1,559
Views
13
CrossRef citations to date
0
Altmetric
Review

Improving vaccine efficacy against malignant glioma

, , , , , , , , , , , & , Ph.D show all
Article: e1196311 | Received 27 Apr 2016, Accepted 27 May 2016, Published online: 05 Aug 2016

References

  • Ostrom QT, Gittleman H, Liao P, Rouse C, Chen Y, Dowling J, Wolinsky Y, Kruchko C, Barnholtz-Sloan J. CBTRUS statistical report: primary brain and central nervous system tumors diagnosed in the United States in 2007–2011. Neuro Oncol 2014; 16 Suppl 4:iv1-63; PMID:25304271; http://dx.doi.org/10.1093/neuonc/nou223
  • Ferlay J, Steliarova-Foucher E, Lortet-Tieulent J, Rosso S, Coebergh JW, Comber H, Forman D, Bray F. Cancer incidence and mortality patterns in Europe: estimates for 40 countries in 2012. Eur J Cancer 2013; 49(6):1374-403; PMID:23485231; http://dx.doi.org/10.1016/j.ejca.2012.12.027
  • Soerjomataram I, Lortet-Tieulent J, Parkin DM, Ferlay J, Mathers C, Forman D, Bray F. Global burden of cancer in 2008: a systematic analysis of disability-adjusted life-years in 12 world regions. Lancet 2012; 380(9856):1840-50; PMID:23079588; http://dx.doi.org/10.1016/S0140-6736(12)60919-2
  • 2015 CBTRUS Fact Sheet. 2015 [cited 2015 December 7]; Available from: http://www.cbtrus.org/factsheet/factsheet.html
  • Ostrom QT, Gittleman H, Stetson L, Virk SM, Barnholtz-Sloan JS. Epidemiology of gliomas. Cancer Treat Res 2015; 163:1-14; PMID:25468222; http://dx.doi.org/10.1007/978-3-319-12048-5_1
  • Wen PY, Kesari S. Malignant gliomas in adults. N Engl J Med 2008; 359(5):492-507; PMID:18669428; http://dx.doi.org/10.1056/NEJMra0708126
  • Stupp R, Hegi ME, Mason WP, van den Bent MJ, Taphoorn MJ, Janzer RC, Ludwin SK, Allgeier A, Fisher B, Belanger K et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial. Lancet Oncol 2009; 10(5):459-66; PMID:19269895; http://dx.doi.org/10.1016/S1470-2045(09)70025-7
  • Stupp R, Mason WP, van den Bent MJ, Weller M, Fisher B, Taphoorn MJ, Belanger K, Brandes AA, Marosi C, Bogdahn U et al. Radiotherapy plus concomitant and adjuvant temozolomide for glioblastoma. N Engl J Med 2005; 352(10):987-96; PMID:15758009; http://dx.doi.org/10.1056/NEJMoa043330
  • Johnson DR, O'Neill BP. Glioblastoma survival in the United States before and during the temozolomide era. J Neurooncol 2012; 107(2):359-64; PMID:22045118; http://dx.doi.org/10.1007/s11060-011-0749-4
  • Eagan RT, Creagan ET, Bisel HF, Layton DD, Jr, Groover RV, Herman RC, Jr. Phase II studies of dianhydrogalactitol-based combination chemotherapy for recurrent brain tumors. Oncology 1981; 38(1):4-6; PMID:7443176; http://dx.doi.org/10.1159/000225511
  • Eagan RT, Dinapoli RP, Hermann RC, Jr, Groover RV, Layton DD, Jr, Scott M. Combination carmustine (BCNU) and dianhydrogalactitol in the treatment of primary brain tumors recurring after irradiation. Cancer Treat Rep 1982; 66(8):1647-9; PMID:7105055
  • Eagan RT, Scott M. Evaluation of prognostic factors in chemotherapy of recurrent brain tumors. J Clin Oncol 1983; 1(1):38-44; PMID:6321671
  • Haid M, Khandekar JD, Christ M, Johnson CM, Miller SJ, Locker GY, Merrill JM, Reisel H, Hatfield A, Lanzotti V et al. Aziridinylbenzoquinone in recurrent, progressive glioma of the central nervous system. A Phase II study by the Illinois Cancer Council. Cancer 1985; 56(6):1311-5; PMID:4027870; http://dx.doi.org/10.1002/1097-0142(19850915)56:6%3c1311::AID-CNCR2820560615%3e3.0.CO;2-V
  • Prins RM, Soto H, Konkankit V, Odesa SK, Eskin A, Yong WH, Nelson SF, Liau LM. Gene expression profile correlates with T-cell infiltration and relative survival in glioblastoma patients vaccinated with dendritic cell immunotherapy. Clin Cancer Res 2011; 17(6):1603-15; PMID:21135147; http://dx.doi.org/10.1158/1078-0432.CCR-10-2563
  • Lulla RR, Saratsis AM, Hashizume R. Mutations in chromatin machinery and pediatric high-grade glioma. Sci Adv 2016; 2(3):e1501354; PMID:27034984; http://dx.doi.org/10.1126/sciadv.1501354
  • Rodrigues JC, Gonzalez GC, Zhang L, Ibrahim G, Kelly JJ, Gustafson MP, Lin Y, Dietz AB, Forsyth PA, Yong VW et al. Normal human monocytes exposed to glioma cells acquire myeloid-derived suppressor cell-like properties. Neuro Oncol 2010; 12(4):351-65; PMID:20308313; http://dx.doi.org/10.1093/neuonc/nop023
  • Raychaudhuri B, Rayman P, Ireland J, Ko J, Rini B, Borden EC, Garcia J, Vogelbaum MA, Finke J. Myeloid-derived suppressor cell accumulation and function in patients with newly diagnosed glioblastoma. Neuro Oncol 2011; 13(6):591-9; PMID:21636707; http://dx.doi.org/10.1093/neuonc/nor042
  • El Andaloussi A, Han Y, Lesniak MS. Prolongation of survival following depletion of CD4+CD25+ regulatory T cells in mice with experimental brain tumors. J Neurosurg 2006; 105(3):430-7; PMID:16961139; http://dx.doi.org/10.3171/jns.2006.105.3.430
  • El Andaloussi A, Lesniak MS. An increase in CD4+CD25+FOXP3+ regulatory T cells in tumor-infiltrating lymphocytes of human glioblastoma multiforme. Neuro Oncol 2006; 8(3):234-43; PMID:16723631; http://dx.doi.org/10.1215/15228517-2006-006
  • Wainwright DA, Nigam P, Thaci B, Dey M, Lesniak MS. Recent developments on immunotherapy for brain cancer. Expert Opin Emerg Drugs 2012; 17(2):181-202; PMID:22533851; http://dx.doi.org/10.1517/14728214.2012.679929
  • Uyttenhove C, Pilotte L, Théate I, Stroobant V, Colau D, Parmentier N, Boon T, Van den Eynde BJ. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat Med 2003; 9(10):1269-74; PMID:14502282; http://dx.doi.org/10.1038/nm934
  • Zhang X, Wu A, Fan Y, Wang Y. Increased transforming growth factor-beta2 in epidermal growth factor receptor variant III-positive glioblastoma. J Clin Neurosci 2011; 18(6):821-6; PMID:21511480; http://dx.doi.org/10.1016/j.jocn.2010.09.024
  • Huettner C, Paulus W, Roggendorf W. Messenger RNA expression of the immunosuppressive cytokine IL-10 in human gliomas. Am J Pathol 1995; 146(2):317-22; PMID:7856743
  • Nitta T, Hishii M, Sato K, Okumura K. Selective expression of interleukin-10 gene within glioblastoma multiforme. Brain Res 1994; 649(1–2):122-8; PMID:7953624; http://dx.doi.org/10.1016/0006-8993(94)91055-3
  • Bloch O, Crane CA, Kaur R, Safaee M, Rutkowski MJ, Parsa AT. Gliomas promote immunosuppression through induction of B7-H1 expression in tumor-associated macrophages. Clin Cancer Res 2013; 19(12):3165-75; PMID:23613317; http://dx.doi.org/10.1158/1078-0432.CCR-12-3314
  • Parsa AT, Waldron JS, Panner A, Crane CA, Parney IF, Barry JJ, Cachola KE, Murray JC, Tihan T, Jensen MC et al. Loss of tumor suppressor PTEN function increases B7-H1 expression and immunoresistance in glioma. Nat Med 2007; 13(1):84-8; PMID:17159987; http://dx.doi.org/10.1038/nm1517
  • Thompson CB, Allison JP. The emerging role of CTLA-4 as an immune attenuator. Immunity 1997; 7(4):445-50; PMID:9354465; http://dx.doi.org/10.1016/S1074-7613(00)80366-0
  • Fecci PE, Ochiai H, Mitchell DA, Grossi PM, Sweeney AE, Archer GE, Cummings T, Allison JP, Bigner DD, Sampson JH. Systemic CTLA-4 blockade ameliorates glioma-induced changes to the CD4+ T cell compartment without affecting regulatory T-cell function. Clin Cancer Res 2007; 13(7):2158-67; PMID:17404100; http://dx.doi.org/10.1158/1078-0432.CCR-06-2070
  • Wainwright DA, Chang AL, Dey M, Balyasnikova IV, Kim CK, Tobias A, Cheng Y, Kim JW, Qiao J, Zhang L et al. Durable therapeutic efficacy utilizing combinatorial blockade against IDO, CTLA-4 and PD-L1 in mice with brain tumors. Clin Cancer Res 2014; 20(20):5290-301; PMID:24691018; http://dx.doi.org/10.1158/1078-0432.CCR-14-0514
  • Ogden AT, Horgan D, Waziri A, Anderson D, Louca J, McKhann GM, Sisti MB, Parsa AT, Bruce JN. Defective receptor expression and dendritic cell differentiation of monocytes in glioblastomas. Neurosurg 2006; 59(4):902-9; discussion 909-10; PMID:17038955; http://dx.doi.org/10.1227/01.NEU.0000233907.03070.7B
  • Binder DC, Davis AA, Wainwright DA. Immunotherapy for cancer in the central nervous system: current and future directions. Onco Immunol 2015; 5(2):e1082027; PMID:27057463; http://dx.doi.org/10.1080/2162402X.2015.1082027
  • Bullain SS, Sahin A, Szentirmai O, Sanchez C, Lin N, Baratta E, Waterman P, Weissleder R, Mulligan RC, Carter BS. Genetically engineered T cells to target EGFRvIII expressing glioblastoma. J Neurooncol 2009; 94(3):373-82; PMID:19387557; http://dx.doi.org/10.1007/s11060-009-9889-1
  • Liu G, Ying H, Zeng G, Wheeler CJ, Black KL, Yu JS. HER-2, gp100, and MAGE-1 are expressed in human glioblastoma and recognized by cytotoxic T cells. Cancer Res 2004; 64(14):4980-6; PMID:15256472; http://dx.doi.org/10.1158/0008-5472.CAN-03-3504
  • Sahin U, Koslowski M, Türeci O, Eberle T, Zwick C, Romeike B, Moringlane JR, Schwechheimer K, Feiden W, Pfreundschuh M. Expression of cancer testis genes in human brain tumors. Clin Cancer Res 2000; 6(10):3916-22; PMID:11051238
  • Scarcella DL, Chow CW, Gonzales MF, Economou C, Brasseur F, Ashley DM. Expression of MAGE and GAGE in high-grade brain tumors: a potential target for specific immunotherapy and diagnostic markers. Clin Cancer Res 1999; 5(2):335-41; PMID:10037183
  • Kahlon KS, Brown C, Cooper LJ, Raubitschek A, Forman SJ, Jensen MC. Specific recognition and killing of glioblastoma multiforme by interleukin 13-zetakine redirected cytolytic T cells. Cancer Res 2004; 64(24):9160-6; PMID:15604287; http://dx.doi.org/10.1158/0008-5472.CAN-04-0454
  • Zhang JG, Eguchi J, Kruse CA, Gomez GG, Fakhrai H, Schroter S, Ma W, Hoa N, Minev B, Delgado C et al. Antigenic profiling of glioma cells to generate allogeneic vaccines or dendritic cell-based therapeutics. Clin Cancer Res 2007; 13(2 Pt 1):566-75; PMID:17255279; http://dx.doi.org/10.1158/1078-0432.CCR-06-1576
  • Ahmed N, Salsman VS, Kew Y, Shaffer D, Powell S, Zhang YJ, Grossman RG, Heslop HE, Gottschalk S. HER2-specific T cells target primary glioblastoma stem cells and induce regression of autologous experimental tumors. Clin Cancer Res 2010; 16(2):474-85; PMID:20068073; http://dx.doi.org/10.1158/1078-0432.CCR-09-1322
  • Liu G, Yu JS, Zeng G, Yin D, Xie D, Black KL, Ying H. AIM-2: a novel tumor antigen is expressed and presented by human glioma cells. J Immunother 2004; 27(3):220-6; PMID:15076139; http://dx.doi.org/10.1097/00002371-200405000-00006
  • Ueda R, Yoshida K, Kawase T, Kawakami Y, Toda M. Preferential expression and frequent IgG responses of a tumor antigen, SOX5, in glioma patients. Int J Cancer 2007; 120(8):1704-11; PMID:17230535; http://dx.doi.org/10.1002/ijc.22472
  • Ueda R, Yoshida K, Kawakami Y, Kawase T, Toda M. Expression of a transcriptional factor, SOX6, in human gliomas. Brain Tumor Pathol 2004; 21(1):35-8; PMID:15696967; http://dx.doi.org/10.1007/BF02482175
  • Jin M, Komohara Y, Shichijo S, Harada M, Yamanaka R, Miyamoto S, Nikawa J, Itoh K, Yamada A. Identification of EphB6 variant-derived epitope peptides recognized by cytotoxic T-lymphocytes from HLA-A24+ malignant glioma patients. Oncol Rep 2008; 19(5):1277-83; PMID:18425388; http://dx.doi.org/10.3892/or.19.5.1277
  • Harada M, Ishihara Y, Itoh K, Yamanaka R. Kinesin superfamily protein-derived peptides with the ability to induce glioma-reactive cytotoxic T lymphocytes in human leukocyte antigen-A24+ glioma patients. Oncol Rep 2007; 17(3):629-36; PMID:17273744; http://dx.doi.org/10.3892/or.17.3.629
  • Friese MA, Platten M, Lutz SZ, Naumann U, Aulwurm S, Bischof F, Bühring HJ, Dichgans J, Rammensee HG, Steinle A et al. MICA/NKG2D-mediated immunogene therapy of experimental gliomas. Cancer Res 2003; 63(24):8996-9006; PMID:14695218
  • Wu A, Wiesner S, Xiao J, Ericson K, Chen W, Hall WA, Low WC, Ohlfest JR. Expression of MHC I and NK ligands on human CD133+ glioma cells: possible targets of immunotherapy. J Neurooncol 2007; 83(2):121-31; PMID:17077937; http://dx.doi.org/10.1007/s11060-006-9265-3
  • Castriconi R, Daga A, Dondero A, Zona G, Poliani PL, Melotti A, Griffero F, Marubbi D, Spaziante R, Bellora F et al. NK cells recognize and kill human glioblastoma cells with stem cell-like properties. J Immunol 2009; 182(6):3530-9; PMID:19265131; http://dx.doi.org/10.4049/jimmunol.0802845
  • Hatano M, Eguchi J, Tatsumi T, Kuwashima N, Dusak JE, Kinch MS, Pollack IF, Hamilton RL, Storkus WJ, Okada H. EphA2 as a glioma-associated antigen: a novel target for glioma vaccines. Neoplasia 2005; 7(8):717-22; PMID:16207473; http://dx.doi.org/10.1593/neo.05277
  • Cobbs CS, Harkins L, Samanta M, Gillespie GY, Bharara S, King PH, Nabors LB, Cobbs CG, Britt WJ. Human cytomegalovirus infection and expression in human malignant glioma. Cancer Res 2002; 62(12):3347-50; PMID:12067971
  • Scheurer ME, Bondy ML, Aldape KD, Albrecht T, El-Zein R. Detection of human cytomegalovirus in different histological types of gliomas. Acta Neuropathol 2008; 116(1):79-86; PMID:18351367; http://dx.doi.org/10.1007/s00401-008-0359-1
  • Mitchell DA, Xie W, Schmittling R, Learn C, Friedman A, McLendon RE, Sampson JH. Sensitive detection of human cytomegalovirus in tumors and peripheral blood of patients diagnosed with glioblastoma. Neuro Oncol 2008; 10(1):10-8; PMID:17951512; http://dx.doi.org/10.1215/15228517-2007-035
  • Lucas KG, Bao L, Bruggeman R, Dunham K, Specht C. The detection of CMV pp65 and IE1 in glioblastoma multiforme. J Neurooncol 2011; 103(2):231-8; PMID:20820869; http://dx.doi.org/10.1007/s11060-010-0383-6
  • Voldborg BR, Damstrup L, Spang-Thomsen M, Poulsen HS. Epidermal growth factor receptor (EGFR) and EGFR mutations, function and possible role in clinical trials. Ann Oncol 1997; 8(12):1197-206; PMID:9496384; http://dx.doi.org/10.1023/A:1008209720526
  • Brennan CW, Verhaak RG, McKenna A, Campos B, Noushmehr H, Salama SR, Zheng S, Chakravarty D, Sanborn JZ, Berman SH et al. The somatic genomic landscape of glioblastoma. Cell 2013; 155(2):462-77; PMID:24120142; http://dx.doi.org/10.1016/j.cell.2013.09.034
  • Huang HS, Nagane M, Klingbeil CK, Lin H, Nishikawa R, Ji XD, Huang CM, Gill GN, Wiley HS, Cavenee WK. The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 1997; 272(5):2927-35; PMID:9006938; http://dx.doi.org/10.1074/jbc.272.5.2927
  • Heimberger AB, Crotty LE, Archer GE, Hess KR, Wikstrand CJ, Friedman AH, Friedman HS, Bigner DD, Sampson JH. Epidermal growth factor receptor VIII peptide vaccination is efficacious against established intracerebral tumors. Clin Cancer Res 2003; 9(11):4247-54; PMID:14519652
  • Pelloski CE, Ballman KV, Furth AF, Zhang L, Lin E, Sulman EP, Bhat K, McDonald JM, Yung WK, Colman H et al. Epidermal growth factor receptor variant III status defines clinically distinct subtypes of glioblastoma. J Clin Oncol 2007; 25(16):2288-94; PMID:17538175; http://dx.doi.org/10.1200/JCO.2006.08.0705
  • Shinojima N, Tada K, Shiraishi S, Kamiryo T, Kochi M, Nakamura H, Makino K, Saya H, Hirano H, Kuratsu J et al. Prognostic value of epidermal growth factor receptor in patients with glioblastoma multiforme. Cancer Res 2003; 63(20):6962-70; PMID:14583498
  • Heimberger AB, Hlatky R, Suki D, Yang D, Weinberg J, Gilbert M, Sawaya R, Aldape K. Prognostic effect of epidermal growth factor receptor and EGFRvIII in glioblastoma multiforme patients. Clin Cancer Res 2005; 11(4):1462-6; PMID:15746047; http://dx.doi.org/10.1158/1078-0432.CCR-04-1737
  • Sampson JH, Heimberger AB, Archer GE, Aldape KD, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, 2nd, McLendon RE, Mitchell DA et al. Immunologic escape after prolonged progression-free survival with epidermal growth factor receptor variant III peptide vaccination in patients with newly diagnosed glioblastoma. J Clin Oncol 2010; 28(31):4722-9; PMID:20921459; http://dx.doi.org/10.1200/JCO.2010.28.6963
  • Choi BD, Archer GE, Mitchell DA, Heimberger AB, McLendon RE, Bigner DD, Sampson JH. EGFRvIII-targeted vaccination therapy of malignant glioma. Brain Pathol 2009; 19(4):713-23; PMID:19744042; http://dx.doi.org/10.1111/j.1750-3639.2009.00318.x
  • Sampson JH, Aldape KD, Archer GE, Coan A, Desjardins A, Friedman AH, Friedman HS, Gilbert MR, Herndon JE, McLendon RE et al. Greater chemotherapy-induced lymphopenia enhances tumor-specific immune responses that eliminate EGFRvIII-expressing tumor cells in patients with glioblastoma. Neuro Oncol 2011; 13(3):324-33; PMID:21149254; http://dx.doi.org/10.1093/neuonc/noq157
  • Schuster J, Lai RK, Recht LD, Reardon DA, Paleologos NA, Groves MD, Mrugala MM, Jensen R, Baehring JM, Sloan A et al. A phase II, multicenter trial of rindopepimut (CDX-110) in newly diagnosed glioblastoma: the ACT III study. Neuro Oncol 2015; 17(6):854-61; PMID:25586468; http://dx.doi.org/10.1093/neuonc/nou348
  • Celldex Glioblastoma Candidate Rintega Fails Phase III Trial. 2016 03-07-2016 [cited 2016 03-16-2016]; Available from: http://www.genengnews.com/gen-news-highlights/celldex-ends-phase-iii-trial-of-glioblastoma-candidate-rintega/81252448/
  • Srivastava PK, DeLeo AB, Old LJ. Tumor rejection antigens of chemically induced sarcomas of inbred mice. Proc Natl Acad Sci U S A 1986; 83(10):3407-11; PMID:3458189; http://dx.doi.org/10.1073/pnas.83.10.3407
  • Udono H, Levey LJ, Srivastava PK. Cellular requirements for tumor-specific immunity elicited by heat shock proteins: tumor rejection antigen gp96 primes CD8+ T cells in vivo. Proc Natl Acad Sci U S A 1994; 91(8):3077-81; PMID:7909157; http://dx.doi.org/10.1073/pnas.91.8.3077
  • Chandawarkar RY, Wagh MS, Srivastava PK. The dual nature of specific immunological activity of tumor-derived gp96 preparations. J Exp Med 1999; 189(9):1437-42; PMID:10224283; http://dx.doi.org/10.1084/jem.189.9.1437
  • Binder RJ, Srivastava PK. Essential role of CD91 in re-presentation of gp96-chaperoned peptides. Proc Natl Acad Sci U S A 2004; 101(16):6128-33; PMID:15073331; http://dx.doi.org/10.1073/pnas.0308180101
  • Lindquist S, Craig EA. The heat-shock proteins. Annu Rev Genet 1988; 22:631-77; PMID:2853609; http://dx.doi.org/10.1146/annurev.ge.22.120188.003215
  • Bloch O, Parsa AT. Heat-shock protein peptide complex-96 vaccination for recurrent glioblastoma: a phase II, single-arm trial. Neuro Oncol 2014; 16(2):274-9; PMID:24335700; http://dx.doi.org/10.1093/neuonc/not203
  • Fazeny-Dorner B, Wenzel C, Veitl M, Piribauer M, Rössler K, Dieckmann K, Ungersböck K, Marosi C. Survival and prognostic factors of patients with unresectable glioblastoma multiforme. Anticancer Drugs 2003; 14(4):305-12; PMID:12679735; http://dx.doi.org/10.1097/00001813-200304000-00008
  • Stewart LA. Chemotherapy in adult high-grade glioma: a systematic review and meta-analysis of individual patient data from 12 randomised trials. Lancet 2002; 359(9311):1011-8; PMID:11937180; http://dx.doi.org/10.1016/S0140-6736(02)08091-1
  • Agenus. Agenus Reports Positive Follow-on Phase 2 Results for Brain Cancer Vaccine in Newly Diagnosed Patients. 2013 [cited 2015 October 29]; Available from: http://www.agenusbio.com/docs/press-releases/2013/positive-phase-2-brain-cancer-vaccine.php
  • Constant S, Sant'Angelo D, Pasqualini T, Taylor T, Levin D, Flavell R, Bottomly K. Peptide and protein antigens require distinct antigen-presenting cell subsets for the priming of CD4+ T cells. J Immunol 1995; 154(10):4915-23; PMID:7730604
  • Levin D, Constant S, Pasqualini T, Flavell R, Bottomly K. Role of dendritic cells in the priming of CD4+ T lymphocytes to peptide antigen in vivo. J Immunol 1993; 151(12):6742-50; PMID:7903097
  • Inaba K, Inaba M, Romani N, Aya H, Deguchi M, Ikehara S, Muramatsu S, Steinman RM. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/macrophage colony-stimulating factor. J Exp Med 1992; 176(6):1693-702; PMID:1460426; http://dx.doi.org/10.1084/jem.176.6.1693
  • Campbell JD, Piechaczek C, Winkels G, Schwamborn E, Micheli D, Hennemann S, Schmitz J. Isolation and generation of clinical-grade dendritic cells using the Clini MACS system. Methods Mol Med 2005; 109:55-70; PMID:15585913; http://dx.doi.org/10.1385/1-59259-862-5:055
  • Mu LJ, Gaudernack G, Saebøe-Larssen S, Hammerstad H, Tierens A, Kvalheim G. A protocol for generation of clinical grade mRNA-transfected monocyte-derived dendritic cells for cancer vaccines. Scand J Immunol 2003; 58(5):578-86; PMID:14629630; http://dx.doi.org/10.1046/j.1365-3083.2003.01333.x
  • Sorg RV, Ozcan Z, Brefort T, Fischer J, Ackermann R, Müller M, Wernet P. Clinical-scale generation of dendritic cells in a closed system. J Immunother 2003; 26(4):374-83; PMID:12843800; http://dx.doi.org/10.1097/00002371-200307000-00010
  • Tuyaerts S, Noppe SM, Corthals J, Breckpot K, Heirman C, De Greef C, Van Riet I, Thielemans K. Generation of large numbers of dendritic cells in a closed system using Cell Factories. J Immunol Methods 2002; 264(1–2):135-51; PMID:12191517; http://dx.doi.org/10.1016/S0022-1759(02)00099-6
  • Aoki H, Mizuno M, Natsume A, Tsugawa T, Tsujimura K, Takahashi T, Yoshida J. Dendritic cells pulsed with tumor extract-cationic liposome complex increase the induction of cytotoxic T lymphocytes in mouse brain tumor. Cancer Immunol Immunother 2001; 50(9):463-8; PMID:11761440; http://dx.doi.org/10.1007/s002620100220
  • Liau LM, Black KL, Prins RM, Sykes SN, DiPatre PL, Cloughesy TF, Becker DP, Bronstein JM. Treatment of intracranial gliomas with bone marrow-derived dendritic cells pulsed with tumor antigens. J Neurosurg 1999; 90(6):1115-24; PMID:10350260; http://dx.doi.org/10.3171/jns.1999.90.6.1115
  • Liau LM, Prins RM, Kiertscher SM, Odesa SK, Kremen TJ, Giovannone AJ, Lin JW, Chute DJ, Mischel PS, Cloughesy TF et al. Dendritic cell vaccination in glioblastoma patients induces systemic and intracranial T-cell responses modulated by the local central nervous system tumor microenvironment. Clin Cancer Res 2005; 11(15):5515-25; PMID:16061868; http://dx.doi.org/10.1158/1078-0432.CCR-05-0464
  • Phuphanich S, Wheeler CJ, Rudnick JD, Mazer M, Wang H, Nuño MA, Richardson JE, Fan X, Ji J, Chu RM, Bender JG et al. Phase I trial of a multi-epitope-pulsed dendritic cell vaccine for patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2013; 62(1):125-35; PMID:22847020; http://dx.doi.org/10.1007/s00262-012-1319-0
  • Siegelin MD, Siegelin Y, Habel A, Rami A, Gaiser T. KAAD-cyclopamine augmented TRAIL-mediated apoptosis in malignant glioma cells by modulating the intrinsic and extrinsic apoptotic pathway. Neurobiol Dis 2009; 34(2):259-66; PMID:19385057; http://dx.doi.org/10.1016/j.nbd.2009.01.012
  • Fadul CE, Fisher JL, Hampton TH, Lallana EC, Li Z, Gui J, Szczepiorkowski ZM, Tosteson TD, Rhodes CH, Wishart HA et al. Immune response in patients with newly diagnosed glioblastoma multiforme treated with intranodal autologous tumor lysate-dendritic cell vaccination after radiation chemotherapy. J Immunother 2011; 34(4):382-9; PMID:21499132; http://dx.doi.org/10.1097/CJI.0b013e318215e300
  • Pollack IF, Jakacki RI, Butterfield LH, Hamilton RL, Panigrahy A, Potter DM, Connelly AK, Dibridge SA, Whiteside TL, Okada H. Antigen-specific immune responses and clinical outcome after vaccination with glioma-associated antigen peptides and polyinosinic-polycytidylic acid stabilized by lysine and carboxymethylcellulose in children with newly diagnosed malignant brainstem and nonbrainstem gliomas. J Clin Oncol 2014; 32(19):2050-8; PMID:24888813; http://dx.doi.org/10.1200/JCO.2013.54.0526
  • Lasky JL, 3rd, Panosyan EH, Plant A, Davidson T, Yong WH, Prins RM, Liau LM, Moore TB. Autologous tumor lysate-pulsed dendritic cell immunotherapy for pediatric patients with newly diagnosed or recurrent high-grade gliomas. Anticancer Res 2013; 33(5):2047-56; PMID:23645755
  • Ardon H, De Vleeschouwer S, Van Calenbergh F, Claes L, Kramm CM, Rutkowski S, Wolff JE, Van Gool SW. Adjuvant dendritic cell-based tumour vaccination for children with malignant brain tumours. Pediatr Blood Cancer 2010; 54(4):519-25; PMID:19852061; http://dx.doi.org/10.1002/pbc.22319
  • Azimi F, Scolyer RA, Rumcheva P, Moncrieff M, Murali R, McCarthy SW, Saw RP, Thompson JF. Tumor-infiltrating lymphocyte grade is an independent predictor of sentinel lymph node status and survival in patients with cutaneous melanoma. J Clin Oncol 2012; 30(21):2678-83; PMID:22711850; http://dx.doi.org/10.1200/JCO.2011.37.8539
  • Kreike B, van Kouwenhove M, Horlings H, Weigelt B, Peterse H, Bartelink H, van de Vijver MJ. Gene expression profiling and histopathological characterization of triple-negative/basal-like breast carcinomas. Breast Cancer Res 2007; 9(5):R65; PMID:17910759; http://dx.doi.org/10.1186/bcr1771
  • Mahmoud SM, Paish EC, Powe DG, Macmillan RD, Grainge MJ, Lee AH, Ellis IO, Green AR. Tumor-infiltrating CD8+ lymphocytes predict clinical outcome in breast cancer. J Clin Oncol 2011; 29(15):1949-55; PMID:21483002; http://dx.doi.org/10.1200/JCO.2010.30.5037
  • Rusakiewicz S, Semeraro M, Sarabi M, Desbois M, Locher C, Mendez R, Vimond N, Concha A, Garrido F, Isambert N et al. Immune infiltrates are prognostic factors in localized gastrointestinal stromal tumors. Cancer Res 2013; 73(12):3499-510; PMID:23592754; http://dx.doi.org/10.1158/0008-5472.CAN-13-0371
  • Herold-Mende C, Mossermann J, Jungk C, Ahmadi R, Capper D, von Deimling A, Unterberg A, Beckhove P. Spontaneous immune responses in gbm patients after complete tumor resection are associated with an improved survival. Neuro-Oncology 2014; 16(suppl 3):iii42; http://dx.doi.org/10.1093/neuonc/nou209.1
  • Kmiecik J, Poli A, Brons NH, Waha A, Eide GE, Enger PØ, Zimmer J, Chekenya M. Elevated CD3+ and CD8+ tumor-infiltrating immune cells correlate with prolonged survival in glioblastoma patients despite integrated immunosuppressive mechanisms in the tumor microenvironment and at the systemic level. J Neuroimmunol 2013; 264(1–2):71-83; PMID:24045166; http://dx.doi.org/10.1016/j.jneuroim.2013.08.013
  • Ohkuri T, Ghosh A, Kosaka A, Zhu J, Ikeura M, David M, Watkins SC, Sarkar SN, Okada H. STING contributes to antiglioma immunity via triggering type I IFN signals in the tumor microenvironment. Cancer Immunol Res 2014; 2(12):1199-208; PMID:25300859; http://dx.doi.org/10.1158/2326-6066.CIR-14-0099
  • Woo SR, Corrales L, Gajewski TF. The STING pathway and the T cell-inflamed tumor microenvironment. Trends Immunol 2015; 36(4):250-6; PMID:25758021; http://dx.doi.org/10.1016/j.it.2015.02.003
  • Miao H, Choi BD, Suryadevara CM, Sanchez-Perez L, Yang S, De Leon G, Sayour EJ, McLendon R, Herndon JE, Healy P et al. EGFRvIII-specific chimeric antigen receptor T cells migrate to and kill tumor deposits infiltrating the brain parenchyma in an invasive xenograft model of glioblastoma. PLoS One 2014; 9(4):e94281; PMID:24722266; http://dx.doi.org/10.1371/journal.pone.0094281
  • Eshhar Z, Waks T, Gross G, Schindler DG. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc Natl Acad Sci U S A 1993; 90(2):720-4; PMID:8421711; http://dx.doi.org/10.1073/pnas.90.2.720
  • Sadelain M, Riviere I, Brentjens R. Targeting tumours with genetically enhanced T lymphocytes. Nat Rev Cancer 2003; 3(1):35-45; PMID:12509765; http://dx.doi.org/10.1038/nrc971
  • Pule M, Finney H, Lawson A. Artificial T-cell receptors. Cytotherapy 2003; 5(3):211-26; PMID:12850789; http://dx.doi.org/10.1080/14653240310001488
  • Wege AK, Ernst W, Eckl J, Frankenberger B, Vollmann-Zwerenz A, Männel DN, Ortmann O, Kroemer A, Brockhoff G. Humanized tumor mice–a new model to study and manipulate the immune response in advanced cancer therapy. Int J Cancer 2011; 129(9):2194-206; PMID:21544806; http://dx.doi.org/10.1002/ijc.26159
  • Brehm MA, Wiles MV, Greiner DL, Shultz LD. Generation of improved humanized mouse models for human infectious diseases. J Immunol Methods 2014; 410:3-17; PMID:24607601; http://dx.doi.org/10.1016/j.jim.2014.02.011
  • Aryee KE, Shultz LD, Brehm MA. Immunodeficient mouse model for human hematopoietic stem cell engraftment and immune system development. Methods Mol Biol 2014; 1185:267-78; PMID:25062635; http://dx.doi.org/10.1007/978-1-4939-1133-2_18
  • Billerbeck E, Barry WT, Mu K, Dorner M, Rice CM, Ploss A. Development of human CD4+FoxP3+ regulatory T cells in human stem cell factor-, granulocyte-macrophage colony-stimulating factor-, and interleukin-3-expressing NOD-SCID IL2Rgamma(null) humanized mice. Blood 2011; 117(11):3076-86; PMID:21252091; http://dx.doi.org/10.1182/blood-2010-08-301507
  • Evans SR. Clinical trial structures. J Exp Stroke Transl Med 2010; 3(1):8-18; PMID:21423788; http://dx.doi.org/10.6030/1939-067X-3.1.8
  • Schuessler A, Smith C, Beagley L, Boyle GM, Rehan S, Matthews K, Jones L, Crough T, Dasari V, Klein K et al. Autologous T-cell therapy for cytomegalovirus as a consolidative treatment for recurrent glioblastoma. Cancer Res 2014; 74(13):3466-76; PMID:24795429; http://dx.doi.org/10.1158/0008-5472.CAN-14-0296
  • Mitchell DA, Batich KA, Gunn MD, Huang MN, Sanchez-Perez L, Nair SK, Congdon KL, Reap EA, Archer GE, Desjardins A et al. Tetanus toxoid and CCL3 improve dendritic cell vaccines in mice and glioblastoma patients. Nature 2015; 519(7543):366-9; PMID:25762141; http://dx.doi.org/10.1038/nature14320
  • Schumacher T, Bunse L, Wick W, Platten M. Mutant IDH1: An immunotherapeutic target in tumors. Oncoimmunology 2014; 3(12):e974392; PMID:25964867; http://dx.doi.org/10.4161/2162402X.2014.974392
  • Schumacher T, Bunse L, Pusch S, Sahm F, Wiestler B, Quandt J, Menn O, Osswald M, Oezen I, Ott M et al. A vaccine targeting mutant IDH1 induces antitumour immunity. Nature 2014; 512(7514):324-7; PMID:25043048; http://dx.doi.org/10.1038/nature13387
  • Parsons DW, Jones S, Zhang X, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Siu IM, Gallia GL et al. An integrated genomic analysis of human glioblastoma multiforme. Science 2008; 321(5897):1807-12; PMID:18772396; http://dx.doi.org/10.1126/science.1164382
  • Dennis JW, Laferté S, Waghorne C, Breitman ML, Kerbel RS. Beta 1–6 branching of Asn-linked oligosaccharides is directly associated with metastasis. Science 1987; 236(4801):582-5; PMID:2953071; http://dx.doi.org/10.1126/science.2953071
  • Sell S. Cancer-associated carbohydrates identified by monoclonal antibodies. Hum Pathol 1990; 21(10):1003-19; PMID:2210723; http://dx.doi.org/10.1016/0046-8177(90)90250-9
  • Kobata A, Amano J. Altered glycosylation of proteins produced by malignant cells, and application for the diagnosis and immunotherapy of tumours. Immunol Cell Biol 2005; 83(4):429-39; PMID:16033539; http://dx.doi.org/10.1111/j.1440-1711.2005.01351.x
  • Lou YW, Wang PY, Yeh SC, Chuang PK, Li ST, Wu CY, Khoo KH, Hsiao M, Hsu TL, Wong CH. Stage-specific embryonic antigen-4 as a potential therapeutic target in glioblastoma multiforme and other cancers. Proc Natl Acad Sci U S A 2014; 111(7):2482-7; PMID:24550271; http://dx.doi.org/10.1073/pnas.1400283111
  • Freire T, Bay S, von Mensdorff-Pouilly S, Osinaga E. Molecular basis of incomplete O-glycan synthesis in MCF-7 breast cancer cells: putative role of MUC6 in Tn antigen expression. Cancer Res 2005; 65(17):7880-7; PMID:16140958; http://dx.doi.org/10.1158/0008-5472.CAN-04-3746
  • Kanitakis J, al-Rifai I, Faure M, Claudy A. Differential expression of the cancer associated antigens T (Thomsen-Friedenreich) and Tn to the skin in primary and metastatic carcinomas. J Clin Pathol 1998; 51(8):588-92; PMID:9828816; http://dx.doi.org/10.1136/jcp.51.8.588
  • Ohshio G, Imamura T, Imamura M, Yamabe H, Sakahara H, Nakada H, Yamashina I. Distribution of Tn antigen recognized by an anti-Tn monoclonal antibody (MLS128) in normal and malignant tissues of the digestive tract. J Cancer Res Clin Oncol 1995; 121(4):247-52; PMID:7751324; http://dx.doi.org/10.1007/BF01366970
  • Brooks CL, Schietinger A, Borisova SN, Kufer P, Okon M, Hirama T, Mackenzie CR, Wang LX, Schreiber H, Evans SV. Antibody recognition of a unique tumor-specific glycopeptide antigen. Proc Natl Acad Sci U S A 2010; 107(22):10056-61; PMID:20479270; http://dx.doi.org/10.1073/pnas.0915176107
  • Inman S. Rintega (Rindopepimut) Misses Survival Endpoint in Phase 3 Glioblastoma Trial. Brain Cancer Cure 2016 03-10-2016 [cited 2016 04-19-2016]; Available from: http://www.curetoday.com/articles/rintega-misses-survival-endpoint-in-phase-3-glioblastoma-trial
  • Crane CA, Han SJ, Ahn B, Oehlke J, Kivett V, Fedoroff A, Butowski N, Chang SM, Clarke J, Berger MS et al. Individual patient-specific immunity against high-grade glioma after vaccination with autologous tumor derived peptides bound to the 96 KD chaperone protein. Clin Cancer Res 2013; 19(1):205-14; PMID:22872572; http://dx.doi.org/10.1158/1078-0432.CCR-11-3358
  • Gedeon PC, Choi BD, Sampson JH, Bigner DD. Rindopepimut: anti-EGFRvIII peptide vaccine, oncolytic. Drugs Future 2013; 38(3):147-155; PMID:25663738; http://dx.doi.org/10.1358/dof.2013.038.03.1933992
  • Ahmed KA, Sawa T, Ihara H, Kasamatsu S, Yoshitake J, Rahaman MM, Okamoto T, Fujii S, Akaike T. Regulation by mitochondrial superoxide and NADPH oxidase of cellular formation of nitrated cyclic GMP: potential implications for ROS signalling. Biochem J 2012; 441(2):719-30; PMID:21967515; http://dx.doi.org/10.1042/BJ20111130

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.