fabp4 interferes with differentiation, promotes lipolysis and inflammation in adipocytes. Endocrine. 2020;67(3):587–596. Epub 2019/12/18. DOI:10.1007/s12020-019-02157-8.
  • Furuhashi M. Fatty acid-binding protein 4 in cardiovascular and metabolic diseases. J Atheroscler Thromb. 2019;26(3):216–232. Epub 2019/02/07 DOI:10.5551/jat.48710.
  • Ron I, Lerner RK, Rathaus M, et al. The adipokine Fabp4 is a key regulator of neonatal glucose homeostasis. JCI Insight. 2021;6(20): Epub 2021/10/23. doi:10.1172/jci.insight.138288.
  • Wu W, Zhang J, Zhao C, et al. Ctrp6 regulates porcine adipocyte proliferation and differentiation by the Adipor1/Mapk signaling pathway. J Agric Food Chem. 2017;65(27):5512–5522. Epub 2017/05/26 DOI:10.1021/acs.jafc.7b00594.
  • Wu W, Ji M, Xu K, et al. Knockdown of Ctrp6 reduces the deposition of intramuscular and subcutaneous fat in pigs via different signaling pathways. Biochim Biophys Acta, Mol Cell Biol Lipids. 2020;1865(8):158729. Epub 2020/05/04. DOI:10.1016/j.bbalip.2020.158729.
  • Peterson JM, Seldin MM, Wei Z, et al. Ctrp3 attenuates diet-induced hepatic steatosis by regulating triglyceride metabolism. Am J Physiol Gastrointest Liver Physiol. 2013;305(3):G214–24. Epub 2013/06/08 DOI:10.1152/ajpgi.00102.2013.
  • Alamian A, Marrs JA, Clark WA, et al. Ctrp3 and serum triglycerides in children aged 7-10 years. PLoS ONE. 2020;15(12):e0241813. Epub 2020/12/04 DOI:10.1371/journal.pone.0241813.
  • Li JY, Wu GM, Hou Z, et al. Expression of C1q/Tnf-related protein-3 (Ctrp3) in serum of patients with gestational diabetes mellitus and its relationship with insulin resistance. Eur Rev Med Pharmacol Sci. 2017;21(24):5702–5710. Epub 2017/12/23 DOI:10.26355/eurrev_201712_14016.
  • Xia L, Zhang H, Shi Q, et al. Protective role of Ctrp3 and Ctrp9 in the development of gestational diabetes mellitus. Clin Lab. 2020; 66(11): Epub 2020/11/13. DOI:10.7754/Clin.Lab.2020.200247.
  • Yau SW, Russo VC, Clarke IJ, et al. Igfbp-2 inhibits adipogenesis and lipogenesis in human visceral, but not subcutaneous, adipocytes. Int J Obes (Lond). 2015;39(5):770–781. Epub 2014/11/06 DOI:10.1038/ijo.2014.192.
  • Alfares MN, Perks CM, Hamilton-Shield JP, et al. Insulin-like growth factor-Ii in adipocyte regulation: depot-specific actions suggest a potential role limiting excess visceral adiposity. Am J Physiol Endocrinol Metab. 2018;315(6):E1098–e107. Epub 2018/07/25 DOI:10.1152/ajpendo.00409.2017.
  • Carter S, Li Z, Lemieux I, et al. Circulating Igfbp-2 levels are incrementally linked to correlates of the metabolic syndrome and independently associated with Vldl triglycerides. Atherosclerosis. 2014;237(2):645–651. Epub 2014/12/03. 10.1016/j.atherosclerosis.2014.09.022
  • Carter S, Lemieux I, Li Z, et al. Changes in Igfbp-2 levels following a one-year lifestyle modification program are independently related to improvements in plasma Apo B and Ldl Apo B levels. Atherosclerosis. Epub 2019/01/19 2019;281: 89–97.doi: 10.1016/j.atherosclerosis.2018.12.016
  • Rauzier C, Lamarche B, Tremblay AJ, et al. Associations between insulin-like growth factor binding protein-2 and lipoprotein kinetics in men. J Lipid Res. 2022;63(10):100269. Epub 2022/08/29 DOI:10.1016/j.jlr.2022.100269.
  • White MF, Kahn CR. Insulin action at a molecular level - 100 years of progress. Mol Metab. 2021;52:101304. Epub 2021/07/19. DOI:10.1016/j.molmet.2021.101304.
  • Yaribeygi H, Farrokhi FR, Butler AE, et al. Insulin resistance: review of the underlying molecular mechanisms. J Cell Physiol. 2019;234(6):8152–8161. Epub 2018/10/15 DOI:10.1002/jcp.27603.
  • Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98(4):2133–2223. Epub 2018/08/02 DOI:10.1152/physrev.00063.2017.
  • Tsutsumi C, Okuno M, Tannous L, et al. Retinoids and retinoid-binding protein expression in rat adipocytes. J Biol Chem. 1992;267(3):1805–1810. Epub 1992/01/25. 10.1016/S0021-9258(18)46017-6
  • Steinhoff JS, Lass A, Schupp M. Biological functions of Rbp4 and Its relevance for human diseases. Front Physiol. 2021;12:659977. Epub 2021/04/02. DOI:10.3389/fphys.2021.659977.
  • Yang Q, Graham TE, Mody N, et al. Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature. 2005;436(7049):356–362. Epub 2005/07/22. 10.1038/nature03711
  • Graham TE, Yang Q, Blüher M, et al. Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. N Engl J Med. 2006;354(24):2552–2563. Epub 2006/06/16. DOI:10.1056/NEJMoa054862.
  • Moraes-Vieira PM, Yore MM, Dwyer PM, et al. Rbp4 activates antigen-presenting cells, leading to adipose tissue inflammation and systemic insulin resistance. Cell Metab. 2014;19(3):512–526. Epub 2014/03/13 DOI:10.1016/j.cmet.2014.01.018.
  • Norseen J, Hosooka T, Hammarstedt A, et al. Retinol-binding protein 4 inhibits insulin signaling in adipocytes by inducing proinflammatory cytokines in macrophages through a C-Jun N-Terminal kinase- and toll-like receptor 4-dependent and retinol-independent mechanism. Mol Cell Biol. 2012;32(10):2010–2019. Epub 2012/03/21. DOI:10.1128/mcb.06193-11.
  • Kilicarslan M, de Weijer BA, Simonyté Sjödin K, et al. Rbp4 increases lipolysis in human adipocytes and is associated with increased lipolysis and hepatic insulin resistance in obese women. Faseb J. 2020;34(5):6099–6110. Epub 2020/03/14. DOI:10.1096/fj.201901979RR.
  • Promintzer M, Krebs M, Todoric J, et al. Insulin resistance is unrelated to circulating retinol binding protein and protein C inhibitor. J Clin Endocrinol Metab. 2007;92(11):4306–4312. Epub 2007/08/30. DOI:10.1210/jc.2006-2522.
  • Korek E, Gibas-Dorna M, Chęcińska-Maciejewska Z, et al. Serum Rbp4 positively correlates with triglyceride level but not with bmi, fat mass and insulin resistance in healthy obese and non-obese individuals. Biomarkers. 2018;23(7):683–688. Epub 2018/05/23. 10.1080/1354750x.2018.1479770
  • Ulgen F, Herder C, Kühn MC, et al. Association of serum levels of retinol-binding protein 4 with male sex but not with insulin resistance in obese patients. Arch Physiol Biochem. 2010;116(2):57–62. Epub 2010/03/13. DOI:10.3109/13813451003631421.
  • Trepanowski JF, Mey J, Varady KA. Fetuin-A: a novel link between obesity and related complications. Int J Obes (Lond). 2015;39(5):734–741. Epub 2014/12/04 DOI:10.1038/ijo.2014.203.
  • Jialal I, Pahwa R. Fetuin-a is also an adipokine. Lipids Health Dis. 2019;18(1):73. Epub 2019/03/29 DOI:10.1186/s12944-019-1021-8.
  • Mukhuty A, Fouzder C, Kundu R. Fetuin-a secretion from Β-cells leads to accumulation of macrophages in islets, aggravates inflammation and impairs insulin secretion. J Cell Sci. 2021; 134(21): Epub 2021/10/14. DOI:10.1242/jcs.258507.
  • Mukhuty A, Fouzder C, Kundu R. Blocking Tlr4-Nf-Κb pathway protects mouse islets from the combinatorial impact of high fat and fetuin-a mediated dysfunction and restores ability for insulin secretion. Mol Cell Endocrinol. 2021;532:111314. Epub 2021/05/15. DOI:10.1016/j.mce.2021.111314.
  • Chattopadhyay D, Das S, Guria S, et al. Fetuin-a regulates adipose tissue macrophage content and activation in insulin resistant mice through Mcp-1 and Inos: involvement of Ifnγ-Jak2-Stat1pathway. Biochem J. 2021;478(22):4027–4043. Epub 2021/11/02 DOI:10.1042/bcj20210442.
  • Shim YS, Kang MJ, Oh YJ, et al. Fetuin-a as an alternative marker for insulin resistance and cardiovascular risk in prepubertal children. J Atheroscler Thromb. 2017;24(10):1031–1038. Epub 2017/02/06 DOI:10.5551/jat.38323.
  • Ü G Ş, Doğan M, Hatipoğlu N, et al. Can fetuin-a Be a marker for insulin resistance and poor glycemic control in children with type 1 diabetes mellitus? J Clin Res Pediatr Endocrinol. 2017;9(4):293–299. Epub 2017/05/23 DOI:10.4274/jcrpe.4532.
  • Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med. 2001;7(8):941–946. Epub 2001/08/02. DOI:10.1038/90984.
  • Engin A. Adiponectin-resistance in obesity. Adv Exp Med Biol. 2017;960:415–441. Epub 2017/06/07. DOI:10.1007/978-3-319-48382-5_18.
  • Su KZ, Li YR, Zhang D, et al. Relation of circulating resistin to insulin resistance in type 2 diabetes and obesity: a systematic review and meta-analysis. Front Physiol. 2019;10:1399. Epub 2019/12/06. DOI:10.3389/fphys.2019.01399.
  • Pastusiak K, Kregielska-Narozna M, Bogdanski P. Resistin is not a useful insulin resistance marker for non-obese patients. J Physiol Pharmacol. 2020; 71(3): Epub 2020/09/30. DOI:10.26402/jpp.2020.3.06.
  • Jiang Y, Lu L, Hu Y, et al. Resistin induces hypertension and insulin resistance in mice via a Tlr4-dependent pathway. Sci Rep. 2016;6:22193. Epub 2016/02/27. DOI:10.1038/srep22193.
  • Benomar Y, Taouis M. Molecular mechanisms underlying obesity-induced hypothalamic inflammation and insulin resistance: pivotal role of resistin/Tlr4 pathways. Front Endocrinol. 2019;10:140. Epub 2019/03/25. DOI:10.3389/fendo.2019.00140.
  • Yau SW, Harcourt BE, Kao KT, et al. Serum Igfbp-2 levels are associated with reduced insulin sensitivity in obese children. Clin Obes. 2018;8(3):184–190. Epub 2018/03/02. DOI:10.1111/cob.12245.
  • Ko JM, Park HK, Yang S, et al. Association between insulin-like growth factor binding protein-2 levels and cardiovascular risk factors in Koreanchildren. Endocr J. 2012;59(4):335–343. Epub 2012/02/02 DOI:10.1507/endocrj.ej11-0358.
  • Boughanem H, Yubero-Serrano EM, López-Miranda J, et al. Potential role of insulin growth-factor-binding protein 2 as therapeutic target for obesity-related insulin resistance. Int J Mol Sci. 2021;22(3):1133. Epub 2021/01/28. DOI:10.3390/ijms22031133.
  • Yau SW, Henry BA, Russo VC, et al. Leptin enhances insulin sensitivity by direct and sympathetic nervous system regulation of muscle Igfbp-2 expression: evidence from nonrodent models. Endocrinology. 2014;155(6):2133–2143. Epub 2014/03/25. 10.1210/en.2013-2099
  • Zengi S, Zengi O, Kirankaya A, et al. Serum omentin-1 levels in obese children. J Pediatr Endocrinol Metab. 2019;32(3):247–251. Epub 2019/03/01 DOI:10.1515/jpem-2018-0231.
  • Watanabe T, Watanabe-Kominato K, Takahashi Y, et al. Adipose tissue-derived omentin-1 function and regulation. Compr Physiol. 2017;7(3):765–781. Epub 2017/06/24 DOI:10.1002/cphy.c160043.
  • Jia Y, Luo X, Ji Y, et al. Circulating Ctrp9 levels are increased in patients with newly diagnosed type 2 diabetes and correlated with insulin resistance. Diabet Res Clin Pract. 2017;131:116–123. Epub 2017/07/26. DOI:10.1016/j.diabres.2017.07.003.
  • Escoté X, Gómez-Zorita S, López-Yoldi M, et al. Role of omentin, vaspin, cardiotrophin-1, tweak and Nov/Ccn3 in obesity and diabetes development. Int J Mol Sci. 2017;18(8):1770. Epub 2017/08/16. 10.3390/ijms18081770
  • Park SE, Park CY, Sweeney G. Biomarkers of insulin sensitivity and insulin resistance: past, present and future. Crit Rev Clin Lab Sci. 2015;52(4):180–190. Epub 2015/06/05 DOI:10.3109/10408363.2015.1023429.
  • Ikeda K, Kang Q, Yoneshiro T, et al. Ucp1-independent signaling involving Serca2b-mediated calcium cycling regulates beige fat thermogenesis and systemic glucose homeostasis. Nat Med. 2017;23(12):1454–1465. Epub 2017/11/14. DOI:10.1038/nm.4429.
  • Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell. 2012;150(2):366–376. Epub 2012/07/17. DOI:10.1016/j.cell.2012.05.016.
  • Ikeda K, Maretich P, Kajimura S. The common and distinct features of brown and beige adipocytes. Trends Endocrinol Metab. 2018;29(3):191–200. Epub 2018/01/26 DOI:10.1016/j.tem.2018.01.001.
  • Cheng L, Wang J, Dai H, et al. Brown and beige adipose tissue: a novel therapeutic strategy for obesity and type 2 diabetes mellitus. Adipocyte. 2021;10(1):48–65. Epub 2021/01/07. 10.1080/21623945.2020.1870060
  • Roach PJ, Depaoli-Roach AA, Hurley TD, et al. Glycogen and its metabolism: some new developments and old themes. Biochem J. 2012;441(3):763–787. Epub 2012/01/18 DOI:10.1042/bj20111416.
  • Keinan O, Valentine JM, Xiao H, et al. Glycogen metabolism links glucose homeostasis to thermogenesis in adipocytes. Nature. 2021;599(7884):296–301. Epub 2021/10/29. 10.1038/s41586-021-04019-8
  • Villarroya F, Gavaldà-Navarro A, Peyrou M, et al. The lives and times of brown adipokines. Trends Endocrinol Metab. 2017;28(12):855–867. Epub 2017/11/09 DOI:10.1016/j.tem.2017.10.005.
  • Villarroya F, Cereijo R, Villarroya J, et al. Brown adipose tissue as a secretory organ. Nat Rev Endocrinol. 2017;13(1):26–35. Epub 2016/11/04 DOI:10.1038/nrendo.2016.136.
  • Ahmad B, Vohra MS, Saleemi MA, et al. Brown/Beige adipose tissues and the emerging role of their secretory factors in improving metabolic health: the batokines. Biochimie. 2021;184:26–39. Epub 2021/02/07. DOI:10.1016/j.biochi.2021.01.015.
  • Cereijo R, Gavaldà-Navarro A, Cairó M, et al. Cxcl14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab. 2018;28(5):750–63.e6. Epub 2018/08/21. DOI:10.1016/j.cmet.2018.07.015.
  • Villarroya J, Cereijo R, Gavaldà-Navarro A, et al. New insights into the secretory functions of brown adipose tissue. J Endocrinol. 2019;243(2):R19–r27. Epub 2019/08/17 DOI:10.1530/joe-19-0295.
  • Chartoumpekis DV, Habeos IG, Ziros PG, et al. Brown adipose tissue responds to cold and adrenergic stimulation by induction of Fgf21. Mol Med. 2011;17(7–8):736–740. Epub 2011/03/05 DOI:10.2119/molmed.2011.00075.
  • Justesen S, Haugegaard KV, Hansen JB, et al. The autocrine role of Fgf21 in cultured adipocytes. Biochem J. 2020;477(13):2477–2487. Epub 2020/07/11 DOI:10.1042/bcj20200220.
  • Schlessinger K, Li W, Tan Y, et al. Gene expression in wat from healthy humans and monkeys correlates with Fgf21-induced browning of wat in mice. Obesity (Silver Spring). 2015;23(9):1818–1829. Epub 2015/08/27. 10.1002/oby.21153
  • Lee P, Linderman JD, Smith S, et al. Irisin and Fgf21 are cold-induced endocrine activators of brown fat function in humans. Cell Metab. 2014;19(2):302–309. Epub 2014/02/11. DOI:10.1016/j.cmet.2013.12.017.
  • Abu-Odeh M, Zhang Y, Reilly SM, et al. Fgf21 promotes thermogenic gene expression as an autocrine factor in adipocytes. Cell Rep. 2021;35(13):109331. Epub 2021/07/01. DOI:10.1016/j.celrep.2021.109331.
  • Moure R, Cairó M, Morón-Ros S, et al. Levels of Β-klotho determine the thermogenic responsiveness of adipose tissues: involvement of the autocrine action of Fgf21. Am J Physiol Endocrinol Metab. 2021;320(4):E822–e34. Epub 2021/02/23. DOI:10.1152/ajpendo.00270.2020.
  • Geng L, Liao B, Jin L, et al. Exercise alleviates obesity-induced metabolic dysfunction via enhancing Fgf21 sensitivity in adipose tissues. Cell Rep. 2019;26(10):2738–52.e4. Epub 2019/03/07. DOI:10.1016/j.celrep.2019.02.014.
  • Bowers RR, Kim JW, Otto TC, et al. Stable stem cell commitment to the adipocyte lineage by inhibition of DNA methylation: role of the Bmp-4 gene. Proc Natl Acad Sci U S A. 2006;103(35):13022–13027. Epub 2006/08/19 DOI:10.1073/pnas.0605789103.
  • Tseng YH, Kokkotou E, Schulz TJ, et al. New role of bone morphogenetic protein 7 in brown adipogenesis and energy expenditure. Nature. 2008;454(7207):1000–1004. Epub 2008/08/23. DOI:10.1038/nature07221.
  • Rozenblit-Susan S, Chapnik N, Froy O. Serotonin prevents differentiation into brown adipocytes and induces transdifferentiation into white adipocytes. Int J Obes (Lond). 2018;42(4):704–710. Epub 2017/10/31 DOI:10.1038/ijo.2017.261.
  • Elsen M, Raschke S, Tennagels N, et al. Bmp4 and Bmp7 induce the white-to-brown transition of primary human adipose stem cells. Am J Physiol Cell Physiol. 2014;306(5):C431–40. Epub 2013/11/29. DOI:10.1152/ajpcell.00290.2013.
  • Xue R, Wan Y, Zhang S, et al. Role of bone morphogenetic protein 4 in the differentiation of brown fat-like adipocytes. Am J Physiol Endocrinol Metab. 2014;306(4):E363–72. Epub 2013/12/19 DOI:10.1152/ajpendo.00119.2013.
  • Boon MR, van den Berg SA, Wang Y, et al. Bmp7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS ONE. 2013;8(9):e74083. Epub 2013/09/26. DOI:10.1371/journal.pone.0074083.
  • Gregor MF, Hotamisligil GS. Inflammatory mechanisms in obesity. Annu Rev Immunol. 2011;29:415–445. Epub 2011/01/12. DOI:10.1146/annurev-immunol-031210-101322.
  • Saltiel AR, Olefsky JM. Inflammatory mechanisms linking obesity and metabolic disease. J Clin Invest. 2017;127(1):1–4. Epub 2017/01/04 DOI:10.1172/jci92035.
  • Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology. 2016;31(4):283–293. Epub 2016/06/03. DOI:10.1152/physiol.00041.2015.
  • Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021;320(3):C375–c91. Epub 2020/12/29 DOI:10.1152/ajpcell.00379.2020.
  • Ying W, Lee YS, Dong Y, et al. Expansion of islet-resident macrophages leads to inflammation affecting Β cell proliferation and function in obesity. Cell Metab. 2019;29(2):457–74.e5. Epub 2019/01/01. DOI:10.1016/j.cmet.2018.12.003.
  • Ying W, Fu W, Lee YS, et al. The role of macrophages in obesity-associated islet inflammation and Β-cell abnormalities. Nat Rev Endocrinol. 2020;16(2):81–90. Epub 2019/12/15 DOI:10.1038/s41574-019-0286-3.
  • Choi HM, Doss HM, Kim KS. Multifaceted physiological roles of adiponectin in inflammation and diseases. Int J Mol Sci. 2020;21(4):1219. Epub 2020/02/16. DOI:10.3390/ijms21041219.
  • Wolf AM, Wolf D, Rumpold H, et al. Adiponectin induces the anti-inflammatory cytokines Il-10 and Il-1ra in human leukocytes. Biochem Biophys Res Commun. 2004;323(2):630–635. Epub 2004/09/17 DOI:10.1016/j.bbrc.2004.08.145.
  • Hui X, Gu P, Zhang J, et al. Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab. 2015;22(2):279–290. Epub 2015/07/15. DOI:10.1016/j.cmet.2015.06.004.
  • Zhang H, Gong X, Ni S, et al. C1q/tnf-related protein-9 attenuates atherosclerosis through Ampk-Nlrp3 inflammasome singling pathway. Int Immunopharmacol. 2019;77:105934. Epub 2019/11/16. DOI:10.1016/j.intimp.2019.105934.
  • Moradi N, Fadaei R, Emamgholipour S, et al. Association of circulating Ctrp9 with soluble adhesion molecules and inflammatory markers in patients with type 2 diabetes mellitus and coronary artery disease. PLoS ONE. 2018;13(1):e0192159. Epub 2018/01/31. 10.1371/journal.pone.0192159
  • Wang J, Gao Y, Lin F, et al. Omentin-1 attenuates lipopolysaccharide (Lps)-induced u937 macrophages activation by inhibiting the Tlr4/Myd88/Nf-Κb signaling. Arch Biochem Biophys. 2020;679:108187. Epub 2019/11/11. DOI:10.1016/j.abb.2019.108187.
  • Lelis DF, Freitas DF, Machado AS, et al. Angiotensin-(1-7), adipokines and inflammation. Metabolism. 2019;95:36–45. Epub 2019/03/25. DOI:10.1016/j.metabol.2019.03.006.
  • Li RX, Yiu WH, Wu HJ, et al. Bmp7 reduces inflammation and oxidative stress in diabetic tubulopathy. Clin Sci (Lond). 2015;128(4):269–280. Epub 2014/09/10. DOI:10.1042/cs20140401.
  • Timper K, Brüning JC. Hypothalamic Circuits Regulating Appetite and Energy Homeostasis: pathways to Obesity. Dis Model Mech. 2017;10(6):679–689. Epub 2017/06/09. DOI:10.1242/dmm.026609
  • Leibowitz SF, Hammer NJ, Chang K. Hypothalamic paraventricular nucleus lesions produce overeating and obesity in the rat. Physiol Behav. 1981;27(6):1031–1040. Epub 1981/12/01 DOI:10.1016/0031-9384(81)90366-8.
  • Forbes S, Bui S, Robinson BR, et al. Integrated control of appetite and fat metabolism by the leptin-proopiomelanocortin pathway. Proc Natl Acad Sci U S A. 2001;98(7):4233–4237. Epub 2001/03/22 DOI:10.1073/pnas.071054298.
  • Heymsfield SB, Greenberg AS, Fujioka K, et al. Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA. 1999;282(16):1568–1575. Epub 1999/11/05. 10.1001/jama.282.16.1568
  • Baldini G, Phelan KD. The melanocortin pathway and control of appetite-progress and therapeutic implications. J Endocrinol. 2019;241(1):R1–r33. Epub 2019/02/28 DOI:10.1530/joe-18-0596.
  • Barrios-Correa AA, Estrada JA, Contreras I. Leptin signaling in the control of metabolism and appetite: lessons from animal models. J Mol Neurosci. 2018;66(3):390–402. Epub 2018/10/05 DOI:10.1007/s12031-018-1185-0.
  • Crujeiras AB, Carreira MC, Cabia B, et al. Leptin resistance in obesity: an epigenetic landscape. Life Sci. 2015;140:57–63. Epub 2015/05/23. DOI:10.1016/j.lfs.2015.05.003.
  • Dodd GT, Xirouchaki CE, Eramo M, et al. Intranasal targeting of hypothalamic Ptp1b and Tcptp reinstates leptin and insulin sensitivity and promotes weight loss in obesity. Cell Rep. 2019;28(11):2905–22.e5. Epub 2019/09/12. DOI:10.1016/j.celrep.2019.08.019.
  • Liu J, Yang X, Yu S, et al. The leptin resistance. Adv Exp Med Biol. 2018;1090:145–163. Epub 2018/11/06. DOI:10.1007/978-981-13-1286-1_8.
  • Izquierdo AG, Crujeiras AB, Casanueva FF, et al. Leptin, obesity, and leptin resistance: where are we 25 years later? Nutrients. 2019; 11(11): Epub 2019/11/14. DOI:10.3390/nu11112704.
  • Zhao S, Zhu Y, Schultz RD, et al. Partial leptin reduction as an insulin sensitization and weight loss strategy. Cell Metab. 2019;30(4):706–19.e6. Epub 2019/09/10. DOI:10.1016/j.cmet.2019.08.005.
  • Chen Y, Essner RA, Kosar S, et al. Sustained Npy signaling enables Agrp neurons to drive feeding. Elife. Epub 2019/04/30 2019;8: 8.doi: 10.7554/eLife.46348
  • Dodd GT, Lee-Young RS, Brüning JC, et al. Tcptp regulates insulin signaling in Agrp neurons to coordinate glucose metabolism with feeding. Diabetes. 2018;67(7):1246–1257. Epub 2018/05/02. DOI:10.2337/db17-1485.
  • Li X, Wang L, Shi D. The design strategy of selective Ptp1b inhibitors over Tcptp. Bioorg Med Chem. 2016;24(16):3343–3352. Epub 2016/06/30 DOI:10.1016/j.bmc.2016.06.035.
  • Morin V, Hozer F, Costemale-Lacoste JF. The effects of ghrelin on sleep, appetite, and memory, and its possible role in depression: a review of the literature. Encephale. 2018;44(3):256–263. Epub 2018/02/06 DOI:10.1016/j.encep.2017.10.012.