2,943
Views
31
CrossRef citations to date
0
Altmetric
Back Matter

The prognostic role of NK cells and their ligands in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis

ORCID Icon, , &
Article: 1747345 | Received 12 Nov 2019, Accepted 07 Feb 2020, Published online: 23 Apr 2020

References

  • Jou A, Hess J. Epidemiology and molecular biology of head and neck cancer. Oncology Res Treat. 2017;40(6):328–10. doi:10.1159/000477127.
  • Rettig EM, D’Souza G. Epidemiology of head and neck cancer. Surg Oncol Clin. 2015 Jul 1;24(3):379–396. doi:10.1016/j.soc.2015.03.001.
  • Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015 Mar 1;136(5):E359–86. doi:10.1002/ijc.29210.
  • Mehanna H, Paleri V, West CM, Nutting C. Head and neck cancer—Part 1: epidemiology, presentation, and preservation. Clin Otolaryngology. 2011 Feb;36(1):65–68. doi:10.1111/j.1749-4486.2010.02231.x.
  • Ridge JA, Mehra R, Lango MN, Galloway T. Head and neck tumors. Cancer Manage. 2016 Jun 2.
  • D’Souza G, Dempsey A. The role of HPV in head and neck cancer and review of the HPV vaccine. Prev Med. 2011 Oct;1(53):S5–11. doi:10.1016/j.ypmed.2011.08.001.
  • Ramqvist T, Dalianis T. Oropharyngeal cancer epidemic and human papillomavirus. Emerg Infect Dis. 2010 Nov;16(11):1671. doi:10.3201/eid1611.100452.
  • van Harten MC, de Ridder M, Hamming-Vrieze O, Smeele LE, Balm AJ. van den Brekel MW. The association of treatment delay and prognosis in head and neck squamous cell carcinoma (HNSCC) patients in a dutch comprehensive cancer center. Oral Oncol. 2014 Apr 1;50(4):282–290. doi:10.1016/j.oraloncology.2013.12.018.
  • Wu SY. Locoregionally recurrent head and neck squamous cell carcinoma: incidence, survival, prognostic factors, and treatment outcomes. Eur J Cancer. 2017 Feb;1(72):S109.
  • Matta A, Ralhan R. Overview of current and future biologically based targeted therapies in head and neck squamous cell carcinoma. Head Neck Oncol. 2009 Dec;1(1):6. doi:10.1186/1758-3284-1-6.
  • Reyes-Gibby CC, Anderson KO, Merriman KW, Todd KH, Shete SS, Hanna EY. Survival patterns in squamous cell carcinoma of the head and neck: pain as an independent prognostic factor for survival. J Pain. 2014 Oct 1;15(10):1015–1022. doi:10.1016/j.jpain.2014.07.003.
  • Economopoulou P, Kotsantis I, Psyrri A. The promise of immunotherapy in head and neck squamous cell carcinoma: combinatorial immunotherapy approaches. ESMO Open. 2016 Dec 1;1(6):e000122.
  • Mandal R, Şenbabaoğlu Y, Desrichard A, Havel JJ, Dalin MG, Riaz N, Lee KW, Ganly I, Hakimi AA, Chan TA, et al.. The head and neck cancer immune landscape and its immunotherapeutic implications. JCI Insight. 2016 Oct 20;1(17). doi:10.1172/jci.insight.89829.
  • Faden DL, Concha-Benavente F, Chakka AB, Mcmichael EL, Chandran U, Ferris RL. Immunogenomic correlates of response to cetuximab monotherapy in head and neck squamous cell carcinoma. Head Neck. 2019 Apr;41(8):2591–2601. doi:10.1002/hed.25726.
  • Bindea G, Mlecnik B, Fridman W-H GJ. The prognostic impact of anti-cancer immune response: a novel classification of cancer patients. Semin Immunopathol. 2011 May;33(4):335–340. doi:10.1007/s00281-011-0264-x.
  • Kadota K, Nitadori JI, Ujiie H, Buitrago DH, Woo KM, Sima CS, Travis WD, Jones DR, Adusumilli PS. Prognostic impact of immune microenvironment in lung squamous cell carcinoma: tumor-infiltrating CD10+ neutrophil/CD20+ lymphocyte ratio as an independent prognostic factor. J Thoracic Oncol. 2015 Sep 1;10(9):1301–1310. doi:10.1097/JTO.0000000000000617.
  • Dahlin AM, Henriksson ML, Van Guelpen B, Stenling R, Öberg Å, Rutegård J, Palmqvist R. Colorectal cancer prognosis depends on T-cell infiltration and molecular characteristics of the tumor. Mod Pathol. 2011 May;24(5):671. doi:10.1038/modpathol.2010.234.
  • Dieci MV, Mathieu MC, Guarneri V, Conte P, Delaloge S, Andre F, Goubar A. Prognostic and predictive value of tumor-infiltrating lymphocytes in two phase III randomized adjuvant breast cancer trials. Annals Oncol. 2015 May 20;26(8):1698–1704. doi:10.1093/annonc/mdv239.
  • de Ruiter EJ, Ooft ML, Devriese LA, Willems SM. The prognostic role of tumor infiltrating T-lymphocytes in squamous cell carcinoma of the head and neck: a systematic review and meta-analysis. Oncoimmunology. 2017 Nov 2;6(11):e1356148. doi:10.1080/2162402X.2017.1356148.
  • Poli A, Michel T, Thérésine M, Andrès E, Hentges F, Zimmer J. CD56bright natural killer (NK) cells: an important NK cell subset. Immunology. 2009 Apr;126(4):458–465. doi:10.1111/j.1365-2567.2008.03027.x.
  • Van Acker HH, Capsomidis A, Smits EL, Van Tendeloo VF. CD56 in the immune system: more than a marker for cytotoxicity?. Front Immunol. 2017 Jul 24;8:892. doi:10.3389/fimmu.2017.00892.
  • Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T .2012 Oct 1. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Seminars in immunology. Academic Press. Vol. 24. p. 331–341.
  • Zingoni A, Fionda C, Borrelli C, Cippitelli M, Santoni A, Soriani A. Natural killer cell response to chemotherapy-stressed cancer cells: role in tumor immunosurveillance. Front Immunol. 2017 Sep;25(8):1194. doi:10.3389/fimmu.2017.01194.
  • Stovgaard ES, Nielsen D, Hogdall E, Balslev E. Triple negative breast cancer–prognostic role of immune-related factors: a systematic review. Acta Oncol (Madr). 2018 Jan 2;57(1):74–82. doi:10.1080/0284186X.2017.1400180.
  • Coppola A, Arriga R, Lauro D, Del Principe MI, Buccisano F, Maurillo L, Palomba P, Venditti A, Sconocchia G. NK cell inflammation in the clinical outcome of colorectal carcinoma. Front Med. 2015 May;26(2):33.
  • Wagner S, Wittekindt C, Reuschenbach M, Hennig B, Thevarajah M, Würdemann N, Prigge ES, von Knebel Doeberitz M, Dreyer T, Gattenlöhner S et al.. CD 56‐positive lymphocyte infiltration in relation to human papillomavirus association and prognostic significance in oropharyngeal squamous cell carcinoma. Int J Cancer. 2016 May 1;138(9):2263–2273. doi:10.1002/ijc.29962.
  • Stasikowska-Kanicka O, Wągrowska-Danilewicz M, Danilewicz M. Association of infiltrating cells with microvessel density in oral squamous cell carcinoma. Polish J Pathol. 2017 Jan 1;68(1):40–48. doi:10.5114/pjp.2017.67614.
  • Ikeda T, Seki S, Fujiwara M, Matsuura M, Ozaki-Honda Y, Fujita S, Ikeda H, Umeda M, Asahina I. Low-risk population among patients with tumor-node-metastasis stage III/IV oral squamous cell carcinoma. Oncol Lett. 2017 Sep 1;14(3):3711–3716. doi:10.3892/ol.2017.6575.
  • De Meulenaere A, Vermassen T, Aspeslagh S, Zwaenepoel K, Deron P, Duprez F, Ferdinande L, Rottey S. CD70 expression and its correlation with clinicopathological variables in squamous cell carcinoma of the head and neck. Pathobiology. 2016;83(6):327–333. doi:10.1159/000446569.
  • Simonetti O, Lucarini G, Rubini C, Zizzi A, Aspriello SD, Di Primio R, Offidani AM. Correlation between immunohistochemical staining of CEACAM1 and clinicopathological findings in oral pre-neoplastic lesions and squamous cell carcinoma. Med Mol Morphol. 2018 Mar 1;51(1):41–47. doi:10.1007/s00795-017-0169-4.
  • Dutsch-Wicherek M, Tomaszewska R, Lazar A, Wicherek L, Skladzien J. The association between RCAS1 expression in laryngeal and pharyngeal cancer and its healthy stroma with cancer relapse. BMC Cancer. 2009 Dec;9(1):35. doi:10.1186/1471-2407-9-35.
  • Guler N, Uçkan S, Celik I, Oznurlu Y, Uckan D. Expression of Fas and Fas-ligand and analysis of argyrophilic nucleolar organizer regions in squamous cell carcinoma: relationships with tumor stage and grade, and apoptosis. Int J Oral Maxillofac Surg. 2005 Dec 1;34(8):900–906. doi:10.1016/j.ijom.2005.03.006.
  • Nariai Y, Mishima K, Yoshimura Y, Sekine J. FAP-1 and NF-κB expressions in oral squamous cell carcinoma as potential markers for chemo-radio sensitivity and prognosis. Int J Oral Maxillofac Surg. 2011 Apr 1;40(4):419–426. doi:10.1016/j.ijom.2010.10.020.
  • Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med. 2009 Aug 18;151(4):264–269. doi:10.7326/0003-4819-151-4-200908180-00135.
  • Taghavi N, Bagheri S, Akbarzadeh A. Prognostic implication of CD 57, CD 16, and TGF‐β expression in oral squamous cell carcinoma. J Oral Pathol Med. 2016 Jan;45(1):58–62. doi:10.1111/jop.12320.
  • Stangl S, Tontcheva N, Sievert W, Shevtsov M, Niu M, Schmid TE, Pigorsch S, Combs SE, Haller B, Balermpas P et al.. Heat shock protein 70 and tumor‐infiltrating NK cells as prognostic indicators for patients with squamous cell carcinoma of the head and neck after radiochemotherapy: A multicentre retrospective study of the German cancer consortium radiation oncology group (DKTK‐ROG). Int J Cancer. 2018 May 1;142(9):1911–1925. doi:10.1002/ijc.31213.
  • Fang J, Li X, Ma D, Liu X, Chen Y, Wang Y, Lui VW, Xia J, Cheng B, Wang Z. Prognostic significance of tumor infiltrating immune cells in oral squamous cell carcinoma. BMC Cancer. 2017 Dec;17(1):375. doi:10.1186/s12885-017-3317-2.
  • Karpathiou G, Casteillo F, Giroult JB, Forest F, Fournel P, Monaya A, Froudarakis M, Dumollard JM, Prades JM, Peoc’h M. Prognostic impact of immune microenvironment in laryngeal and pharyngeal squamous cell carcinoma: immune cell subtypes, immuno-suppressive pathways and clinicopathologic characteristics. Oncotarget. 2017 Mar 21;8(12):19310. doi:10.18632/oncotarget.14242.
  • Santos EM, de Matos FR, de Morais EF, Galvão HC. de Almeida Freitas R. Evaluation of Cd8+ and natural killer cells defense in oral and oropharyngeal squamous cell carcinoma. J Cranio-Maxillofacial Surg. 2019 Apr 1;47(4):676–681. doi:10.1016/j.jcms.2019.01.036.
  • de Carvalho Fraga CA, de Oliveira MV, Domingos PL, de Carvalho Botelho AC, Guimarães AL, Teixeira-Carvalho A, Correa-Oliveira R, De Paula AM. Infiltrating CD57+ inflammatory cells in head and neck squamous cell carcinoma: clinicopathological analysis and prognostic significance. Appl Immunohistochem Mol Morphol. 2012 May 1;20(3):285–290. doi:10.1097/PAI.0b013e318228357b.
  • Zancope E, Costa NL, Junqueira‐Kipnis AP, Valadares MC, Silva TA, Leles CR, Mendonça EF, Batista AC. Differential infiltration of CD8+ and NK cells in lip and oral cavity squamous cell carcinoma. J Oral Pathol Med. 2010 Feb;39(2):162–167. doi:10.1111/j.1600-0714.2009.00792.x.
  • Sakakura K, Takahashi H, Kaira K, Toyoda M, Oyama T, Chikamatsu K. Immunological significance of the accumulation of autophagy components in oral squamous cell carcinoma. Cancer Sci. 2015 Jan;106(1):1–8. doi:10.1111/cas.12559.
  • Schoenfeld JD, Gjini E, Rodig SJ, Tishler RB, Rawal B, Catalano PJ, Uppaluri R, Haddad RI, Hanna GJ, Chau NG et al.. Evaluating the PD-1 axis and immune effector cell infiltration in oropharyngeal squamous cell carcinoma. Intl J Radiation Oncology* Biology* Physics. 2018 Sep 1;102(1):137–145. doi:10.1016/j.ijrobp.2018.05.002.
  • Lazaris AC, Segas JV, Nikolopoulos TP, Patsouris ES. Tissue detection of natural killer cells in laryngeal carcinoma. Neoplasma. 2007;54:379–382.
  • Oliveira Maciel TA, Serpa MS, Mafra RP, Goes Gonzaga AK, De Souza LB, Pinto LP. Immunohistochemical analysis of natural killer cells and CD8+ T lymphocytes in lower lip squamous cell carcinoma. J Clin and Diagn Res. 2017 Dec 1;11(12):EC22–5.
  • Ladányi A, Kapuvári B, Papp E, Tóth E, Lövey J, Horváth K, Gődény M, Remenár É. Local immune parameters as potential predictive markers in head and neck squamous cell carcinoma patients receiving induction chemotherapy and cetuximab. Head Neck. 2019 May;41(5):1237–1245. doi:10.1002/hed.25546.
  • Lucarini G, Zizzi A, Re M, Sayeed MA, Di Primio R, Rubini C. Prognostic implication of CEACAM1 expression in squamous cell carcinoma of the larynx: pilot study. Head Neck. 2019 Jun 1. doi:10.1002/hed.25589.
  • Wang N, Feng Y, Wang Q, Liu S, Xiang L, Sun M, Zhang X, Liu G, Qu X, Wei F. Neutrophils infiltration in the tongue squamous cell carcinoma and its correlation with CEACAM1 expression on tumor cells. PLoS One. 2014 Feb 27;9(2):e89991. doi:10.1371/journal.pone.0089991.
  • Shinozuka K, Uzawa K, Fushimi K, Yamano Y, Shiiba M, Bukawa H, Yokoe H, Tanzawa H. Downregulation of carcinoembryonic antigen-related cell adhesion molecule 1 in oral squamous cell carcinoma: correlation with tumor progression and poor prognosis. Oncology. 2009;76(6):387–397. doi:10.1159/000215580.
  • Asensio C, Zapata AN, Garcia-Ahijado J, Gil B, Salvadores P, Schneider J. Fas expression is associated with a better prognosis in laryngeal squamous cell carcinoma. Anticancer Res. 2007 Nov 1;27(6B):4083–4086.
  • de Carvalho-neto PB, Dos Santos M, de Carvalho MB, da Cunha Mercante AM, Dos Santos VP, Severino P, Tajara EH, Louro ID, da Silva-conforti AM. FAS/FASL expression profile as a prognostic marker in squamous cell carcinoma of the oral cavity. PLoS One. 2013 Jul 19;8(7):e69024.
  • Muraki Y, Tateishi A, Seta C, Fukuda J, Haneji T, Oya R, Ikemura K, Kobayashi N. Fas antigen expression and outcome of oral squamous cell carcinoma. Int J Oral & Maxillofacial Surg: Oncol. 2000 Oct;29(5):360–365. doi:10.1016/S0901-5027(00)80053-3.
  • Das SN, Khare P, Singh MK, Sharma SC. Fas receptor (CD95) & Fas ligand (CD178) expression in patients with tobacco-related intraoral squamous cell carcinoma. Indian J Med Res. 2011 Jul;134(1):54.
  • Fang L, Sun L, Hu FF, Chen QE. Effects of FasL expression in oral squamous cell cancer. Asian Pacific J Cancer Prev. 2013;14(1):281–285. doi:10.7314/APJCP.2013.14.1.281.
  • Peterle GT, Santos M, Mendes SO, Carvalho-Neto PB, Maia LL, Stur E, Agostini LP, Silva CV, Trivilin LO, Nunes FD et al.. FAS ligand expression in inflammatory infiltrate lymphoid cells as a prognostic marker in oral squamous cell carcinoma. Genet Mol Res. 2015 Sep 22;14(3):11145–11153. doi:10.4238/2015.September.22.8.
  • Fujieda S, Sunaga H, Tsuzuki H, Fan GK, Ito T, Sugimoto C, Saito H. Expression of Fas (CD95) ligand is correlated with IL-10 and granulocyte colony-stimulating factor expression in oral and oropharyngeal squamous cell carcinoma. Cancer Lett. 2000 Dec 8;161(1):73–81. doi:10.1016/S0304-3835(00)00599-1.
  • Bayazit Y. Significance of Fas protein in squamous cell carcinoma of the larynx. Acta Otolaryngol. 2000 Jan 1;120(4):557–561. doi:10.1080/000164800750046108.
  • Reichert TE, Strauss L, Wagner EM, Gooding W, Whiteside TL. Signaling abnormalities, apoptosis, and reduced proliferation of circulating and tumor-infiltrating lymphocytes in patients with oral carcinoma. Clin Cancer Res. 2002 Oct 1;8(10):3137–3145.
  • Jäckel MC, Mitteldorf C, Schweyer S, Füzesi L. Clinical relevance of Fas (APO‐1/CD95) expression in laryngeal squamous cell carcinoma. Head Neck. 2001 Aug;23(8):646–652. doi:10.1002/hed.1091.
  • Tsuzuki H, Sunaga H, Ito T, Narita N, Sugimoto C, Fujieda S. Reliability of platelet-derived endothelial cell growth factor as a prognostic factor for oral and oropharyngeal carcinomas. Arch Otolaryngol–Head & Neck Surg. 2005 Dec 1;131(12):1071–1078. doi:10.1001/archotol.131.12.1071.
  • Prapinjumrune C, Morita KI, Kuribayashi Y, Hanabata Y, Shi Q, Nakajima Y, Inazawa J, Omura K. DNA amplification and expression of FADD in oral squamous cell carcinoma. J Oral Pathol Med. 2010 Aug;39(7):525–532.
  • Noorlag R, Boeve K, Witjes MJ, Koole R, Peeters TL, Schuuring E, Willems SM, van Es RJ. Amplification and protein overexpression of cyclin D1: predictor of occult nodal metastasis in early oral cancer. Head Neck. 2017 Feb;39(2):326–333. doi:10.1002/hed.24584.
  • Chien HT, Cheng SD, Chuang WY, Liao CT, Wang HM, Huang SF. Clinical implications of FADD gene amplification and protein overexpression in Taiwanese oral cavity squamous cell carcinomas. PLoS One. 2016 Oct 20;11(10):e0164870. doi:10.1371/journal.pone.0164870.
  • Fan S, Müller S, Chen Z, Lin P, Tighiouart M, Shin D, Khuri FR, Sun SY. Prognostic impact of Fas-associated death domain, a key component in death receptor signaling, is dependent on the presence of lymph node metastasis in head and neck squamous cell carcinoma. Cancer Biol Ther. 2013 Apr 1;14(4):365–369. doi:10.4161/cbt.23636.
  • Pattje WJ, Melchers LJ, Slagter‐Menkema L, Mastik MF, Schrijvers ML, Gibcus JH, Kluin PM, Hoegen‐Chouvalova O, van der Laan BF, Roodenburg JL. van der Wal JE. FADD expression is associated with regional and distant metastasis in squamous cell carcinoma of the head and neck. Histopathology. 2013 Aug;63(2):263–270. doi:10.1111/his.12174.
  • Rasamny JJ, Allak A, Krook KA, Jo VY, Policarpio-Nicolas ML, Sumner HM, Moskaluk CA, Frierson JHF, Jameson MJ. Cyclin D1 and FADD as biomarkers in head and neck squamous cell carcinoma. Otolaryngology–Head and Neck Surgery. 2012 Jun;146(6):923–931. doi:10.1177/0194599811435052.
  • Schrijvers ML, Pattje WJ, Slagter-Menkema L, Mastik MF, Gibcus JH, Langendijk JA, van der Wal JE, van der Laan BF, Schuuring E. FADD expression as a prognosticator in early-stage glottic squamous cell carcinoma of the larynx treated primarily with radiotherapy. Intl J Radiation Oncology* Biology* Physics. 2012 Jul 15;83(4):1220–1226. doi:10.1016/j.ijrobp.2011.09.060.
  • Wachters JE, Schrijvers ML, Slagter‐Menkema L, Mastik M, Langendijk JA, de Bock GH, Roodenburg JL, van der Laan BF, van der Wal JE, Schuuring E. Phosphorylated FADD is not prognostic for local control in T1‐T2 supraglottic laryngeal carcinoma treated with radiotherapy. Laryngoscope. 2017 Sep;127(9):E301–7. doi:10.1002/lary.26563.
  • Carinci F, Monasta L, Rubini C, Stramazzotti D, Palmieri A, Melloni E, Knowles A, Ronfani L, Zauli G, Secchiero P. The negative prognostic value of TRAIL overexpression in oral squamous cell carcinomas does not preclude the potential therapeutic use of recombinant TRAIL. Invest New Drugs. 2012 Apr 1;30(2):810–818. doi:10.1007/s10637-010-9586-0.
  • Erkul E, Kucukodaci Z, Pinar D, Gungor A, Alparslan Babayigit M, Kurt O, Cincik H. TRAIL and TRAIL receptors in patients with laryngeal cancer. Head Neck. 2016 Apr;38(S1):E535–41. doi:10.1002/hed.24035.
  • Vigneswaran N, Baucum DC, Wu J, Lou Y, Bouquot J, Muller S, Zacharias W. Repression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) but not its receptors during oral cancer progression. BMC Cancer. 2007 Dec;7(1):108. doi:10.1186/1471-2407-7-108.
  • Costa NL, Alencar RD, Valadares MC, Silva TA, Mendonça EF, Batista AC. The clinicopathological significance of the expression of Granzyme B in oral squamous cell carcinoma. Oral Oncol. 2010 Mar 1;46(3):185–189. doi:10.1016/j.oraloncology.2009.11.016.
  • Marcus A, Gowen BG, Thompson TW, Iannello A, Ardolino M, Deng W, Wang L, Shifrin N, Raulet DH .2014 Jan 1. Recognition of tumors by the innate immune system and natural killer cells. Advances in immunology. Academic Press. Vol. 122. p. 91–128.
  • Habif G, Crinier A, André P, Vivier E, Narni-Mancinelli E. Targeting natural killer cells in solid tumors. Cell Mol Immunol. 2019 Mar;25:1.
  • Stabile H, Fionda C, Gismondi A, Santoni A. Role of distinct natural killer cell subsets in anticancer response. Front Immunol. 2017 Mar;16(8):293.
  • Romagné F, Vivier E Natural killer cell-based therapies. F1000 medicine reports. 2011; 3.
  • Türkseven MR, Oygür T. Evaluation of natural killer cell defense in oral squamous cell carcinoma. Oral Oncol. 2010 May 1;46(5):e34–7. doi:10.1016/j.oraloncology.2010.02.019.
  • Moy JD, Moskovitz JM, Ferris RL. Biological mechanisms of immune escape and implications for immunotherapy in head and neck squamous cell carcinoma. Eur J Cancer. 2017 May;1(76):152–166. doi:10.1016/j.ejca.2016.12.035.
  • Korrer MJ, Kim Y. Natural killer cells from primary human head and neck squamous cell carcinomas upregulate NKG2A. J Immunol. 2017;198:1.
  • Yamada S, Shinozaki K, Agematsu K. Involvement of CD27/CD70 interactions in antigen‐specific cytotoxic T‐lymphocyte (CTL) activity by perforin‐mediated cytotoxicity. Clin Exp Immunol. 2002 Dec;130(3):424–430. doi:10.1046/j.1365-2249.2002.02012.x.
  • Held‐Feindt J, Mentlein R. CD70/CD27 ligand, a member of the TNF family, is expressed in human brain tumors. Int J Cancer. 2002 Mar 20;98(3):352–356. doi:10.1002/ijc.10207.
  • Hosomi S, Grootjans J, Huang YH, Kaser A, Blumberg RS. New insights into the regulation of natural-killer group 2 member D (NKG2D) and NKG2D-ligands: endoplasmic reticulum stress and CEA-related cell adhesion molecule 1. Front Immunol. 2018;9.
  • Kato H, Nakajima M, Masuda N, Faried A, Sohda M, Fukai Y, Miyazaki T, Fukuchi M, Tsukada K, Kuwano H. Expression of RCAS1 in esophageal squamous cell carcinoma is associated with a poor prognosis. J Surg Oncol. 2005 May 1;90(2):89–94. doi:10.1002/jso.20249.
  • Giaginis C, Davides D, Zarros A, Noussia O, Zizi-Serbetzoglou A, Kouraklis G, Theocharis S. Clinical significance of tumor-associated antigen RCAS1 expression in human pancreatic ductal adenocarcinoma. Dig Dis Sci. 2008 Jun 1;53(6):1728. doi:10.1007/s10620-007-0035-7.
  • Ashkenazi A, Dixit VM. Death receptors: signaling and modulation. science. 1998 Aug 28;281(5381):1305–1308. doi:10.1126/science.281.5381.1305.
  • Bębenek M, Duś D, Koźlak J. Prognostic value of the Fas/Fas ligand system in breast cancer. Contemp Oncol. 2013;17:120.
  • Wu GZ, Pan CX, Jiang D, Zhang Q, Li Y, Zheng SY. Clinicopathological significance of fas and fas ligand expressions in esophageal cancer. Am J Cancer Res. 2015;5:2865.
  • Li Y, Sun R. Tumor immunotherapy: new aspects of natural killer cells. Chinese J Cancer Res. 2018 Apr;30(2):173. doi:10.21147/j.1000-9604.2018.02.02.
  • Eytan DF, Snow GE, Carlson S, Derakhshan A, Saleh A, Schiltz S, Cheng H, Mohan S, Cornelius S, Coupar J et al.. SMAC mimetic birinapant plus radiation eradicates human head and neck cancers with genomic amplifications of cell death genes FADD and BIRC2. Cancer Res. 2016 Sep 15;76(18):5442–5454. doi:10.1158/0008-5472.CAN-15-3317.
  • Peter ME, Hadji A, Murmann AE, Brockway S, Putzbach W, Pattanayak A, Ceppi P. The role of CD95 and CD95 ligand in cancer. Cell Death Differ. 2015 Apr;22(4):549. doi:10.1038/cdd.2015.3.
  • Sato T, Irie S, Kitada S, Reed JC. FAP-1: a protein tyrosine phosphatase that associates with fas. Science. 1995 Apr 21;268(5209):411–415. doi:10.1126/science.7536343.
  • Raulet DH .2006 Jun 1. Missing self recognition and self tolerance of natural killer (NK) cells. Seminars in immunology. Academic Press. Vol. 18. p. 145–150.
  • Zamora AE, Crawford JC, Thomas PG. Hitting the target: how T cells detect and eliminate tumors. J Immunol. 2018 Jan 15;200(2):392–399. doi:10.4049/jimmunol.1701413.
  • Yoo SH, Keam B, Ock CY, Kim S, Han B, Kim JW, Lee KW, Jeon YK, Jung KC, Chung EJ et al.. Prognostic value of the association between MHC class I downregulation and PD-L1 upregulation in head and neck squamous cell carcinoma patients. Sci Rep. 2019 May 22;9(1):7680. doi:10.1038/s41598-019-44206-2.
  • Souza-Fonseca-Guimaraes F, Cursons J, Huntington ND. The emergence of natural killer cells as a major target in cancer immunotherapy. Trends Immunol. 2019 Jan 10;40(2):142–158. doi:10.1016/j.it.2018.12.003.
  • Hu W, Wang G, Huang D, Sui M, Xu Y. Cancer immunotherapy based on natural killer cells: current progress and new opportunities. Front Immunol. 2019;10:1205. doi:10.3389/fimmu.2019.01205.
  • Trivedi R, Mishra DP. Trailing TRAIL resistance: novel targets for TRAIL sensitization in cancer cells. Front Oncol. 2015 Apr;2(5):69.
  • Hayden JA, van der Windt DA, Cartwright JL, Côté P, Bombardier C. Assessing bias in studies of prognostic factors. Ann Intern Med. 2013 Feb 19;158(4):280–286. doi:10.7326/0003-4819-158-4-201302190-00009.
  • Review Manager (RevMan) [Computer program]. Version 5.3. Copenhagen: The Nordic Cochrane Centre, The Cochrane Collaboration; 2014.