5,126
Views
11
CrossRef citations to date
0
Altmetric
Review

Receptor signaling, transcriptional, and metabolic regulation of T cell exhaustion

Article: 1747349 | Received 24 Sep 2019, Accepted 28 Feb 2020, Published online: 14 Apr 2020

References

  • Wolchok JD, Chiarion-Sileni V, Gonzalez R, Rutkowski P, Grob -J-J, Cowey CL, Lao CD, Wagstaff J, Schadendorf D, Ferrucci PF. Overall survival with combined nivolumab and ipilimumab in advanced melanoma. N Engl J Med. 2017 Oct 5;377(14):1345–18. doi:10.1056/NEJMoa1709684.
  • Pai‐Scherf L, Blumenthal GM, Li H, Subramaniam S, Mishra‐Kalyani PS, He K, Zhao H, Yu J, Paciga M, Goldberg KB. FDA approval summary: pembrolizumab for treatment of metastatic non-small cell lung cancer: first-line therapy and beyond. The Oncologist. 2017 Nov;22(11):1392–1399. doi:10.1634/theoncologist.2017-0078.
  • Sul J, Blumenthal GM, Jiang X, He K, Keegan P, Pazdur R. FDA approval summary: pembrolizumab for the treatment of patients with metastatic non-small cell lung cancer whose tumors express programmed death-ligand 1. The Oncologist. 2016 May;21(5):643–650. doi:10.1634/theoncologist.2015-0498.
  • Kato S, Goodman A, Walavalkar V, Barkauskas DA, Sharabi A, Kurzrock R. Hyperprogressors after immunotherapy: analysis of genomic alterations associated with accelerated growth rate. Clin Cancer Res. 2017 Aug 1;23(15):4242–4250. doi:10.1158/1078-0432.CCR-16-3133.
  • Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E. Nivolumab versus docetaxel in advanced nonsquamous non–small-cell lung cancer. N Engl J Med. 2015 Oct 22;373(17):1627–1639. doi:10.1056/NEJMoa1507643.
  • Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, Hassel JC, Rutkowski P, McNeil C, Kalinka-Warzocha E. Nivolumab in previously untreated melanoma without BRAF mutation. N Engl J Med. 2015 Jan 22;372(4):320–330. doi:10.1056/NEJMoa1412082.
  • Yan B, Noone A-M, Yee C, Banerjee M, Schwartz K, Simon MS. Racial differences in colorectal cancer survival in the detroit metropolitan area. Cancer. 2009 Aug 15;115(16):3791–3800. doi:10.1002/cncr.24408.
  • Hashimoto M, Kamphorst AO, Im SJ, Kissick HT, Pillai RN, Ramalingam SS, Araki K, Ahmed R. CD8 T cell exhaustion in chronic infection and cancer: opportunities for interventions. Annu Rev Med. 2018 Jan 29;69(1):301–318. doi:10.1146/annurev-med-012017-043208.
  • Pauken KE, Wherry EJ. Overcoming T cell exhaustion in infection and cancer. Trends Immunol. 2015 Apr;36(4):265–276. doi:10.1016/j.it.2015.02.008.
  • Philip M, Schietinger A. Heterogeneity and fate choice: T cell exhaustion in cancer and chronic infections. Curr Opin Immunol. 2019 Jun;58:98–103. doi:10.1016/j.coi.2019.04.014.
  • Picarda E, Ren X, Zang X. Tumor cholesterol up, T cells down. Cell Metab. 2019 Jul 2;30(1):12–13. doi:10.1016/j.cmet.2019.06.007.
  • Buchholz VR, Flossdorf M, Hensel I, Kretschmer L, Weissbrich B, Graf P, Verschoor A, Schiemann M, Hofer T, Busch DH. Disparate individual fates compose robust CD8+ T cell immunity. Science. 2013 May 3;340(6132):630–635. doi:10.1126/science.1235454.
  • Gerlach C, Rohr JC, Perie L, van Rooij N, van Heijst JWJ, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB. Heterogeneous differentiation patterns of individual CD8+ T cells. Science. 2013 May 3;340(6132):635–639. doi:10.1126/science.1235487.
  • Kakaradov B, Arsenio J, Widjaja CE, He Z, Aigner S, Metz PJ, Yu B, Wehrens EJ, Lopez J, Kim SH. Early transcriptional and epigenetic regulation of CD8+ T cell differentiation revealed by single-cell RNA sequencing. Nat Immunol. 2017 Apr;18(4):422–432. doi:10.1038/ni.3688.
  • Joffre OP, Segura E, Savina A, Amigorena S. Cross-presentation by dendritic cells. Nat Rev Immunol. 2012 Jul 13;12(8):557–569. doi:10.1038/nri3254.
  • Kaech SM, Cui W. Transcriptional control of effector and memory CD8+ T cell differentiation. Nat Rev Immunol. 2012 Nov;12(11):749–761. doi:10.1038/nri3307.
  • Wherry EJ, Ahmed R. Memory CD8 T-cell differentiation during viral infection. J Virol. 2004 Jun;78(11):5535–5545. doi:10.1128/JVI.78.11.5535-5545.2004.
  • Farber DL, Yudanin NA, Restifo NP. Human memory T cells: generation, compartmentalization and homeostasis. Nat Rev Immunol. 2014 Jan;14(1):24–35. doi:10.1038/nri3567.
  • Remakus S, Sigal LJ. Memory CD8(+) T cell protection. Adv Exp Med Biol. 2013;785:77–86.
  • Romero P, Zippelius A, Kurth I, Pittet MJ, Touvrey C, Iancu EM, Corthesy P, Devevre E, Speiser DE, Rufer N. Four functionally distinct populations of human effector-memory CD8+ T lymphocytes. J Immunol. 2007 Apr 1;178(7):4112–4119. doi:10.4049/jimmunol.178.7.4112.
  • Shin H, Blackburn SD, Blattman JN, Wherry EJ. Viral antigen and extensive division maintain virus-specific CD8 T cells during chronic infection. J Exp Med. 2007 Apr 16;204(4):941–949. doi:10.1084/jem.20061937.
  • Wherry EJ, Barber DL, Kaech SM, Blattman JN, Ahmed R. Antigen-independent memory CD8 T cells do not develop during chronic viral infection. Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):16004–16009. doi:10.1073/pnas.0407192101.
  • Giguere J-F, Bounou S, Paquette J-S, Madrenas J, Tremblay MJ. Insertion of host-derived costimulatory molecules CD80 (B7.1) and CD86 (B7.2) into human immunodeficiency virus type 1 affects the virus life cycle. J Virol. 2004 Jun;78(12):6222–6232. doi:10.1128/JVI.78.12.6222-6232.2004.
  • Kedzierska K, Crowe SM. The role of monocytes and macrophages in the pathogenesis of HIV-1 infection. Curr Med Chem. 2002 Nov;9(21):1893–1903. doi:10.2174/0929867023368935.
  • Huang AY, Golumbek P, Ahmadzadeh M, Jaffee E, Pardoll D, Levitsky H. Role of bone marrow-derived cells in presenting MHC class I-restricted tumor antigens. Science. 1994 May 13;264(5161):961–965. doi:10.1126/science.7513904.
  • Gardner A, Ruffell B. Dendritic cells and cancer immunity. Trends Immunol. 2016 Dec;37(12):855–865. doi:10.1016/j.it.2016.09.006.
  • Bottcher JP, Reis ESC. The role of type 1 conventional dendritic cells in cancer immunity. Trends in Cancer. 2018 Nov;4(11):784–792. doi:10.1016/j.trecan.2018.09.001.
  • Saxena M, Bhardwaj N. Re-emergence of dendritic cell vaccines for cancer treatment. Trends in Cancer. 2018 Feb;4(2):119–137. doi:10.1016/j.trecan.2017.12.007.
  • Jadhav RR, Im SJ, Hu B, Hashimoto M, Li P, Lin J-X, Leonard WJ, Greenleaf WJ, Ahmed R, Goronzy JJ. Epigenetic signature of PD-1+ TCF1+ CD8 T cells that act as resource cells during chronic viral infection and respond to PD-1 blockade. Proc Natl Acad Sci U S A. 2019 Jul 9;116(28):14113–14118. doi:10.1073/pnas.1903520116.
  • Im SJ, Hashimoto M, Gerner MY, Lee J, Kissick HT, Burger MC, Shan Q, Hale JS, Lee J, Nasti TH. Defining CD8+ T cells that provide the proliferative burst after PD-1 therapy. Nature. 2016 Sep 15;537(7620):417–421. doi:10.1038/nature19330.
  • Verdeil G. MAF drives CD8 (+)T-cell exhaustion. Oncoimmunology. 2016 Feb;5(2):e1082707. doi:10.1080/2162402X.2015.1082707.
  • Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJD, Suresh M, Altman JD, Ahmed R. Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med. 1998 Dec 21;188(12):2205–2213. doi:10.1084/jem.188.12.2205.
  • Kalia V, Sarkar S, Ahmed R. CD8 T-cell memory differentiation during acute and chronic viral infections. Adv Exp Med Biol. 2010;684:79–95.
  • Chen Z, Stelekati E, Kurachi M, Yu S, Cai Z, Manne S, Khan O, Yang X, Wherry EJ. miR-150 regulates memory CD8 T cell differentiation via c-Myb. Cell Rep. 2017 Sep 12;20(11):2584–2597. doi:10.1016/j.celrep.2017.08.060.
  • Chen Z, Ji Z, Ngiow SF. TCF-1-centered transcriptional network drives an effector versus exhausted CD8 T cell-fate decision. Immunity. 2019;Oct 7
  • Siddiqui I, Schaeuble K, Chennupati V, Fuertes Marraco SA, Calderon-Copete S, Pais Ferreira D, Carmona SJ, Scarpellino L, Gfeller D, Pradervand S. Intratumoral Tcf1+PD-1+CD8+ T cells with stem-like properties promote tumor control in response to vaccination and checkpoint blockade immunotherapy. Immunity. 2019 Jan 15;50(1):195–211 e10. doi:10.1016/j.immuni.2018.12.021.
  • Balkhi MY, Wittmann G, Xiong F, Junghans RP. YY1 upregulates checkpoint receptors and downregulates type I cytokines in exhausted, chronically stimulated human T cells. iScience. 2018 Apr 27;2:105–122. doi:10.1016/j.isci.2018.03.009.
  • West EE, Jin H-T, Rasheed A-U, Penaloza-MacMaster P, Ha S-J, Tan WG, Youngblood B, Freeman GJ, Smith KA, Ahmed R. PD-L1 blockade synergizes with IL-2 therapy in reinvigorating exhausted T cells. J Clin Invest. 2013 Jun;123(6):2604–2615. doi:10.1172/JCI67008.
  • Kamphorst AO, Wieland A, Nasti T, Yang S, Zhang R, Barber DL, Konieczny BT, Daugherty CZ, Koenig L, Yu K. Rescue of exhausted CD8 T cells by PD-1–targeted therapies is CD28-dependent. Science. 2017 Mar 31;355(6332):1423–1427. doi:10.1126/science.aaf0683.
  • Pauken KE, Sammons MA, Odorizzi PM, Manne S, Godec J, Khan O, Drake AM, Chen Z, Sen DR, Kurachi M. Epigenetic stability of exhausted T cells limits durability of reinvigoration by PD-1 blockade. Science. 2016 Dec 2;354(6316):1160–1165. doi:10.1126/science.aaf2807.
  • Blackburn SD, Shin H, Freeman GJ, Wherry EJ. Selective expansion of a subset of exhausted CD8 T cells by alphaPD-L1 blockade. Proc Natl Acad Sci U S A. 2008 Sep 30;105(39):15016–15021. doi:10.1073/pnas.0801497105.
  • Man K, Gabriel SS, Liao Y, Gloury R, Preston S, Henstridge DC, Pellegrini M, Zehn D, Berberich-Siebelt F, Febbraio MA. Transcription factor IRF4 promotes CD8+ T cell exhaustion and limits the development of memory-like T cells during chronic infection. Immunity. 2017 Dec 19;47(6):1129–1141 e5. doi:10.1016/j.immuni.2017.11.021.
  • Giordano M, Henin C, Maurizio J, Imbratta C, Bourdely P, Buferne M, Baitsch L, Vanhille L, Sieweke MH, Speiser DE. Molecular profiling of CD8 T cells in autochthonous melanoma identifies Maf as driver of exhaustion. Embo J. 2015 Aug 4;34(15):2042–2058. doi:10.15252/embj.201490786.
  • Thangavelu G, Gill RG, Boon L, Ellestad KK, Anderson CC. Control of in vivo collateral damage generated by T cell immunity. J Immunol. 2013 Aug 15;191(4):1686–1691. doi:10.4049/jimmunol.1203240.
  • Bakacs T, Moss RW, Kleef R. Exploiting autoimmunity unleashed by low-dose immune checkpoint blockade to treat advanced cancer. Scand J Immunol. 2019 Oct 7:e12821.
  • Hellerstein MK, Hoh RA, Hanley MB, Cesar D, Lee D, Neese RA, McCune JM. Subpopulations of long-lived and short-lived T cells in advanced HIV-1 infection. J Clin Invest. 2003 Sep;112(6):956–966. doi:10.1172/JCI200317533.
  • Paley MA, Kroy DC, Odorizzi PM, Johnnidis JB, Dolfi DV, Barnett BE, Bikoff EK, Robertson EJ, Lauer GM, Reiner SL. Progenitor and terminal subsets of CD8+ T cells cooperate to contain chronic viral infection. Science. 2012 Nov 30;338(6111):1220–1225. doi:10.1126/science.1229620.
  • Leong YA, Chen Y, Ong HS, Wu D, Man K, Deleage C, Minnich M, Meckiff BJ, Wei Y, Hou Z. CXCR5+ follicular cytotoxic T cells control viral infection in B cell follicles. Nat Immunol. 2016 Oct;17(10):1187–1196. doi:10.1038/ni.3543.
  • Utzschneider DT, Charmoy M, Chennupati V, Pousse L, Ferreira DP, Calderon-Copete S, Danilo M, Alfei F, Hofmann M, Wieland D. T cell factor 1-expressing memory-like CD8+ T cells sustain the immune response to chronic viral infections. Immunity. 2016 Aug 16;45(2):415–427. doi:10.1016/j.immuni.2016.07.021.
  • Shan Q, Zeng Z, Xing S, Li F, Hartwig SM, Gullicksrud JA, Kurup SP, Van Braeckel-Budimir N, Su Y, Martin MD. The transcription factor Runx3 guards cytotoxic CD8+ effector T cells against deviation towards follicular helper T cell lineage. Nat Immunol. 2017 Aug;18(8):931–939. doi:10.1038/ni.3773.
  • Wang D, Diao H, Getzler AJ, Rogal W, Frederick MA, Milner J, Yu B, Crotty S, Goldrath AW, Pipkin ME. The transcription factor Runx3 establishes chromatin accessibility of cis-regulatory landscapes that drive memory cytotoxic T lymphocyte formation. Immunity. 2018 Apr 17;48(4):659–674 e6. doi:10.1016/j.immuni.2018.03.028.
  • Cruz-Guilloty F, Pipkin ME, Djuretic IM, Levanon D, Lotem J, Lichtenheld MG, Groner Y, Rao A. Runx3 and T-box proteins cooperate to establish the transcriptional program of effector CTLs. J Exp Med. 2009 Jan 16;206(1):51–59. doi:10.1084/jem.20081242.
  • Thommen DS, Koelzer VH, Herzig P, Roller A, Trefny M, Dimeloe S, Kiialainen A, Hanhart J, Schill C, Hess C. A transcriptionally and functionally distinct PD-1+ CD8+ T cell pool with predictive potential in non-small-cell lung cancer treated with PD-1 blockade. Nat Med. 2018 Jul;24(7):994–1004. doi:10.1038/s41591-018-0057-z.
  • Allie SR, Zhang W, Fuse S, Usherwood EJ. Programmed death 1 regulates development of central memory CD8 T cells after acute viral infection. J Immunol. 2011 Jun 1;186(11):6280–6286. doi:10.4049/jimmunol.1003870.
  • Shin H, Wherry EJ. CD8 T cell dysfunction during chronic viral infection. Curr Opin Immunol. 2007 Aug;19(4):408–415. doi:10.1016/j.coi.2007.06.004.
  • Nguyen LT, Ohashi PS. Clinical blockade of PD1 and LAG3–potential mechanisms of action. Nat Rev Immunol. 2015 Jan;15(1):45–56. doi:10.1038/nri3790.
  • Rosenberg SA, Yang JC, Sherry RM, Kammula US, Hughes MS, Phan GQ, Citrin DE, Restifo NP, Robbins PF, Wunderlich JR. Durable complete responses in heavily pretreated patients with metastatic melanoma using T-cell transfer immunotherapy. Clin Cancer Res. 2011 Jul 1;17(13):4550–4557. doi:10.1158/1078-0432.CCR-11-0116.
  • Emtage PC, Lo AS, Gomes EM, Liu DL, Gonzalo-Daganzo RM, Junghans RP. Second-generation anti-carcinoembryonic antigen designer T cells resist activation-induced cell death, proliferate on tumor contact, secrete cytokines, and exhibit superior antitumor activity in vivo: a preclinical evaluation. Clin Cancer Res. 2008 Dec 15;14(24):8112–8122. doi:10.1158/1078-0432.CCR-07-4910.
  • Rosenberg SA, Mule JJ, Spiess PJ, Reichert CM, Schwarz SL. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985 May 1;161(5):1169–1188. doi:10.1084/jem.161.5.1169.
  • Wherry EJ, Blattman JN, Murali-Krishna K, van der Most R, Ahmed R. Viral persistence alters CD8 T-cell immunodominance and tissue distribution and results in distinct stages of functional impairment. J Virol. 2003 Apr;77(8):4911–4927. doi:10.1128/JVI.77.8.4911-4927.2003.
  • Lo AS, Ma Q, Liu DL, Junghans RP. Anti-GD3 chimeric sFv-CD28/T-cell receptor zeta designer T cells for treatment of metastatic melanoma and other neuroectodermal tumors. Clin Cancer Res. 2010 May 15;16(10):2769–2780. doi:10.1158/1078-0432.CCR-10-0043.
  • Liao W, Lin J-X, Leonard WJ. Interleukin-2 at the crossroads of effector responses, tolerance, and immunotherapy. Immunity. 2013 Jan 24;38(1):13–25. doi:10.1016/j.immuni.2013.01.004.
  • Hu CY, Zhang YH, Wang T, Chen L, Gong ZH, Wan YS, Li QJ, Li YS, Zhu B. Interleukin-2 reverses CD8(+)T cell exhaustion in clinical malignant pleural effusion of lung cancer. Clin Exp Immunol. 2016 Oct;186(1):106–114. doi:10.1111/cei.12845.
  • MacIver NJ, Michalek RD, Rathmell JC. Metabolic regulation of T lymphocytes. Annu Rev Immunol. 2013;31(1):259–283. doi:10.1146/annurev-immunol-032712-095956.
  • Krauss S, Brand MD, Buttgereit F. Signaling takes a breath – new quantitative perspectives on bioenergetics and signal transduction. Immunity. 2001 Oct;15(4):497–502. doi:10.1016/S1074-7613(01)00205-9.
  • Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science. 2009 May 22;324(5930):1029–1033. doi:10.1126/science.1160809.
  • Warburg O. On the origin of cancer cells. Science. 1956 Feb 24;123(3191):309–314. doi:10.1126/science.123.3191.309.
  • Pearce EL, Pearce EJ. Metabolic pathways in immune cell activation and quiescence. Immunity. 2013 Apr 18;38(4):633–643. doi:10.1016/j.immuni.2013.04.005.
  • van der Windt GW, Everts B, Chang C-H, Curtis J, Freitas T, Amiel E, Pearce E, Pearce E. Mitochondrial respiratory capacity is a critical regulator of CD8+ T cell memory development. Immunity. 2012 Jan 27;36(1):68–78. doi:10.1016/j.immuni.2011.12.007.
  • Wherry EJ, Ha S-J, Kaech SM, Haining WN, Sarkar S, Kalia V, Subramaniam S, Blattman JN, Barber DL, Ahmed R. Molecular signature of CD8+ T cell exhaustion during chronic viral infection. Immunity. 2007 Oct;27(4):670–684. doi:10.1016/j.immuni.2007.09.006.
  • Bengsch B, Johnson AL, Kurachi M, Odorizzi PM, Pauken KE, Attanasio J, Stelekati E, McLane LM, Paley MA, Delgoffe GM. Bioenergetic insufficiencies due to metabolic alterations regulated by the inhibitory receptor PD-1 are an early driver of CD8(+) T cell exhaustion. Immunity. 2016 Aug 16;45(2):358–373. doi:10.1016/j.immuni.2016.07.008.
  • Scharping NE, Menk AV, Moreci RS, Whetstone RD, Dadey RE, Watkins SC, Ferris RL, Delgoffe GM. The tumor microenvironment represses T cell mitochondrial biogenesis to drive intratumoral T cell metabolic insufficiency and dysfunction. Immunity. 2016 Aug 16;45(2):374–388. doi:10.1016/j.immuni.2016.07.009.
  • Austin S, St-Pierre J. PGC1alpha and mitochondrial metabolism - emerging concepts and relevance in ageing and neurodegenerative disorders. J Cell Sci. 2012 Nov 1;125(21):4963–4971. doi:10.1242/jcs.113662.
  • Dankort D, Curley DP, Cartlidge RA, Nelson B, Karnezis AN, Damsky Jr WE, You MJ, DePinho RA, McMahon M, Bosenberg M. Braf(V600E) cooperates with Pten loss to induce metastatic melanoma. Nat Genet. 2009 May;41(5):544–552. doi:10.1038/ng.356.
  • Chang C-H, Qiu J, O’Sullivan D, Buck M, Noguchi T, Curtis J, Chen Q, Gindin M, Gubin M, van der Windt GW. Metabolic competition in the tumor microenvironment is a driver of cancer progression. Cell. 2015 Sep 10;162(6):1229–1241. doi:10.1016/j.cell.2015.08.016.
  • McKinney EF, Smith KGC. Metabolic exhaustion in infection, cancer and autoimmunity. Nat Immunol. 2018 Mar;19(3):213–221. doi:10.1038/s41590-018-0045-y.
  • Ho P-C, Bihuniak JD, Macintyre AN, Staron M, Liu X, Amezquita R, Tsui Y-C, Cui G, Micevic G, Perales J. Phosphoenolpyruvate is a metabolic checkpoint of anti-tumor T cell responses. Cell. 2015 Sep 10;162(6):1217–1228. doi:10.1016/j.cell.2015.08.012.
  • Crawford A, Angelosanto JM, Kao C, Doering T, Odorizzi P, Barnett B, Wherry E. Molecular and transcriptional basis of CD4+ T cell dysfunction during chronic infection. Immunity. 2014 Feb 20;40(2):289–302. doi:10.1016/j.immuni.2014.01.005.
  • Baitsch L, Baumgaertner P, Devevre E, Raghav SK, Legat A, Barba L, Wieckowski S, Bouzourene H, Deplancke B, Romero P. Exhaustion of tumor-specific CD8(+) T cells in metastases from melanoma patients. J Clin Invest. 2011 Jun;121(6):2350–2360. doi:10.1172/JCI46102.
  • Mognol GP, Spreafico R, Wong V, Scott-Browne JP, Togher S, Hoffmann A, Hogan PG, Rao A, Trifari S. Exhaustion-associated regulatory regions in CD8(+) tumor-infiltrating T cells. Proc Natl Acad Sci U S A. 2017 Mar 28;114(13):E2776–E2785. doi:10.1073/pnas.1620498114.
  • Hadrup SR. The antigen specific composition of melanoma tumor infiltrating lymphocytes? Oncoimmunology. 2012 Sep 1;1(6):935–936. doi:10.4161/onci.20303.
  • Cohen CJ, Gartner JJ, Horovitz-Fried M, Shamalov K, Trebska-McGowan K, Bliskovsky VV, Parkhurst MR, Ankri C, Prickett TD, Crystal JS. Isolation of neoantigen-specific T cells from tumor and peripheral lymphocytes. J Clin Invest. 2015 Oct 01;125(10):3981–3991. doi:10.1172/JCI82416.
  • Robbins PF, Lu Y-C, El-Gamil M, Li YF, Gross C, Gartner J, Lin JC, Teer JK, Cliften P, Tycksen E. Mining exomic sequencing data to identify mutated antigens recognized by adoptively transferred tumor-reactive T cells. Nat Med. 2013 Jun;19(6):747–752. doi:10.1038/nm.3161.
  • Lu Y-C, Yao X, Crystal JS, Li YF, El-Gamil M, Gross C, Davis L, Dudley ME, Yang JC, Samuels Y. Efficient identification of mutated cancer antigens recognized by T cells associated with durable tumor regressions. Clin Cancer Res. 2014 Jul 01;20(13):3401–3410. doi:10.1158/1078-0432.CCR-14-0433.
  • Coulie PG, Van den Eynde BJ, van der Bruggen P, Boon T. Tumour antigens recognized by T lymphocytes: at the core of cancer immunotherapy. Nat Rev Cancer. 2014 Feb;14(2):135–146. doi:10.1038/nrc3670.
  • Stevanovic S, Pasetto A, Helman SR, Gartner JJ, Prickett TD, Howie B, Robins HS, Robbins PF, Klebanoff CA, Rosenberg SA. Landscape of immunogenic tumor antigens in successful immunotherapy of virally induced epithelial cancer. Science. 2017 Apr 14;356(6334):200–205. doi:10.1126/science.aak9510.
  • Perrotti D, Jamieson C, Goldman J, Skorski T. Chronic myeloid leukemia: mechanisms of blastic transformation. J Clin Invest. 2010 Jul 1;120(7):2254–2264. doi:10.1172/JCI41246.
  • Bjorklund ÅK, Forkel M, Picelli S, Konya V, Theorell J, Friberg D, Sandberg R, Mjösberg J. The heterogeneity of human CD127+ innate lymphoid cells revealed by single-cell RNA sequencing. Nat Immunol. 2016 Apr;17(4):451–460. doi:10.1038/ni.3368.
  • Villani AC, Shekhar K. Single-cell RNA sequencing of human T cells. Methods Mol Biol. 2017;1514:203–239.
  • Proserpio V, Piccolo A, Haim-Vilmovsky L, Kar G, Lönnberg T, Svensson V, Pramanik J, Natarajan KN, Zhai W, Zhang X. Single-cell analysis of CD4+ T-cell differentiation reveals three major cell states and progressive acceleration of proliferation. Genome Biol. 2016 May 12;17(1):103. doi:10.1186/s13059-016-0957-5.
  • Singer M, Wang C, Cong L, Marjanovic ND, Kowalczyk MS, Zhang H, Nyman J, Sakuishi K, Kurtulus S, Gennert D. A distinct gene module for dysfunction uncoupled from activation in tumor-infiltrating T cells. Cell. 2017 Nov 16;171(5):1221–1223. doi:10.1016/j.cell.2017.11.006.
  • Concepcion AR, Vaeth M, Wagner LE 2nd, Eckstein M, Hecht L, Yang J, Crottes D, Seidl M, Shin HP, Weidinger C. Store-operated Ca2+ entry regulates Ca2+-activated chloride channels and eccrine sweat gland function. J Clin Invest. 2016 Nov 1;126(11):4303–4318. doi:10.1172/JCI89056.
  • Martinez GJ, Pereira RM, Aijo T, Kim EY, Marangoni F, Pipkin ME, Togher S, Heissmeyer V, Zhang YC, Crotty S. The transcription factor NFAT promotes exhaustion of activated CD8 + T cells. Immunity. 2015 Feb 17;42(2):265–278. doi:10.1016/j.immuni.2015.01.006.
  • Li P, Spolski R, Liao W, Wang L, Murphy TL, Murphy KM, Leonard WJ. BATF–JUN is critical for IRF4-mediated transcription in T cells. Nature. 2012 Oct 25;490(7421):543–546. doi:10.1038/nature11530.
  • Brooks DG, Lee AM, Elsaesser H, McGavern DB, Oldstone MBA. IL-10 blockade facilitates DNA vaccine-induced T cell responses and enhances clearance of persistent virus infection. J Exp Med. 2008 Mar 17;205(3):533–541. doi:10.1084/jem.20071948.
  • Ejrnaes M, Filippi CM, Martinic MM, Ling EM, Togher LM, Crotty S, von Herrath MG. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med. 2006 Oct 30;203(11):2461–2472. doi:10.1084/jem.20061462.
  • Penaloza-MacMaster P, Kamphorst AO, Wieland A, Araki K, Iyer SS, West EE, O’Mara L, Yang S, Konieczny BT, Sharpe AH. Interplay between regulatory T cells and PD-1 in modulating T cell exhaustion and viral control during chronic LCMV infection. J Exp Med. 2014 Aug 25;211(9):1905–1918. doi:10.1084/jem.20132577.
  • Intlekofer AM, Takemoto N, Kao C, Banerjee A, Schambach F, Northrop JK, Shen H, Wherry EJ, Reiner SL. Requirement for T-bet in the aberrant differentiation of unhelped memory CD8+ T cells. J Exp Med. 2007 Sep 3;204(9):2015–2021. doi:10.1084/jem.20070841.
  • Pearce EL, Mullen AC, Martins GA. Control of effector CD8+ T cell function by the transcription factor Eomesodermin. Science. 2003 Nov 7;302(5647):1041–1043. doi:10.1126/science.1090148.
  • Sullivan BM, Juedes A, Szabo SJ, von Herrath M, Glimcher LH. Antigen-driven effector CD8 T cell function regulated by T-bet. Proc Natl Acad Sci U S A. 2003 Dec 23;100(26):15818–15823. doi:10.1073/pnas.2636938100.
  • Glimcher LH, Townsend MJ, Sullivan BM, Lord GM. Recent developments in the transcriptional regulation of cytolytic effector cells. Nat Rev Immunol. 2004 Nov;4(11):900–911. doi:10.1038/nri1490.
  • Kao C, Oestreich KJ, Paley MA, Crawford A, Angelosanto JM, Ali MAA, Intlekofer AM, Boss JM, Reiner SL, Weinmann AS. Transcription factor T-bet represses expression of the inhibitory receptor PD-1 and sustains virus-specific CD8+ T cell responses during chronic infection. Nat Immunol. 2011 May 29;12(7):663–671. doi:10.1038/ni.2046.
  • Joshi NS, Cui W, Chandele A, Lee HK, Urso DR, Hagman J, Gapin L, Kaech SM. Inflammation directs memory precursor and short-lived effector CD8+ T cell fates via the graded expression of T-bet transcription factor. Immunity. 2007 Aug;27(2):281–295. doi:10.1016/j.immuni.2007.07.010.
  • Joshi NS, Cui W, Dominguez CX, Chen JH, Hand TW, Kaech SM. Increased numbers of preexisting memory CD8 T cells and decreased T-bet expression can restrain terminal differentiation of secondary effector and memory CD8 T cells. J Immunol. 2011 Oct 15;187(8):4068–4076. doi:10.4049/jimmunol.1002145.
  • Buggert M, Tauriainen J, Yamamoto T, Frederiksen J, Ivarsson MA, Michaëlsson J, Lund O, Hejdeman B, Jansson M, Sönnerborg A. T-bet and Eomes are differentially linked to the exhausted phenotype of CD8+ T cells in HIV infection. PLoS Pathog. 2014 Jul;10(7):e1004251. doi:10.1371/journal.ppat.1004251.
  • Kallies A, Xin A, Belz GT, Nutt SL. Blimp-1 transcription factor is required for the differentiation of effector CD8+ T cells and memory responses. Immunity. 2009 Aug 21;31(2):283–295. doi:10.1016/j.immuni.2009.06.021.
  • Rutishauser RL, Martins GA, Kalachikov S, Chandele A, Parish IA, Meffre E, Jacob J, Calame K, Kaech SM. Transcriptional repressor Blimp-1 promotes CD8+ T cell terminal differentiation and represses the acquisition of central memory T cell properties. Immunity. 2009 Aug 21;31(2):296–308. doi:10.1016/j.immuni.2009.05.014.
  • Xin A, Masson F, Liao Y, Preston S, Guan T, Gloury R, Olshansky M, Lin J-X, Li P, Speed TP. A molecular threshold for effector CD8+ T cell differentiation controlled by transcription factors Blimp-1 and T-bet. Nat Immunol. 2016 Apr;17(4):422–432. doi:10.1038/ni.3410.
  • Shin H, Blackburn SD, Intlekofer AM, Kao C, Angelosanto JM, Reiner SL, Wherry EJ. A Role for the Transcriptional Repressor Blimp-1 in CD8+ T Cell Exhaustion during Chronic Viral Infection. Immunity. 2009 Aug 21;31(2):309–320. doi:10.1016/j.immuni.2009.06.019.
  • Lu P, Youngblood BA, Austin JW, Rasheed Mohammed AU, Butler R, Ahmed R, Boss JM. Blimp-1 represses CD8 T cell expression of PD-1 using a feed-forward transcriptional circuit during acute viral infection. J Exp Med. 2014 Mar 10;211(3):515–527. doi:10.1084/jem.20130208.
  • Wherry EJ. T cell exhaustion. Nat Immunol. 2011 Jun;12(6):492–499. doi:10.1038/ni.2035.
  • Martins GA, Cimmino L, Liao J, Magnusdottir E, Calame K. Blimp-1 directly represses Il2 and the Il2 activator Fos, attenuating T cell proliferation and survival. J Exp Med. 2008 Sep 1;205(9):1959–1965. doi:10.1084/jem.20080526.
  • Crabtree GR, Olson EN. NFAT signaling: choreographing the social lives of cells. Cell. 2002 Apr;109(Suppl):S67–79. doi:10.1016/S0092-8674(02)00699-2.
  • Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol. 1997;15:707–747. doi:10.1146/annurev.immunol.15.1.707.
  • Klein-Hessling S, Muhammad K, Klein M, Pusch T, Rudolf R, Flöter J, Qureischi M, Beilhack A, Vaeth M, Kummerow C. NFATc1 controls the cytotoxicity of CD8+ T cells. Nat Commun. 2017 Sep 11;8(1):511. doi:10.1038/s41467-017-00612-6.
  • Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol. 2005 Jun;5(6):472–484. doi:10.1038/nri1632.
  • Bengsch B, Wherry EJ. The importance of cooperation: partnerless NFAT induces T cell exhaustion. Immunity. 2015 Feb 17;42(2):203–205. doi:10.1016/j.immuni.2015.01.023.
  • Shaw JP, Utz PJ, Durand DB, Toole J, Emmel E, Crabtree G. Identification of a putative regulator of early T cell activation genes. Science. 1988 Jul 8;241(4862):202–205. doi:10.1126/science.3260404.
  • Jain J, McCafffrey PG, Miner Z, Kerppola TK, Lambert JN, Verdine GL, Curran T, Rao A. The T-cell transcription factor NFATp is a substrate for calcineurin and interacts with Fos and Jun. Nature. 1993 Sep 23;365(6444):352–355. doi:10.1038/365352a0.
  • Macian F, Garcia-Rodriguez C, Rao A. Gene expression elicited by NFAT in the presence or absence of cooperative recruitment of Fos and Jun. Embo J. 2000 Sep 1;19(17):4783–4795. doi:10.1093/emboj/19.17.4783.
  • Abe BT, Shin DS, Mocholi E, Macian F. NFAT1 supports tumor-induced anergy of CD4+ T cells. Cancer Res. 2012 Sep 15;72(18):4642–4651. doi:10.1158/0008-5472.CAN-11-3775.
  • Muller MR, Rao A. NFAT, immunity and cancer: a transcription factor comes of age. Nat Rev Immunol. 2010 Sep;10(9):645–656. doi:10.1038/nri2818.
  • Srinivasan M, Frauwirth KA. Reciprocal NFAT1 and NFAT2 nuclear localization in CD8+ anergic T cells is regulated by suboptimal calcium signaling. J Immunol. 2007 Sep 15;179(6):3734–3741. doi:10.4049/jimmunol.179.6.3734.
  • Oestreich KJ, Yoon H, Ahmed R, Boss JM. NFATc1 regulates PD-1 expression upon T cell activation. J Immunol. 2008 Oct 1;181(7):4832–4839. doi:10.4049/jimmunol.181.7.4832.
  • Teixeira LK, Fonseca BP, Vieira-de-Abreu A, Barboza BA, Robbs BK, Bozza PT, Viola JPB. IFN-γ production by CD8+ T cells depends on NFAT1 transcription factor and regulates Th differentiation. J Immunol. 2005 Nov 1;175(9):5931–5939. doi:10.4049/jimmunol.175.9.5931.
  • Agnellini P, Wolint P, Rehr M, Cahenzli J, Karrer U, Oxenius A. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cell functions during chronic viral infection. Proc Natl Acad Sci U S A. 2007 Mar 13;104(11):4565–4570. doi:10.1073/pnas.0610335104.
  • Quigley M, Pereyra F, Nilsson B, Porichis F, Fonseca C, Eichbaum Q, Julg B, Jesneck JL, Brosnahan K, Imam S. Transcriptional analysis of HIV-specific CD8+ T cells shows that PD-1 inhibits T cell function by upregulating BATF. Nat Med. 2010 Oct;16(10):1147–1151. doi:10.1038/nm.2232.
  • Williams KL, Nanda I, Lyons GE, Kuo C, Schmid M, Leiden J, Kaplan M, Taparowsky E. Characterization of murine BATF: a negative regulator of activator protein-1 activity in the thymus. Eur J Immunol. 2001 May;31(5):1620–1627. doi:10.1002/1521-4141(200105)31:5<1620::AID-IMMU1620>3.0.CO;2-3.
  • Shahinian A, Pfeffer K, Lee KP, Kundig T, Kishihara K, Wakeham A, Kawai K, Ohashi P, Thompson C, Mak T. Differential T cell costimulatory requirements in CD28-deficient mice. Science. 1993 Jul 30;261(5121):609–612. doi:10.1126/science.7688139.
  • Kurachi M, Barnitz RA, Yosef N, Odorizzi PM, DiIorio MA, Lemieux ME, Yates K, Godec J, Klatt MG, Regev A. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat Immunol. 2014 Apr;15(4):373–383. doi:10.1038/ni.2834.
  • Hess Michelini R, Doedens AL, Goldrath AW, Hedrick SM. Differentiation of CD8 memory T cells depends on Foxo1. J Exp Med. 2013 Jun 3;210(6):1189–1200. doi:10.1084/jem.20130392.
  • Staron MM, Gray SM, Marshall HD, Parish I, Chen J, Perry C, Cui G, Li M, Kaech S. The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8+ T cells during chronic infection. Immunity. 2014 Nov 20;41(5):802–814. doi:10.1016/j.immuni.2014.10.013.
  • Delpoux A, Michelini RH, Verma S, Lai C-Y, Omilusik KD, Utzschneider DT, Redwood AJ, Goldrath AW, Benedict CA, Hedrick SM. Continuous activity of Foxo1 is required to prevent anergy and maintain the memory state of CD8+ T cells. J Exp Med. 2018 Feb 5;215(2):575–594. doi:10.1084/jem.20170697.
  • Delpoux A, Lai C-Y, Hedrick SM, Doedens AL. FOXO1 opposition of CD8(+) T cell effector programming confers early memory properties and phenotypic diversity. Proc Natl Acad Sci U S A. 2017 Oct 17;114(42):E8865–E8874. doi:10.1073/pnas.1618916114.
  • Utzschneider DT, Delpoux A, Wieland D, Huang X, Lai C-Y, Hofmann M, Thimme R, Hedrick SM. Active maintenance of T cell memory in acute and chronic viral infection depends on continuous expression of FOXO1. Cell Rep. 2018 Mar 27;22(13):3454–3467. doi:10.1016/j.celrep.2018.03.020.
  • Thomas MJ, Seto E. Unlocking the mechanisms of transcription factor YY1: are chromatin modifying enzymes the key? Gene. 1999 Aug 20;236(2):197–208. doi:10.1016/S0378-1119(99)00261-9.
  • Gordon S, Akopyan G, Garban H, Bonavida B. Transcription factor YY1: structure, function, and therapeutic implications in cancer biology. Oncogene. 2006 Feb 23;25(8):1125–1142. doi:10.1038/sj.onc.1209080.
  • Shi Y, Lee JS, Galvin KM. Everything you have ever wanted to know about Yin Yang 1. Biochim Biophys Acta. 1997 Apr 18;1332(2):F49–66. doi:10.1016/s0304-419x(96)00044-3.
  • Hwang SS, Kim YU, Lee S, Jang SW, Kim MK, Koh BH, Lee W, Kim J, Souabni A, Busslinger M. Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation. Proc Natl Acad Sci U S A. 2013 Jan 2;110(1):276–281. doi:10.1073/pnas.1214682110.
  • Yu B, Zhang K, Milner JJ, Toma C, Chen R, Scott-Browne JP, Pereira RM, Crotty S, Chang JT, Pipkin ME. Erratum: epigenetic landscapes reveal transcription factors that regulate CD8+ T cell differentiation. Nat Immunol. 2017 May 18;18(6):705. doi:10.1038/ni0617-705b.
  • Alfei F, Kanev K, Hofmann M, Wu M, Ghoneim HE, Roelli P, Utzschneider DT, von Hoesslin M, Cullen JG, Fan Y. TOX reinforces the phenotype and longevity of exhausted T cells in chronic viral infection. Nature. 2019 Jun 17;571(7764):265–269. doi:10.1038/s41586-019-1326-9.
  • O’Flaherty E, Kaye J. TOX defines a conserved subfamily of HMG-box proteins. BMC Genomics. 2003 Apr 2;4(1):13. doi:10.1186/1471-2164-4-13.
  • Aliahmad P, Kaye J. Development of all CD4 T lineages requires nuclear factor TOX. J Exp Med. 2008 Jan 21;205(1):245–256. doi:10.1084/jem.20071944.
  • Scott AC, Dundar F, Zumbo P, Chandran SS, Klebanoff CA, Shakiba M, Trivedi P, Menocal L, Appleby H, Camara S. TOX is a critical regulator of tumour-specific T cell differentiation. Nature. 2019 Jun 17;571(7764):270–274. doi:10.1038/s41586-019-1324-y.
  • Shaw LA, Belanger S, Omilusik KD, Cho S, Scott-Browne JP, Nance JP, Goulding J, Lasorella A, Lu L-F, Crotty S. Id2 reinforces TH1 differentiation and inhibits E2A to repress TFH differentiation. Nat Immunol. 2016 Jul;17(7):834–843. doi:10.1038/ni.3461.
  • Latif F, Tory K, Gnarra J, Yao M, Duh F, Orcutt M, Stackhouse T, Kuzmin I, Modi W, Geil L. Identification of the von Hippel-Lindau disease tumor suppressor gene. Science. 1993 May 28;260(5112):1317–1320. doi:10.1126/science.8493574.
  • Doedens AL, Phan AT, Stradner MH, Fujimoto JK, Nguyen JV, Yang E, Johnson RS, Goldrath AW. Hypoxia-inducible factors enhance the effector responses of CD8+ T cells to persistent antigen. Nat Immunol. 2013 Nov;14(11):1173–1182. doi:10.1038/ni.2714.
  • Sen DR, Kaminski J, Barnitz RA, Kurachi M, Gerdemann U, Yates KB, Tsao H-W, Godec J, LaFleur MW, Brown FD. The epigenetic landscape of T cell exhaustion. Science. 2016 Dec 2;354(6316):1165–1169. doi:10.1126/science.aae0491.
  • Scott-Browne JP, Lopez-Moyado IF, Trifari S, Wong V, Chavez L, Rao A, Pereira RM. Dynamic changes in chromatin accessibility occur in CD8 + T cells responding to viral infection. Immunity. 2016 Dec 20;45(6):1327–1340. doi:10.1016/j.immuni.2016.10.028.
  • Alfei F, Zehn D. T cell exhaustion: an epigenetically imprinted phenotypic and functional makeover. Trends Mol Med. 2017 Sep;23(9):769–771. doi:10.1016/j.molmed.2017.07.006.
  • Philip M, Fairchild L, Sun L, Horste EL, Camara S, Shakiba M, Scott AC, Viale A, Lauer P, Merghoub T. Chromatin states define tumour-specific T cell dysfunction and reprogramming. Nature. 2017 May 25;545(7655):452–456. doi:10.1038/nature22367.
  • Doering TA, Crawford A, Angelosanto JM, Paley M, Ziegler C, Wherry E. Network analysis reveals centrally connected genes and pathways involved in CD8+ T cell exhaustion versus memory. Immunity. 2012 Dec 14;37(6):1130–1144. doi:10.1016/j.immuni.2012.08.021.
  • Khan O, Giles JR, McDonald S, Manne S, Ngiow SF, Patel KP, Werner MT, Huang AC, Alexander KA, Wu JE. TOX transcriptionally and epigenetically programs CD8+ T cell exhaustion. Nature. 2019 Jun 17;571(7764):211–218. doi:10.1038/s41586-019-1325-x.
  • Brentjens RJ, Davila ML, Riviere I, Park J, Wang X, Cowell LG, Bartido S, Stefanski J, Taylor C, Olszewska M. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013 Mar 20;5(177):177ra38. doi:10.1126/scitranslmed.3005930.
  • Grupp SA, Kalos M, Barrett D, Aplenc R, Porter DL, Rheingold SR, Teachey DT, Chew A, Hauck B, Wright JF. Chimeric Antigen Receptor–Modified T Cells for Acute Lymphoid Leukemia. N Engl J Med. 2013 Apr 18;368(16):1509–1518. doi:10.1056/NEJMoa1215134.
  • Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor–modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011 Aug 25;365(8):725–733. doi:10.1056/NEJMoa1103849.
  • Junghans RP. The challenges of solid tumor for designer CAR-T therapies: a 25-year perspective. Cancer Gene Ther. 2017 Mar;24(3):89–99. doi:10.1038/cgt.2016.82.
  • Kershaw MH, Westwood JA, Parker LL, Wang G, Eshhar Z, Mavroukakis SA, White DE, Wunderlich JR, Canevari S, Rogers-Freezer L. A phase I study on adoptive immunotherapy using gene-modified T cells for ovarian cancer. Clin Cancer Res. 2006 Oct 15;12(20):6106–6115. doi:10.1158/1078-0432.CCR-06-1183.
  • Lamers CH, Sleijfer S, van Steenbergen S, van Elzakker P, van Krimpen B, Groot C, Vulto A, den Bakker M, Oosterwijk E, Debets R. Treatment of metastatic renal cell carcinoma with CAIX CAR-engineered T cells: clinical evaluation and management of on-target toxicity. Mol Ther. 2013 Apr;21(4):904–912. doi:10.1038/mt.2013.17.
  • Long AH, Haso WM, Shern JF, Wanhainen KM, Murgai M, Ingaramo M, Smith JP, Walker AJ, Kohler ME, Venkateshwara VR. 4-1BB costimulation ameliorates T cell exhaustion induced by tonic signaling of chimeric antigen receptors. Nat Med. 2015 May 4;21(6):581–590. doi:10.1038/nm.3838.
  • Fraietta JA, Lacey SF, Orlando EJ, Pruteanu-Malinici I, Gohil M, Lundh S, Boesteanu AC, Wang Y, O’Connor RS, Hwang W-T. Determinants of response and resistance to CD19 chimeric antigen receptor (CAR) T cell therapy of chronic lymphocytic leukemia. Nat Med. 2018 May;24(5):563–571. doi:10.1038/s41591-018-0010-1.
  • Cherkassky L, Morello A, Villena-Vargas J, Feng Y, Dimitrov DS, Jones DR, Sadelain M, Adusumilli PS. Human CAR T cells with cell-intrinsic PD-1 checkpoint blockade resist tumor-mediated inhibition. J Clin Invest. 2016 Aug 1;126(8):3130–3144. doi:10.1172/JCI83092.
  • John LB, Devaud C, Duong CP, Yong CS, Beavis PA, Haynes NM, Chow MT, Smyth MJ, Kershaw MH, Darcy PK. Anti-PD-1 antibody therapy potently enhances the eradication of established tumors by gene-modified T cells. Clin Cancer Res. 2013 Oct 15;19(20):5636–5646. doi:10.1158/1078-0432.CCR-13-0458.
  • Zolov SN, Rietberg SP, Bonifant CL. Programmed cell death protein 1 activation preferentially inhibits CD28.CAR–T cells. Cytotherapy. 2018 Oct 8;20(10):1259–1266. doi:10.1016/j.jcyt.2018.07.005.
  • Park JR, Digiusto DL, Slovak M, Wright C, Naranjo A, Wagner J, Meechoovet HB, Bautista C, Chang W-C, Ostberg JR. Adoptive transfer of chimeric antigen receptor re-directed cytolytic T lymphocyte clones in patients with neuroblastoma. Mol Ther. 2007 Apr;15(4):825–833. doi:10.1038/sj.mt.6300104.
  • Till BG, Jensen MC, Wang J, Qian X, Gopal AK, Maloney DG, Lindgren CG, Lin Y, Pagel JM, Budde LE. CD20-specific adoptive immunotherapy for lymphoma using a chimeric antigen receptor with both CD28 and 4-1BB domains: pilot clinical trial results. Blood. 2012 Apr 26;119(17):3940–3950. doi:10.1182/blood-2011-10-387969.
  • Emran AA, Chatterjee A, Rodger EJ, Tiffen JC, Gallagher SJ, Eccles MR, Hersey P. Targeting DNA methylation and EZH2 activity to overcome melanoma resistance to immunotherapy. Trends Immunol. 2019 Apr;40(4):328–344. doi:10.1016/j.it.2019.02.004.
  • Salmond RJ, Alexander DR. SHP2 forecast for the immune system: fog gradually clearing. Trends Immunol. 2006 Mar;27(3):154–160. doi:10.1016/j.it.2006.01.007.
  • Hui E, Cheung J, Zhu J, Su X, Taylor MJ, Wallweber HA, Sasmal DK, Huang J, Kim JM, Mellman I. T cell costimulatory receptor CD28 is a primary target for PD-1–mediated inhibition. Science. 2017 Mar 31;355(6332):1428–1433. doi:10.1126/science.aaf1292.
  • Oehen S, Brduscha-Riem K. Differentiation of naive CTL to effector and memory CTL: correlation of effector function with phenotype and cell division. J Immunol. 1998 Nov 15;161(10):5338–5346.
  • Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25(1):171–192. doi:10.1146/annurev.immunol.25.022106.141548.
  • Akondy RS, Fitch M, Edupuganti S, Yang S, Kissick HT, Li KW, Youngblood BA, Abdelsamed HA, McGuire DJ, Cohen KW. Origin and differentiation of human memory CD8 T cells after vaccination. Nature. 2017 Dec 21;552(7685):362–367. doi:10.1038/nature24633.
  • Youngblood B, Hale JS, Kissick HT, Ahn E, Xu X, Wieland A, Araki K, West EE, Ghoneim HE, Fan Y. Effector CD8 T cells dedifferentiate into long-lived memory cells. Nature. 2017 Dec 21;552(7685):404–409. doi:10.1038/nature25144.
  • Pace L, Goudot C, Zueva E, Gueguen P, Burgdorf N, Waterfall JJ, Quivy J-P, Almouzni G, Amigorena S. The epigenetic control of stemness in CD8(+) T cell fate commitment. Science. 2018 Jan 12;359(6372):177–186. doi:10.1126/science.aah6499.
  • Reinhardt RL, Khoruts A, Merica R, Zell T, Jenkins MK. Visualizing the generation of memory CD4 T cells in the whole body. Nature. 2001 Mar 1;410(6824):101–105. doi:10.1038/35065111.
  • Masopust D. Preferential localization of effector memory cells in nonlymphoid tissue. Science. 2001 Mar 23;291(5512):2413–2417. doi:10.1126/science.1058867.
  • Balkhi MY, Ma Q, Ahmad S, Junghans RP. T cell exhaustion and Interleukin 2 downregulation. Cytokine. 2015 Feb;71(2):339–347. doi:10.1016/j.cyto.2014.11.024.
  • Okazaki T, Honjo T. The PD-1-PD-L pathway in immunological tolerance. Trends Immunol. 2006 Apr;27(4):195–201. doi:10.1016/j.it.2006.02.001.
  • Keir ME, Liang SC, Guleria I, Latchman YE, Qipo A, Albacker LA, Koulmanda M, Freeman GJ, Sayegh MH, Sharpe AH. Tissue expression of PD-L1 mediates peripheral T cell tolerance. J Exp Med. 2006 Apr 17;203(4):883–895. doi:10.1084/jem.20051776.