1,340
Views
15
CrossRef citations to date
0
Altmetric
Original Research

High-risk oncogenic HPV genotype infection associates with increased immune activation and T cell exhaustion in ART-suppressed HIV-1-infected women

, , , , , , , , , , , , & show all
Article: e1128612 | Received 14 Oct 2015, Accepted 02 Dec 2015, Published online: 02 May 2016

References

  • Bosch FX, Manos MM, Munoz N, Sherman M, Jansen AM, Peto J, Schiffman MH, Moreno V, Kurman R, Shah KV. Prevalence of human papillomavirus in cervical cancer: a worldwide perspective. International biological study on cervical cancer (IBSCC) Study Group. J Natl Cancer Inst 1995; 87:796–802; PMID:7791229; http://dx.doi.org/10.1093/jnci/87.11.796.
  • Ho GY, Bierman R, Beardsley L, Chang CJ, Burk RD. Natural history of cervicovaginal papillomavirus infection in young women. N Engl J Med 1998; 338:423–8; PMID:9459645; http://dx.doi.org/10.1056/NEJM199802123380703.
  • Maiman M, Fruchter RG, Clark M, Arrastia CD, Matthews R, Gates EJ. Cervical cancer as an AIDS-defining illness. Obstet Gynecol 1997; 89:76–80; PMID:8990442; http://dx.doi.org/10.1016/S0029-7844(96)00378-X.
  • Nonnenmacher B, Hubbert NL, Kirnbauer R, Shah KV, Munoz N, Bosch FX, de Sanjosé S, Viscidi R, Lowy DR, Schiller JT. Serologic response to human papillomavirus type 16 (HPV-16) virus-like particles in HPV-16 DNA-positive invasive cervical cancer and cervical intraepithelial neoplasia grade III patients and controls from Colombia and Spain. J Infect Dis 1995; 172:19–24; PMID:7797910; http://dx.doi.org/10.1093/infdis/172.1.19.
  • Palefsky JM, Holly EA, Ralston ML, Jay N, Berry JM, Darragh TM. High incidence of anal high-grade squamous intra-epithelial lesions among HIV-positive and HIV-negative homosexual and bisexual men. Aids 1998; 12:495–503; PMID:9543448; http://dx.doi.org/10.1097/00002030-199805000-00011.
  • Petter A, Heim K, Guger M, Ciresa-Ko Nig A, Christensen N, Sarcletti M, Wieland U, Pfister H, Zangerle R, Höpfl R. Specific serum IgG, IgM and IgA antibodies to human papillomavirus types 6, 11, 16, 18 and 31 virus-like particles in human immunodeficiency virus-seropositive women. J Gen Virol 2000; 81:701–8; PMID:10675407; http://dx.doi.org/10.1099/0022-1317-81-3-701.
  • Steele JC, Mann CH, Rookes S, Rollason T, Murphy D, Freeth MG, Gallimore PH, Roberts S. T-cell responses to human papillomavirus type 16 among women with different grades of cervical neoplasia. Br J Cancer 2005; 93:248–59; PMID:15986031; http://dx.doi.org/10.1038/sj.bjc.6602679.
  • Walboomers JM, Jacobs MV, Manos MM, Bosch FX, Kummer JA, Shah KV, Snijders PJ, Peto J, Meijer CJ, Muñoz N. Human papillomavirus is a necessary cause of invasive cervical cancer worldwide. J Pathol 1999; 189:12–9; PMID:10451482; http://dx.doi.org/10.1002/(SICI)1096-9896(199909)189:1%3c12::AID-PATH431%3e3.0.CO;2-F.
  • Bzhalava D, Eklund C, Dillner J. International standardization and classification of human papillomavirus types. Virology 2015; 476:341–4; PMID:25577151; http://dx.doi.org/10.1016/j.virol.2014.12.028.
  • de Sanjose S, Quint WG, Alemany L, Geraets DT, Klaustermeier JE, Lloveras B, Tous S, Felix A, Bravo LE, Shin HR et al. Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 2010; 11:1048–56; PMID:20952254; http://dx.doi.org/10.1016/S1470-2045(10)70230-8.
  • Munoz N, Bosch FX, de Sanjose S, Herrero R, Castellsague X, Shah KV, Snijders PJ, Meijer CJ, International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 2003; 348:518–27; PMID:12571259; http://dx.doi.org/10.1056/NEJMoa021641.
  • Schiffman MH. Recent progress in defining the epidemiology of human papillomavirus infection and cervical neoplasia. J Natl Cancer Inst 1992; 84:394–8; PMID:1311392; http://dx.doi.org/10.1093/jnci/84.6.394.
  • Smith JS, Lindsay L, Hoots B, Keys J, Franceschi S, Winer R, Clifford GM. Human papillomavirus type distribution in invasive cervical cancer and high-grade cervical lesions: a meta-analysis update. Int J Cancer 2007; 121:621–32; PMID:17405118; http://dx.doi.org/10.1002/ijc.22527.
  • Kadish AS, Timmins P, Wang Y, Ho GY, Burk RD, Ketz J, He W, Romney SL, Johnson A, Angeletti R et al. Regression of cervical intraepithelial neoplasia and loss of human papillomavirus (HPV) infection is associated with cell-mediated immune responses to an HPV type 16 E7 peptide. Cancer Epidemiol Biomarkers Prev 2002; 11:483–8; PMID:12010863.
  • Palefsky J. Human papillomavirus-related tumors in HIV. Curr Opin Oncol 2006; 18:463–8; PMID:16894294; http://dx.doi.org/10.1097/01.cco.0000239885.13537.36.
  • Wright TC, Jr, Cox JT, Massad LS, Twiggs LB, Wilkinson EJ. 2001 Consensus Guidelines for the Management of Women with Cervical Cytological Abnormalities. J Low Genit Tract Dis 2002; 6:127–43; PMID:17051012; http://dx.doi.org/10.1097/00128360-200204000-00012.
  • Connors M, Kovacs JA, Krevat S, Gea-Banacloche JC, Sneller MC, Flanigan M, Metcalf JA, Walker RE, Falloon J, Baseler M et al. HIV infection induces changes in CD4+ T-cell phenotype and depletions within the CD4+ T-cell repertoire that are not immediately restored by antiviral or immune-based therapies. Nat Med 1997; 3:533–40; PMID:9142122; http://dx.doi.org/10.1038/nm0597-533.
  • Grant M, Pardoe I, Whaley M, Montaner JS, Harrigan PR. The T cell receptor V β repertoire shows little change during treatment interruption-related viral rebound in chronic HIV infection. Aids 2002; 16:287–90; PMID:11807314; http://dx.doi.org/10.1097/00002030-200201250-00019.
  • Heard I, Schmitz V, Costagliola D, Orth G, Kazatchkine MD. Early regression of cervical lesions in HIV-seropositive women receiving highly active antiretroviral therapy. Aids 1998; 12:1459–64; PMID:9727566; http://dx.doi.org/10.1097/00002030-199812000-00007.
  • Heard I, Tassie JM, Kazatchkine MD, Orth G. Highly active antiretroviral therapy enhances regression of cervical intraepithelial neoplasia in HIV-seropositive women. Aids 2002; 16:1799–802; PMID:12218392; http://dx.doi.org/10.1097/00002030-200209060-00013.
  • Minkoff H, Ahdieh L, Massad LS, Anastos K, Watts DH, Melnick S, Muderspach L, Burk R, Palefsky J. The effect of highly active antiretroviral therapy on cervical cytologic changes associated with oncogenic HPV among HIV-infected women. Aids 2001; 15:2157–64; PMID:11684935; http://dx.doi.org/10.1097/00002030-200111090-00011.
  • Lillo FB, Ferrari D, Veglia F, Origoni M, Grasso MA, Lodini S, Mastrorilli E, Taccagni G, Lazzarin A, Uberti-Foppa C. Human papillomavirus infection and associated cervical disease in human immunodeficiency virus-infected women: effect of highly active antiretroviral therapy. J Infect Dis 2001; 184:547–51; PMID:11494160; http://dx.doi.org/10.1086/322856.
  • Schuman P, Ohmit SE, Klein RS, Duerr A, Cu-Uvin S, Jamieson DJ, Anderson J, Shah KV; HIV Epidemiology Research Study (HERS) Group. Longitudinal study of cervical squamous intraepithelial lesions in human immunodeficiency virus (HIV)-seropositive and at-risk HIV-seronegative women. J Infect Dis 2003; 188:128–36; PMID:12825181; http://dx.doi.org/10.1086/375783.
  • Ahdieh-Grant L, Li R, Levine AM, Massad LS, Strickler HD, Minkoff H, Moxley M, Palefsky J, Sacks H, Burk RD et al. Highly active antiretroviral therapy and cervical squamous intraepithelial lesions in human immunodeficiency virus-positive women. J Natl Cancer Inst 2004; 96:1070–6; PMID:15265968; http://dx.doi.org/10.1093/jnci/djh192.
  • Conley LJ, Ellerbrock TV, Bush TJ, Chiasson MA, Sawo D, Wright TC. HIV-1 infection and risk of vulvovaginal and perianal condylomata acuminata and intraepithelial neoplasia: a prospective cohort study. Lancet 2002; 359:108–13; PMID:11809252; http://dx.doi.org/10.1016/S0140-6736(02)07368-3.
  • Palefsky JM, Holly EA, Ralston ML, Da Costa M, Bonner H, Jay N, Berry JM, Darragh TM. Effect of highly active antiretroviral therapy on the natural history of anal squamous intraepithelial lesions and anal human papillomavirus infection. J Acquir Immune Defic Syndr 2001; 28:422–8; PMID:11744829; http://dx.doi.org/10.1097/00042560-200112150-00003.
  • French MA, King MS, Tschampa JM, da Silva BA, Landay AL. Serum immune activation markers are persistently increased in patients with HIV infection after 6 years of antiretroviral therapy despite suppression of viral replication and reconstitution of CD4+ T cells. J Infect Dis 2009; 200:1212–5; PMID:19728788; http://dx.doi.org/10.1086/605890.
  • Lederman MM, Calabrese L, Funderburg NT, Clagett B, Medvik K, Bonilla H, Gripshover B, Salata RA, Taege A, Lisgaris M et al. Immunologic failure despite suppressive antiretroviral therapy is related to activation and turnover of memory CD4 cells. J Infect Dis 2011; 204:1217–26; PMID:21917895; http://dx.doi.org/10.1093/infdis/jir507.
  • Valdez H, Connick E, Smith KY, Lederman MM, Bosch RJ, Kim RS, St Clair M, Kuritzkes DR, Kessler H, Fox L et al. Limited immune restoration after 3 years' suppression of HIV-1 replication in patients with moderately advanced disease. AIDS 2002; 16:1859–66; PMID:12351945; http://dx.doi.org/10.1097/00002030-200209270-00002.
  • Hunt PW, Cao HL, Muzoora C, Ssewanyana I, Bennett J, Emenyonu N, Kembabazi A, Neilands TB, Bangsberg DR, Deeks SG et al. Impact of CD8+ T-cell activation on CD4+ T-cell recovery and mortality in HIV-infected Ugandans initiating antiretroviral therapy. AIDS 2011; 25:2123–31; PMID:21881481; http://dx.doi.org/10.1097/QAD.0b013e32834c4ac1.
  • Chehimi J, Campbell DE, Azzoni L, Bacheller D, Papasavvas E, Jerandi G, Mounzer K, Kostman J, Trinchieri G, Montaner LJ. Persistent decreases in blood plasmacytoid dendritic cell number and function despite effective highly active antiretroviral therapy and increased blood myeloid dendritic cells in HIV-infected individuals. J Immunol 2002; 168:4796–801; PMID:11971031; http://dx.doi.org/10.4049/jimmunol.168.9.4796.
  • Sachdeva N, Asthana V, Brewer TH, Garcia D, Asthana D. Impaired restoration of plasmacytoid dendritic cells in HIV-1-infected patients with poor CD4 T cell reconstitution is associated with decrease in capacity to produce IFN-α but not proinflammatory cytokines. J Immunol 2008; 181:2887–97; PMID:18684980; http://dx.doi.org/10.4049/jimmunol.181.4.2887.
  • Hearps AC, Maisa A, Cheng WJ, Angelovich TA, Lichtfuss GF, Palmer CS, Landay AL, Jaworowski A, Crowe SM. HIV infection induces age-related changes to monocytes and innate immune activation in young men that persist despite combination antiretroviral therapy. AIDS 2012; 26:843–53; PMID:22313961; http://dx.doi.org/10.1097/QAD.0b013e328351f756.
  • Fernandez S, Price P, McKinnon EJ, Nolan RC, French MA. Low CD4+ T-cell counts in HIV patients receiving effective antiretroviral therapy are associated with CD4+ T-cell activation and senescence but not with lower effector memory T-cell function. Clin Immunol 2006; 120:163–70; PMID:16765088; http://dx.doi.org/10.1016/j.clim.2006.04.570.
  • Goicoechea M, Smith DM, Liu L, May S, Tenorio AR, Ignacio CC, Landay A, Haubrich R. Determinants of CD4+ T cell recovery during suppressive antiretroviral therapy: association of immune activation, T cell maturation markers, and cellular HIV-1 DNA. J Infect Dis 2006; 194:29–37; PMID:16741879; http://dx.doi.org/10.1086/504718.
  • Hunt PW, Martin JN, Sinclair E, Bredt B, Hagos E, Lampiris H, Deeks SG. T cell activation is associated with lower CD4+ T cell gains in human immunodeficiency virus-infected patients with sustained viral suppression during antiretroviral therapy. J Infect Dis 2003; 187:1534–43; PMID:12721933; http://dx.doi.org/10.1086/374786.
  • Nakanjako D, Ssewanyana I, Mayanja-Kizza H, Kiragga A, Colebunders R, Manabe YC, Nabatanzi R, Kamya MR, Cao H. High T-cell immune activation and immune exhaustion among individuals with suboptimal CD4 recovery after 4 years of antiretroviral therapy in an African cohort. BMC Infect Dis 2011; 11:43; PMID:21299909; http://dx.doi.org/10.1186/1471-2334-11-43.
  • Hunt PW, Martin JN, Sinclair E, Epling L, Teague J, Jacobson MA, Tracy RP, Corey L, Deeks SG. Valganciclovir reduces T cell activation in HIV-infected individuals with incomplete CD4+ T cell recovery on antiretroviral therapy. J Infect Dis 2011; 203:1474–83; PMID:21502083; http://dx.doi.org/10.1093/infdis/jir060.
  • Kottilil S, Yan MY, Reitano KN, Zhang X, Lempicki R, Roby G, Daucher M, Yang J, Cortez KJ, Ghany M et al. Human immunodeficiency virus and hepatitis C infections induce distinct immunologic imprints in peripheral mononuclear cells. Hepatology 2009; 50:34–45; PMID:19551908; http://dx.doi.org/10.1002/hep.23055.
  • Rempel H, Sun B, Calosing C, Abadjian L, Monto A, Pulliam L. Monocyte activation in HIV/HCV coinfection correlates with cognitive impairment. PLoS One 2013; 8:e55776; PMID:23437063; http://dx.doi.org/10.1371/journal.pone.0055776.
  • Kovacs A, Al-Harthi L, Christensen S, Mack W, Cohen M, Landay A. CD8(+) T cell activation in women coinfected with human immunodeficiency virus type 1 and hepatitis C virus. J Infect Dis 2008; 197:1402–7; PMID:18444798; http://dx.doi.org/10.1086/587696.
  • Gonzalez VD, Falconer K, Blom KG, Reichard O, Morn B, Laursen AL, Weis N, Alaeus A, Sandberg JK. High levels of chronic immune activation in the T-cell compartments of patients coinfected with hepatitis C virus and human immunodeficiency virus type 1 and on highly active antiretroviral therapy are reverted by α interferon and ribavirin treatment. J Virol 2009; 83:11407–11; PMID:19710147; http://dx.doi.org/10.1128/JVI.01211-09.
  • Cuzick J. A Wilcoxon-type test for trend. Stat Med 1985; 4:87–90; PMID:3992076; http://dx.doi.org/10.1002/sim.4780040112.
  • Bergot AS, Ford N, Leggatt GR, Wells JW, Frazer IH, Grimbaldeston MA. HPV16-E7 expression in squamous epithelium creates a local immune suppressive environment via CCL2- and CCL5- mediated recruitment of mast cells. PLoS Pathog 2014; 10:e1004466; PMID:25340820; http://dx.doi.org/10.1371/journal.ppat.1004466.
  • Kobayashi A, Greenblatt RM, Anastos K, Minkoff H, Massad LS, Young M, Levine AM, Darragh TM, Weinberg V, Smith-McCune KK. Functional attributes of mucosal immunity in cervical intraepithelial neoplasia and effects of HIV infection. Cancer Res 2004; 64:6766–74; PMID:15374995; http://dx.doi.org/10.1158/0008-5472.CAN-04-1091.
  • Mhatre M, McAndrew T, Carpenter C, Burk RD, Einstein MH, Herold BC. Cervical intraepithelial neoplasia is associated with genital tract mucosal inflammation. Sex Transm Dis 2012; 39:591–7; PMID:22801340; http://dx.doi.org/10.1097/OLQ.0b013e318255aeef.
  • Prata TT, Bonin CM, Ferreira AM, Padovani CT, Fernandes CE, Machado AP, Tozetti IA. Local immunosuppression induced by high viral load of human papillomavirus: characterization of cellular phenotypes producing interleukin-10 in cervical neoplastic lesions. Immunology 2015; 146:113–21; PMID:26059395; http://dx.doi.org/10.1111/imm.12487.
  • Chang YE, Laimins LA. Microarray analysis identifies interferon-inducible genes and Stat-1 as major transcriptional targets of human papillomavirus type 31. J Virol 2000; 74:4174–82; PMID:10756030; http://dx.doi.org/10.1128/JVI.74.9.4174-4182.2000.
  • Nees M, Geoghegan JM, Hyman T, Frank S, Miller L, Woodworth CD. Papillomavirus type 16 oncogenes downregulate expression of interferon-responsive genes and upregulate proliferation-associated and NF-kappaB-responsive genes in cervical keratinocytes. J Virol 2001; 75:4283–96; PMID:11287578; http://dx.doi.org/10.1128/JVI.75.9.4283-4296.2001.
  • Barnard P, McMillan NA. The human papillomavirus E7 oncoprotein abrogates signaling mediated by interferon-α. Virology 1999; 259:305–13; PMID:10388655; http://dx.doi.org/10.1006/viro.1999.9771.
  • Ronco LV, Karpova AY, Vidal M, Howley PM. Human papillomavirus 16 E6 oncoprotein binds to interferon regulatory factor-3 and inhibits its transcriptional activity. Genes Dev 1998; 12:2061–72; PMID:9649509; http://dx.doi.org/10.1101/gad.12.13.2061.
  • Stanley M. Immune responses to human papillomavirus. Vaccine 2006; 24 Suppl 1:S16–22; PMID:16219398; http://dx.doi.org/10.1016/j.vaccine.2005.09.002.
  • Malejczyk J, Malejczyk M, Majewski S, Orth G, Jablonska S. NK-cell activity in patients with HPV16-associated anogenital tumors: defective recognition of HPV16-harboring keratinocytes and restricted unresponsiveness to immunostimulatory cytokines. Int J Cancer 1993; 54:917–21; PMID:8392981; http://dx.doi.org/10.1002/ijc.2910540608.
  • Mougin C, Mo L, Dalstein V. [Natural history of papillomavirus infections]. Rev Prat 2006; 56:1883–9; PMID:17243385.
  • Visser J, Nijman HW, Hoogenboom BN, Jager P, van Baarle D, Schuuring E, Abdulahad W, Miedema F, van der Zee AG, Daemen T. Frequencies and role of regulatory T cells in patients with (pre)malignant cervical neoplasia. Clin Exp Immunol 2007; 150:199–209; PMID:17937675; http://dx.doi.org/10.1111/j.1365-2249.2007.03468.x.
  • Agata Y, Kawasaki A, Nishimura H, Ishida Y, Tsubata T, Yagita H, Honjo T. Expression of the PD-1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol 1996; 8:765–72; PMID:8671665; http://dx.doi.org/10.1093/intimm/8.5.765.
  • Hatam LJ, Devoti JA, Rosenthal DW, Lam F, Abramson AL, Steinberg BM, Bonagura VR. Immune suppression in premalignant respiratory papillomas: enriched functional CD4+Foxp3+ regulatory T cells and PD-1/PD-L1/L2 expression. Clin Cancer Res 2012; 18:1925–35; PMID:22322668; http://dx.doi.org/10.1158/1078-0432.CCR-11-2941.
  • Kinter AL, Godbout EJ, McNally JP, Sereti I, Roby GA, O'Shea MA, Fauci AS. The common gamma-chain cytokines IL-2, IL-7, IL-15, and IL-21 induce the expression of programmed death-1 and its ligands. J Immunol 2008; 181:6738–46; PMID:18981091; http://dx.doi.org/10.4049/jimmunol.181.10.6738.
  • Hirano F, Kaneko K, Tamura H, Dong H, Wang S, Ichikawa M, Rietz C, Flies DB, Lau JS, Zhu G et al. Blockade of B7-H1 and PD-1 by monoclonal antibodies potentiates cancer therapeutic immunity. Cancer Res 2005; 65:1089–96; PMID:15705911.
  • Hodi FS, Mihm MC, Soiffer RJ, Haluska FG, Butler M, Seiden MV, Davis T, Henry-Spires R, MacRae S, Willman A et al. Biologic activity of cytotoxic T lymphocyte-associated antigen 4 antibody blockade in previously vaccinated metastatic melanoma and ovarian carcinoma patients. Proc Natl Acad Sci U S A 2003; 100:4712–7; PMID:12682289; http://dx.doi.org/10.1073/pnas.0830997100.
  • Phan GQ, Yang JC, Sherry RM, Hwu P, Topalian SL, Schwartzentruber DJ, Restifo NP, Haworth LR, Seipp CA, Freezer LJ et al. Cancer regression and autoimmunity induced by cytotoxic T lymphocyte-associated antigen 4 blockade in patients with metastatic melanoma. Proc Natl Acad Sci U S A 2003; 100:8372–7; PMID:12826605; http://dx.doi.org/10.1073/pnas.1533209100.
  • Su TH, Chang TY, Lee YJ, Chen CK, Liu HF, Chu CC, Lin M, Wang PT, Huang WC, Chen TC et al. CTLA-4 gene and susceptibility to human papillomavirus-16-associated cervical squamous cell carcinoma in Taiwanese women. Carcinogenesis 2007; 28:1237–40; PMID:17341658; http://dx.doi.org/10.1093/carcin/bgm043.
  • Yang W, Song Y, Lu YL, Sun JZ, Wang HW. Increased expression of programmed death (PD)-1 and its ligand PD-L1 correlates with impaired cell-mediated immunity in high-risk human papillomavirus-related cervical intraepithelial neoplasia. Immunology 2013; 139:513–22; PMID:23521696; http://dx.doi.org/10.1111/imm.12101.
  • Firnhaber C, Van Le H, Pettifor A, Schulze D, Michelow P, Sanne IM, Lewis DA, Williamson AL, Allan B, Williams S et al. Association between cervical dysplasia and human papillomavirus in HIV seropositive women from Johannesburg South Africa. Cancer Causes Control 2010; 21:433–43; PMID:19949850; http://dx.doi.org/10.1007/s10552-009-9475-z.
  • Papasavvas E, Ortiz GM, Gross R, Sun J, Moore EC, Heymann JJ, Moonis M, Sandberg JK, Drohan LA, Gallagher B et al. Enhancement of human immunodeficiency virus type 1-specific CD4 and CD8 T cell responses in chronically infected persons after temporary treatment interruption. J Infect Dis 2000; 182:766–75; PMID:10950770; http://dx.doi.org/10.1086/315748.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.